漳州及其邻区三维构造建模与强地面运动预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强地面运动研究是目前地震危害性评价中的一个热点问题,加强强地面运动研究,尤其是近断层的强地面运动研究,对城市可能遭到的地震破坏进行科学的评估,对于城市防震减灾工作具有重要意义。漳州及其邻区一直是我国防震减灾重点监视区域,曾开展大量地震构造及城市防震减灾方面的研究工作,但对灾害的评估,目前还主要采用烈度作为输入参数,难以满足工程建设的要求,影响了对城市可能遭受的地震破坏的客观评价,开展漳州及其邻近地区强地面运动预测的研究是现实的迫切要求。
    开展漳州及其邻区强地面运动预测研究的前提是必须以一个已经存在区域三维地质地球物理模型为基础,而目前漳州市及其邻区尚不存在这样一个三维模型,必须根据已有的研究成果,建立漳州及其邻区的深、浅部三维构造模型。论文的研究将这两方面的工作有机的结合起来,以三维地质与构造建模基础,以强地面运动预测作为应用目标,研究成果不仅可为未来这一区域的地质学研究提供三维模型参考,同时也为未来这一区域深入开展强地面运动预测的研究提供了模型基础,有着很强的理论与现实意义。
    基于上述目标,论文基于区域深部探测资料及盆地区钻探、浅勘资料,建立了漳州市及其邻区莫霍面以上的地壳结构与速度模型、漳州第四系盆地模型及主要发震断层模型,在此基础上建立了强地面运动预测的三维计算模型,采用三维有限差分方法及 PEXT 方法对漳州盆地近断层的强地面运动进行预测,预测了漳州市地震动参数的空间分布及其可能的破坏情况,为未来城市规划于建设中有效减轻地震灾害提供了科学依据。论文的主要结论与认识如下:
    1、三维地质与构造建模是在三维可视化技术与地质建模理论研究的基础上发展起来的,它突破了以往单一的二维地质信息表现形式,有助与我们从三维空间的角度对地质现像进行分析,发现规律;三维地质与构造建模是对地质、地球物理及其他地学相关数据的综合,建模过程涉及基础数据数字化、数据空间定位、数据格式转化等问题,是在三维地质建模平台(GOCAD、MVS、PETREL 等)和地理信息系统平台(ArcGIS、Mapinfo 等)上完成的;三维地质与构造建模的数据处理与显示过程是基于空间数据插值(不规则三角网、克利金、离散光滑插值方法等)、三维地质体构建、三维可视化(OpenGL)等实现的。
    2、强地面运动的预测是地震灾害研究中的重要问题,其结果的准确性对震害预测与城市
Strong ground motion study is very important in seismic hazard research. Strengthening thestudy on strong ground motion, especially near-fault strong ground motion and evaluating theprobable earthquake damage to a certain city are very important for city seismic disaster mitigation.Zhangzhou and its adjacent regions are always an important monitoring area for seismic disasterprevention and reduction in China. Although lots of research have been done about earthquakestructure and seismic hazard in this area, intensity is still used as the input parameter for seismichazard evaluation until now. This can't meet the need of city planning and engineering. It is aemergency requirement to study strong ground motion in Zhangzhou and its adjacent regions.
    Regional 3D (three dimensional) geological and geophysical models must be available beforestudying strong ground motion in Zhangzhou and its adjacent regions. Because there is no suchmodels in this area, 3D geological and geophysical models must be constructed at first. Then studyof the strong ground motion will be started as an application target. Results of this thesis supply abasic 3D model for future structural geology and the study of strong ground motion.
    By using geological and geophysical exploration data in the study area, a model of the crustabove Moho interface, a model of the quaternary basin and models of the earthquake faults wereconstructed. Then a computation model is created based on these models. Near fault strong groundmotion is predicated by using 3D finite difference and PEXT methods. Results are presented below.
