陆域天然气水合物遥感探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对国内外天然气水合物,尤其是陆域天然气水合物成藏地质情况、探测技术手段等综合调研与分析,探讨了冻土区利用遥感技术进行与天然气水合物相关信息探测的必要性与物质基础。从天然气水合物成藏模式与储存条件出发,发展了和开发了利用遥感技术在冻土区进行温压信息提取与物源信息探测的技术方法,为冻土区天然气水合物的快速探测提供了技术支撑。最后以青藏铁路沿线为例,在青藏高原油气地质与天然气水合物在时空上具有耦合关系分析的基础之上,采用MODIS和ASTER数据,反演青藏铁路沿线天然气水合物形成的温压条件、物源分布,蚀变共生信息等,并在综合分析的基础之上,探讨了青藏铁路沿线可能的、潜在的天然气水合物矿藏发育概况。主要成果如下:
    1、通过广泛的调研,系统地分析了天然气水合物,尤其是陆域水合物成藏模式、形成条件等相关地质地理条件与探测技术方法,为陆域天然气水合物的探测与开发研究提供了基本的、可对比的史料型综合调研报告。
    2、在对天然气水合物成藏模式与储存条件分析的基础之上,结合岩石矿物的光谱特征和ASTER数据的特点,发展了基于ASTER数据波段特征的矿物类识别,基于比值/差值的岩性信息增强方法;开发了基于可见—热红外光谱协同的蚀变共生效应信息分析方法。并利用ASTER数据识别并提取了青藏铁路沿线部分与水合物相关的矿物类分布信息,增强了部分岩类信息,提取并分析了该区可能存在的长石类粘土化信息。从多个角度为综合分析天然气水合物探测提供了大量的物源基础信息与表观蚀变信息。
    3、利用MODIS数据反演了青藏铁路沿线陆表温度与年平均地温,圈定了永久冻土带,划分了冻土类型,反演了冻土厚度,为试验区水合物探测与勘探中对其生成、聚集成藏以及保存条件的综合分析提供了必要的、重要的温压信息。
    4、从青藏高原油气资源成生演化、高原隆升、冻土形成以及冰川冰进与冰退等综合分析,初步认为天然气水合物在聚集成藏与保存条件等方面具有时空耦合关系。
    5、综合国内外调研内容、青藏高原水合物时空耦合关系、野外调查与验证工作以及利用MODIS数据和ASTER数据进行青藏铁路沿线水合物遥感探测的相关内容,从水合物控制因素、物源信息、烃微渗漏以及蚀变共生效应等方面分析了青藏铁路沿线可能的、潜在的天然气水合物矿藏发育概况。
Through a full investigation on literature about gas hydrate, especiallyterrestrial gas hydrate, including geological background of reservoir formation andapplication of exploration technology, it is discussed the possibility of using remotesensing technique to explore relative information about gas hydrate in permafrostarea, as well as its material basis. Based on the model of reservoir formation andreservoir properties, it is improved and developed the techniques using remotesensing to extract information about temperature and pressure in permafrost area andsurvey source of materials, providing an effective method of fast exploration for gashydrate in permafrost area. Gas hydrate and petroleum geology in the Tibetanplateau have certain spatio-temporal coupling relationship. Taken area along theQinghai-Tibet Railway as an example, MODIS and ASTER data are used to inversethe temperature and pressure of gas hydrate reservoir formation, distribution ofmaterial sources, associated alteration information and so on along the Qinghai-TibetRailway. Finally, through a comprehensive analysis, it is discussed the generalsituation of possible and potential occurrence of gas hydrate along the Qinghai-TibetRailway. Main results are as follows:
    1. Through wide investigation on literature about gas hydrate, especiallyterrestrial gas hydrate, it is fully analyzed geological, geographical conditions, suchas reservoir formation model and formation conditions, and surveying techniques,providing basic, comparable investigation report with complete documents forexploration and development of gas hydrate in terrestrial permafrost area.