    1. The 3D geological and structural modeling has been developed upon the 3D visualizationtechnology and the geological modeling theory. It breaks through the traditional 2D (twodimensional) presentation style for geological information and helps study geological problems from3D view. The 3D geological modeling is an integration of geological, geophysical and other relateddata. The modeling process includes data digitizing, spatial adjustment, data format translation, etc.The 3D model is created by using 3d modeling software, such as GOCAD, MVS and PETEL. Thedata processing and visualizing of the geological model is based on numerical interpolation,geological body construction methods and the 3D visualization study.
    2. Strong ground motion predication is a key problem in seismic hazard study. The ordinary
    methods for numerical ground motion simulation include the empirical relation method, thenumerical Green function method and the empirical Green function method. The last two methodscan reflect the influence of local basin structure and are adopted widely as more about the local basinstructure is known . A finite fault source model must be adopted when computing near-fault strongground motion. The finite fault source model can be divided into two types, dynamic source modeland kinematic source model. Because the complexity of rupture process, the dynamic model is stillin developing. Kinemitic models are generally adopted to compute ground motion, including thedeterministic model, the stochastic model and the composite model.3. Zhangzhou and its adjacent regions are located in the southeast of Fujian province, where thenortheast trending Changle-Zhaoan fault zone and northwest trending fault belt cut each other andcreate the base structural style of this region. The Zhangzhou basin was formed since Pleistoceneunder the oblique slip action of regional normal faults. Modern earthquake distribution indicates thatthe near sea fault zone is the main earthquake fault and most earthquakes occurred in the area wherethe near sea fault zone and the Changle-Zhaoan fault belt intersect with the Yongan-Jinjiang faultbelt and the Jiulongjiang fault belt. Earthquake source depths of moderate and small earthquakes areabout 11Km to 15km.Crustal structure has the same style of the North China basin in this region.The historical earthquake data and crustal structure indicate that earthquake of Richter magnitude 6to 6.5 will occur in Zhangzhou and its adjacent regions in the future.4. Basd on six profiles which were got by deep seismic sounding since the “Eighth Five-yearPlan”, a 3D crustal model over the Moho interface of Zhangzhou and its adjacent regions isconstructed. Analysis of the 3D model and the six profiles indicate that the structure and charactersof the crust are: G is the crystal basement face. Its depth is from 2km to 5km and the averagethickness above G is 4km. Velocity above G interface is from 4km/s to 6.1km/s.C1 is the interfacebetween upper and middle crust. Its depth is from 8km to 12km and the average thickness from G toC1 is 8km.Velocity from G to C1 is 6.1km/s to 6.15km/s. C2 is the interface of the low velocity layerin the middle crust. Its depth is from 12km to 20km and the average thickness from C1 to C2 is5km.Velocity from C2 to C1 is 6.0km/s to 6.1km/s. C3 is the interface between lower and the middlecrust. Its depth is from 16km to 24km and the average thickness from C2 to C3 is 4km.Velocity from
    C2 to C3 is 6.35km/s to 6.45km/s. M is the Moho interface. Its depth is from 30km and the averagethickness from C3 to M is 6km. Velocity from C3 to M is 4km/s to 6.1km/s.5. Analysis of the 3D crustal model and seismic profiles indicate that there are following varietyrules of crustal interfaces beneath Zhangzhou and its adjacent regions: crustal thickness and depthsbecome larger from the Taiwan strait to the land and become smaller from Quanzhou toZhangzhou.The near sea fault belt is located in the area where crustal thickness and depth suddenlychange. The Qunzhou basin lies in the area where crustal thickness and depth change slowly. TheXiamen-Zhangzhou steped changing crustal belt lies in the same area as the Jiulongjiang fault. TheYongan-Jinjiang falut shows a clear sign on the interfaces C1 and G, but not so clear on C2 and C3,which indicates that vertical displacement of this fault is small. No clear sign of the Jiulongjiangfault can be seen on the crustal interfaces.6. The Zhangzhou basin formed since early Quaternary. The main structure style is thatnorth-east striking faults cut north-west trending faults each other. The North-west trending faults,including the Daishanyan-Hengkeng fault, the Zhukeng Fault, the Fuchuanshan-Kangshan fault , theJiulongjiang blind fault and the north-east trending Gutang-Dameixi fault are distributed in theZhangzhou basin. The sequence stratigraphy method is used to divide Quaternary strata of theZhangzhou basin into the Longhai Formation, Dongshan Formation and Changle Formation. Morethan 300 boreholes are used to build a sequence-structure framework under such a sequence dividingscheme and a database is built. MVS is used to construct the 3D basement model and thicknessmodel of every sequence. The irregular fault belts, distribution of the faults, activity of the faults andevolution of the Zhangzhou basin were then studied. These work supply a fundamental 3D faultmodel and basin media model for earthquake hazard evaluation and strong ground motionprediction.7. The shallow seismic investigation data are imported to GOCAD after spatial adjustment andprojection transformation. The 3D models of the Jiulongjiang fault, Gutang-dameixi fault andZhukeng fault are constructed by using GOCAD and the seicmic profile. Activity of these threefaults are studied and the Jiulongjiang fault is predicated to be the most active fault in the future. Anearthquake fault model is created with more detailed study on spatial distribution and activity of the
    Jiulongjiang fault. This is a fundamental work for getting the finite fault parameters for strongground motion predication.8. Based on the regional 3D geological and structural models, the earthquake fault model, the3D finite difference method and the PEXT method are used to predict the future strong groundmotion distribution of the Zhangzhou basin induced by a near-field Richter magnitude 6.5earthquake. A double point source model is adopted when the 3D finite difference method is used tocompute ground motion and finite fault source model was adopted when PEXT method was used tocompute ground motion. The results got by the two methods are comparable. The absolute PGAvalues are close, the maximum values of PGA are 396cm/s2 and 360cm/s2. This indicates that thePGA values are referential. By using the finite fault model, the results got by the PEXT methodreveal the characters of near-fault strong ground motion distribution. Therefore, the results got byusing the PEXT method are recommended to be used in city planning and construction.
引文
陈园田, 王志鹏, 黄卿团. 福建沿海的断陷盆地、平原、海湾与地震. 地壳形变与地震, 1998, 18(4): 55-62
    陈园田,谢志招等,2001, 福建漳州盆地的最新构造活动和地震危险性,地震地质。
    褚明纪. 福建漳州盆地活动断裂研究及热田远景. 武汉地质学院研究生毕业论文, 1985
    曹代勇,李青元,朱小弟,等. 2001.地质构造三维可视化模型探讨.地质与勘探, 37(4):60-62.
    曹代勇,王占刚,三维地质模型可视化中直接交互的实现,中国矿业大学学报,2004,33(4)
    柴贺军,黄地龙,黄润秋,等. 2001.岩体结构三维可视化及其工程应用研究.岩土工程学报,l23(2):217-220.
    陈军,蒋捷. 2000.多维动态 GIS 的空间数据建模、处理与分析.武汉测绘科技大学学报, 2(53):189-195.
    戴吾蛟,邹峥嵘. 2001.基于体素的三维 GIS 数据模型的研究.矿山测量,(1):20-22.
    丁祥焕, 王耀东, 叶盛基, 等. 《福建东南沿海活动断裂与地震》及 1:10 万活动断裂分布图. 福州: 福建科学技术出版社,1999
    福建省地震局历史资料组. 福建省地震历史资料汇编. 1979
    福建省地矿局. 《福建省区域地质志》及 1: 50 万地质图. 北京: 地质出版社, 1985
    福建省地矿局区测队. 1: 50 万《福建省地质图》及说明书, 1998
    福福建省地层表编写组. 福建省区域地层表(内部参考). 福建省地质测绘队四分队印, 1977
    福建省区域地层表编辑组. 华东地区区域地层表(福建省分册). 北京: 地质出版社, 1979.1-108
    高孟谭, 俞言祥, 等. 北京地区地震动的三维有限差分模拟. 中国地震, 2002, 18(4): 356-364
    龚建华,林珲.2001.虚拟地理环境——在线虚拟现实的地理学透视.高等教育出版社.