    2. Based on analysis about reservoir model and reservoir conditions of gashydrate, taken into account spectral characteristics of rock and mineral, as well as thefeatures of ASTER data, it is improved the ratio/differential advancement method forlithologic information, to identify mineral types by the waveband features of ASTERdata;it is developed an information analysis method reflecting associated alterationeffects by spectral cooperation of visible-thermal infrared spectral range. It is
    identified and obtained the distribution of some mineral types related to gas hydratealong the Qinghai-Tibet Railway, advanced some rock types, extracted and analyzedpossible existing clayization of feldspar group in the region. These multi-aspectresults provide a lot of basic information about material source and surface alterationfor gas hydrate exploration.3. It is obtained, using MODIS data, terrestrial surface temperature and annualaverage ground temperature along the Qinghai-Tibet Railway, circled permafrostzones, classified frozen ground types and inversed frozen ground depth. Thesesresults provide necessary, important pressure and temperature constraints forcomprehensive analysis on forming, accumulating and preserving of gas hydrate intested region.4. Through complete analysis on oil and gas reservoir formation, plateau uplift,frozen ground formation, glacier transgression and regression, it is believed thatthere exists a certain spatio-temporal coupling relationship between gas hydratereservoir accumulation and preserving conditions, etc.5. Combined with literature investigation, spatio-temporal coupling relationshipof gas hydrate in the Tibetan plateau, field survey and examining work, results ofremote sensing exploration using MODIS and ASTER data along the Qinghai-TibetRailway, it is analyzed the general situation of possible, potential occurrence of gashydrate along the Qinghai-Tibet Railway, including gas hydrate controlling factors,sources of material, hydrocarbon weak seepage and associated alteration effects, etc.
引文
1. Alexei V. Milkov, Peter R. Vogt, Kathy Crane, et al. Geological, geochemical, and microbial processes at the hydrate-bearing Hakon Mosby mud volcano: a review. Chemical Geology, 2004, 205: 347~366.
    2. All about hydrate in the Arctic regions. ( http://www.netl.doe.gov/scngo /NaturalGas/Hydrates/about-hydrates/arctic-regions_table.htm)
    3. Aloisi G., Pierre C., Rouchy J.-M., et al. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation, Earth Planet. Sci. Lett. 2000,184:321–338.
    4. Beauchamp,B.Natural gas hydrates: myths, facts and issues. Geoscience, 2004,336:751~765.
    5. Belosludov R.V., Kawazoe Y., Grachev E.V., et al. Lattice dynamics of helium gas hydrates based on ice framework: dynamic and thermodynamic stability. Solid State Communications, 1999, 109: 157-162.
    6. Benfield Hazard Research Centre report warns of gas hydrate threat to marine, coastal and high latitude facilities. http://www.benfieldhrc.org/ in_the_news/press_releases/ BHRCIssues3FINAL.pdf
    7. Bernard E.Hubbard. Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI,ASTER and Hyperion imagery: Data dimensionality issues and solutions[J]. Remote Sensing of Environment,2005: 1-14
    8. Bily C, Dick J W L.Naturally Occurring Gas Hydrate in the Machenzie Dekta, N.W.T.,Bulletin of Canadian Petroleum Geology, 1974,22(3):340~352.
    9. Bird, K. J. Assessment overview. In: The oil and gas resource potential of the Arctic National Wildlife Refuge 1002 area, Alaska: U.S. Geological Survey Open-File Report 98-34, 1998.
    10. Buffett B.A., Zatsepins O.Y. Formation of gas hydrate from dissolved gas in natural porous media. Marine geology. 2000, 12(1-2): 22-26.
    11. Carcione J.M., Gei D. Gas hydrate concentration estimated from P-and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada. Journal of Applied Geophysics, 2004, 56: 73-78.
    12. Chuvilin E.M., Yakushev V.S., Perlova E.V. Study of gas and gas hydrate deposits in permafrost at Yamal Peninsula. In: III international conference on Arctic margins, ICAM III,1998.