    龚健雅等. 1997. 矢量与栅格集成的三维数据模型. 武汉测绘科技大学学报,8(5)
    国家地震局. 中国地震烈度区划图(1990)概论. 北京: 地震出版社, 1996
    国家地震局灾害防御司. 《中国历史强震目录》(公元前 23 世纪至公元 1911 年). 1995
    国家地震局灾害防御司. 《中国近代地震目录》(公元 1912 年至 1990 年 M≥4.7). 1999
    金森博雄,1980,地震活动ど地震予知,地震予知研究,1980,163-164
    金星,刘启方,断层附近强地震动半经验合成方法的研究,地震工程与工程震动, 2002,22(4): 22-27
    笠原庆一著,郑斯华,庄灿涛译,防灾工程学中的地震学,地震出版社,北京,19920
    李亦纲, 曲国胜, 陈建强. 城市钻孔数据地下三维地质建模软件实现. 地质通报, 2005, 5: 68-74
    李宪忠,九二一集集地震震源过程与强地动分析(初稿),博士论文,台湾国立中央大学,2003
    李青元,林宗坚,李成明. 2000.真三维 GIS 技术研究的现状与发展.测绘科学, 25(2):47-52.
    李延兴, 胡新康, 帅平等,强震发生的应变场特征,地震研究,2002,25(增刊): 57-64
    廖其林, 王振明, 王屏路, 等. 福州-泉州-汕头地区地壳结构的爆炸地震研究. 地球物理学报, 1988, 31(3): 270-280
    廖其林, 王振明, 邱陶兴, 等. 福州盆地及其周围地区地壳深部结构与构造的初步研究. 地球物理学报, 1990, 33(2): 163-173
    柳庆武,吴冲龙等,基于钻孔资料的三维地层格架自动生成技术研究,石油试验地质,2003,25(5)
    刘玉森,漳州盆地断裂活动与地震,福建地震,No3, 1983
    罗奇峰, 胡聿贤, 等. 估计近场地震动的统计-经验格林函数法, 自然灾害学报, 1994, 3(3): 1-10
    马杏垣,1982,论伸展构造,地球科学,3 期。
    马杏垣等,1983,中国东部中新生代裂陷作用和伸展构造,地质学报,1 期。
    马宗晋, 王乾盈, 徐杰, 等. 台湾海峡两岸横向构造的对比研究. 中国科学(D 辑), 2002, 32(6): 441-451
    孟小红,王卫民等,地质模型计算机辅助设计原理与应用,地质出版社,2001
    齐安文, 吴立新, 李冰,等. 一种新的三维地学空间构模方法:类三棱柱法[J]. 煤炭学报, 2002, 27(2): 158-163.
    孙克忠, 熊绍柏, 全幼黎. 闽南云霄-安溪地区的浅层 Q 分布. 地球物理学报, 1991, 34(5): 582-584
    孙国庆,施木俊,雷永红,等. 2001.三维工程地质模型与可视化研究.工程勘察,(5):8-10.
    申重阳等, 2000,福建中部和东南沿海地壳内部密度变化分布特征的研究,地壳形变与地震。
    王彬, 罗奇峰. 经验 GREEN 函数法研究丽江 6. 0 级强余震的地震动及破裂特征. 地震研究, 2001, 24(1): 40-46
    王椿镛, 林中洋, 陈学波. 青海门源-福建宁德地学断面综合地球物理研究. 地球物理学报, 1995, 38(5): 590-598
    王椿镛,陈运泰,邵占英,1998,中国东南陆缘的深部结构与动力学过程。地壳形变与地震,18 卷,2 期,1-8 页。
    王国权,921 台湾集集地震近断层地面运动特征,博士论文,中国地震局地质研究所,2001
    王海云,强地面运动预测中的有限断层模型,博士论文,中国地震局工力所,2004
    王家华等编著,1999,克里金地质绘图技术-计算机的模型和算法,石油工业出版社.