    13. Chuvilin E. M., Yakushev V.S, Perlova E. V. Gas and possible gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. In: Roland Norbert W, Tessensohn Franz (eds.). ICAM III;Third international conference on Arctic margins. 1998, 68, 1: 215-219.
    14. Clarke James. Gas hydrates of Russia. Internet Geology News Letter. 1999,5, Pages:1.
    15. Collett T.S. A review of well-log analysis techniques used to assess gas-hydrate-bearing reservoirs, in: C.K. Paull, W.P. Dillon (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection, American Geophysical Union, Washington, DC, 2001, pp. 189–210.
    16. Collett T.S., Alaska North Slope Gas Hydrate Energy Resources. USGS Open File Report 2004-1454
    17. Collett T.S., Energy resource potential of natural gas hydrates, Amer. Assoc. Petrol. Geol. Bull. 86 (2002) 1971–1992.
    18. Collett T.S. Natural gas hydrate as a potential energy resource, in: M.D. Max (Ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments, Kluwer Academic, Dordrecht, 2000, pp. 123–136.
    19. Collett T.S., Bird K.J., et al. Subsurface temperature and geothermal gradients on the North Slope of Alaska. Cold Regions Science and Technology. 1993, 21:275-293.
    20. Collett T.S., Ginburg G.D. Gas hydrates in the Messoyakha gas field of the west Siberian basin-A re-examination of the geologic evidence. In Proceedings of 7th International Offshore and Polar Engineering Conference. 1997: 96-103.
    21. Collett T.S., Lewis R., Dallimore S.R., et al. Detailed evaluation of gas hydrate reservoir properties using JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well downhole well-log displays. In: Science results from JAPEX/JNOC/GSC Mallik
    2L-38 gas hydrate research well, Mackenzie delta, Northwest Territories, Canada. (ed.) Dallimore S.R., Uchida T. and Collett T.S., 1999, Geological Survey of Canada, Bulletin 544
    22. Collett, T.S.. Natural gas hydrates of the Prudhoe Bay-Kuparuk River area, North Slope, Alaska. American Association of Petroleum Geologists Bulletin 77, 1993,793-812.
    23. Dallimore S.R. (Ed.), Scientific Results from JAPEX/JNOC/GSC 2002 Mallik 5L-38 gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada, Geol. Surv. Canada Bull., vol. 585, 2004.
    24. Dallimore S.R., Collett T.S. Regional gas hydrate occurrences, permafrost conditions, and Cenozoic geology, Mackenzie Delta area. In: Science results from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie delta, Northwest Territories, Canada. (ed.) Dallimore S.R., Uchida T. and Collett T.S., 1999, Geological Survey of Canada, Bulletin 544, p31-43.
    25. Dallimore S.R., Collett T.S., Uchida T., et al. Overview of the 2002 Mallik gas hydrate production research well program, in: Proceedings IVth Int. Conf. Gas Hydrates, May 19–23, Yokohama, Japan, 2002, pp. 31–35.
    26. Dallimore,S.R.,Collett,T.S.,Uchida,T. Overview of science program, JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. In: Science results from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie delta, Northwest Territories, Canada. (ed.) Dallimore,S.R., Uchida,T. and Collett T.S., 1999, Geological Survey of Canada, Bulletin 544, p11-17.
    27. Delisle Georg. Temporal variability of subsea permafrost and gas hydrate occurrences as function of climate change in the Laptev Sea, Siberia. In: Roland Norbert W, Tessensohn Franz (eds.). ICAM III;Third international conference on Arctic margins. 1998, 68, 1: 221-225.
    28. Dimitrov, L.I.. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Sci. Rev., 2002, 59, 49– 76.
    29. Dixon, J. Geological atlas of the Beaufort–Mackenzie area. In: Dixon, J. (Ed.), Miscellaneous Report 59. Geological Survey of Canada, Calgary, 1996.
    30. Durham W.B., Stern L.A., and Kirby S.H. Ductile flow of methane hydrate. Can. J. Phys./Rev. can. phys. 81(1-2): 373-380 (2003)
    31. Duxbury N.S., Abyzov S.S., Romanovsky V.E., et al. A combination of radar and thermal approaches to search for methane clathrate in the Martian subsurface. Planetary and Space Science 52 (2004) 109 – 115
    32. Ginsburg, G., 1993, Challenging the presence of natural gas hydrate in the Messoyakha pool, Poster presentation at the 1993 AAPG Conf. at Hague, the Netherlands.
    33. Goldberg D.S., Collett T.S., Hyndman R.D. Ground truth: in situ properties of hydrate, in: M.D. Max (Ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments, Kluwer Academic, Dordrecht, 2000, pp. 295–310.
    34. Hall-Atkinson C., Smith L.C. delineation of delta ecozones using interferometric SAR phase coherence Mackenzie River Delta, N.W.T., Canada. Remote Sensing of Environment, 2001, 78: 229-238.
    35. Haq B.U. Climatic impact of natural gas hydrate, in: M.D. Max (Ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments, Kluwer Academic, Dordrecht, 2000, pp. 137–168.
    36. Imen Chatti, Anthony Delahaye, Laurence Fournaison, et al. Benefits and drawbacks of clathrate hydrates: a review of their areas of interest. Energy Conversion and Management 46 (2005) 1333–1343
    37. Jenner K.A., Dallimore S.R., clark I.D., et al. Sedimentology of gas hydrate host strata from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. In: Science results from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie delta, Northwest Territories, Canada. (ed.) Dallimore,S.R., Uchida,T. and Collett T.S., 1999, Geological Survey of Canada, Bulletin 544, 57-68.
    38. Jin Y.K., Lee M.W., Collett T.S. Relationship of gas hydrate concentration to porosity and reflection amplitude in a research well, Mackenzie Delta, Canada. Marine and Petroleum Geology, 2002, 19:407~415.
    39. Kamath A., Godbole S. P., Ostermann R. D., et al. Evaluation of the stability of gas hydrates in Northern Alaska. Cold Regions Science and Technology, 1987,14(2):107~119.
    40. Keith A. KVENVOLDEN. A review of the geochemistry of methane in natural gas hydrate. Org. Geochem. 1995,23(11/12):997~1008
    41. Kirschvink J.L., Raub T.D. A methane fuse for the Cambrian explosion:carbon cycles and true polar wander. C. R. Geoscience 335 (2003) 65–78
    42. Krason, J. and Finley, P.D., 1992, Messoyakh Gas Field -Russia: West Siberian Basin, Amer. Assoc. Petrol. Geol., Treatise of Petroleum Geology, Atlas of Oil and Gas Fields, Structural Traps VII, p. 197-220.
    43. Kuznetsov G.F.A.. Gas hydrate project of Siverian Branch Ras. (http://dod.nic. in/ pro/ chapter-12.doc)
    44. Kvenvolden K A. Methane hydrate? A major reservoir of carbon in the shallow geosphere? Chem Geol, 1988,77:41~51.
    45. Kvenvolden K.A. A review of the geochemistry of methane in natural gas hydrate. Urg. Geochem., 1995, 23(11/12): 997-1008.
    46. Kvenvolden K.A. Natural Gas Hydrate: Introduction and history of discovery, in: M.D. Max (Ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments, Kluwer Academic, Dordrecht, 2000, pp. 9–16.
    47. Lawrence C.Rowan,John C.Mars,Colin J.Simpson . Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J]. Remote Sensing of Environment,2005:1-22.
    48. Lyobomir I. Dimitrov. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth Science Reviews,2002, 59(1-4):49-76.
    49. Majorowicz J.A. and Osadetz K.G. Gas hydrate distribution and volume in Canada. AAPG Bulletin;July 2001;v. 85;no. 7;p. 1211-1230.
    50. Makogon Y F, Trebin F A,  et al .Detection of a pool of natural gas in a solid state, Doklady Academy of Sciences USSR. Earth Science Section, 1972,196:197~200.
    51. Makogon Y.F. Hydrates of Hydrocarbons. New York: Pennwell Publishing Co., 1997.
    52. Makogon, Y.F., 1995, "Hydrates of Hydrocarbons", Japan National Oil Corporation Seminar on the Gas Hydrate Development Technology, September 11 -13, 1995, Chiba, Japan.
    53. Mark A. Maslina, Ellen Thomas. Balancing the deglacial global carbon budget: the hydrate factor. Quaternary Science Reviews 22 (2003) 1729–1736.
    54. Milkov, A.V., Sassen, R., Apanasovich, T.V., et al.Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophys. Res. Lett. 2003, 30 (2), 1037.
    55. Milkov, A.V.. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol., 2000,167, 29– 42.
    56. Miyairi M., Akihisa K., Uchida T., et al. well-log interpretation of gas-hydrate-bearing formations in the Mallik 2L-38 gas hydrate research well. In: Science results from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie delta, Northwest Territories, Canada. (ed.) Dallimore,S.R., Uchida,T. and Collett T.S., 1999, Geological Survey of Canada, Bulletin 544.
    57. Moridis G.J., Collett T.S., Dallimore S.R., et al. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada. Journal of Petroleum Science and Engineering, 2004, 43: 219-238.
    58. Ohara T., Dallimore S.R., Fercho E. Drilling operations, JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. In: Science results from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie delta, Northwest Territories, Canada. (ed.) Dallimore,S.R., Uchida,T. and Collett T.S., 1999, Geological Survey of Canada, Bulletin 544.
    59. Parris T. M., Burruss R. C., andO'Sullivan P. B. Deformation and the timing of gas generation and migration in the eastern Brooks Range foothills, Arctic National Wildlife Refuge, Alaska. AAPG Bulletin, v. 87, no. 11 (November 2003), pp. 1823–1846.
    60. Perlova E.V., Makhonina N.A., Yakushev V.S., et al. Gas and gas hydrate accumulations in permafrost of West Siberia. (http://www.cgs.gov.cn/Ev/news/2004/20040211/20040211001.htm)
    61. Previous gas hydrate downhole log studies (http://www-odp.tamu.edu/publications/164_SR/chap_19/ch19_3.htm)
    62. Price J C. Land surface temperature measurements from the split window channels of the NOAA7/ AVHRR [J]. Geophys. Res., 1984 , 89:7231-7237
    63. Richard W., Gilbert, P.E. Gas Hydrate Exploration & Production Tools in Permafrost Environments. OCE 582, Fall 2003.
    64. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., et al. Permafrost of the east Siberian Arctic shelf and coastal lowlands. Quaternary Science Reviews, 2004, 23(11-13): 1359-1369.
    65. Sang-Yong Lee and Gerald D. Holder. Methane hydrates potential as a future energy source. Fuel Processing Technology, 2001, 71: 181–186.
    66. Sloan E. D. Fundamental principles and applications of natural gas hydrates. Nature, 426 (2003) 353-359.
    67. Sloan E.D. Clathrate Hydrates of Natural Gases. Dekker: New York, 1998.
    68. Snowdon L.R., Stasiuk L.D., Robinson R., et al. Organic geochemistry and organic petrology of a potential source rock of early Eocene age in the Beaufort–Mackenzie Basin. Organic Geochemistry. 2004, 35: 1039–1052.
    69. Timothy S. Collett, Keith A. Kvenvolden and Leslie B. Magoon. Characterization of hydrocarbon gas within the stratigraphic interval of gas-hydrate stability on the North Slope of Alaska, U.S.A. Applied Geochemistry,1990,5(3):279~287.
    70. Timothy S. Collett, Scott R. Dallimore. Hydrocarbon gases associated with permafrost in the Mackenzie Delta, Northwest Territories, Canada. Applied

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700