    魏柏林, 冯绚敏, 陈定国, 等. 东南沿海地震活动特征. 北京: 地震出版社, 2001
    闻学泽. 准时间可预报复发行为与断裂带分段发震概率估计. 中国地震, 1993, 9(4): 288-299
    闻学泽. 中国大陆活动断裂段破裂地震复发间隔的经验分布. 地震学报, 1999, 21(6): 616-622
    吴立新, 史文中,Christopher G. M. 3D GIS 与 3D GMS 中的空间构模技术[J]. 地理与地理信 息科学, 2003, 19(1): 5-11.
    吴立新, 张瑞新, 戚宜欣,等. 三维地学模拟与虚拟矿山系统 [J]. 测绘学报, 2002, 31(1): 28-33.
    吴立新, 真三维地学构模的若干问题,地理信息世界,2004,2(3)
    武法东, 陆永潮, 李思田. 中国东南海域古近系和新近系层序地层与海平面变化. 见: 王鸿祯, 史晓颖, 王训练, 殷鸿福, 乔秀夫, 刘本培, 李思田, 陈建强, 中国层序地层研究. 广州: 广东科技出版社, 2000. 330-351
    武强,徐华,三维地质建模与可视化方法研究,中国科学 D 辑,2004,34(1),54~60
    巫锡良. 福建沿海晚更新世以来的海平面变化与新构造运动、地震活动. 华南地震, 1987, 7(3): 3-10
    谢礼立, 陶夏新, 王国新. 强地震动估计和地震危险性评定. 东北地震研究, 2001(3): 1-8
    熊绍柏, 刘宏兵, 王有学, 等. 华南上地壳速度分布与基底、盖层构造研究. 地球物理学报, 2002, 45(6): 784-791
    熊绍柏, 金东敏, 孙克忠, 等. 福建漳州地热田及其邻近地区的地壳深部构造特征. 地球物理学报, 1991, 34(1): 55-63
    肖乐斌,钟耳顺,刘纪远,等.1997.GIS 概念数据模型的研究. http://www.gischina.com/.
    肖乐斌,钟耳顺,刘纪远,等.2001.三维 GIS 的基本问题探讨.中国图像图形学报,6A(9):842-848
    许力生,陈运泰, 1997 年西藏玛尼 Ms7.9 级地震的时空破裂过程,地震学报,1999,21(5),449~459
    许力生,陈运泰, 2001 年 1 月 26 日印度古杰拉特(Gujarat)MS7.8 地震时空破裂过程,地震学报,2002,24(5),447~461
    张先康, 王椿镛, 等. 延庆-怀来地区地壳细结构-利用深地震反射剖面. 地球物理学报,1996, 39(3): 356-363
    张先康, 赵金仁, 等. 三河-平谷8.0级大震区震源细结构的深地震反射探测研究. 中国地震, 2002, 18(4): 326-336
    张肇诚主编. 中国震例(1981-1985). 北京: 地震出版社, 1987
    周云好,许力生,陈运泰,2000 年 6 月 4 日印度尼西亚苏门答腊南部 Ms8.0 级地震的时空破裂过程,中国地震,2002,18(3)
    周云好,陈章立,2001 年 11 月 14 日昆仑山口西 Ms8.1 级地震震源破裂过程研究,地震学报,2004,26(增刊),9~20
    钟羽云, 朱新运, 张震峰. 不同类型地震的地震矩-震级标度关系研究. 西北地震学报, 2004, 26(1): 52-61
    中国地震局赴土耳其地震现场考察专家组. 伊兹米特地震的几点启示. 国际地震动态, 2000, 1: 24-27
    朱思林, 刘序俨, 林继华, 等. 福建中部和东南沿海深部界面特征研究. 地壳形变与地震, 1999, (3)
    赵勇,1989, 福建沿海地区新生代伸展构造与地震活动,地震出版社。
    朱大培,牛文杰,杨钦,等. 2001.地质构造的三维可视化.北京航空航天大学学报, 27(4):448-451
    朱良峰,吴信才等,基于钻孔数据的三维地层模型的构建,地理与地理信息科学,2004,20(3)
    漳州市活断层探测与地震危险性评价(技术报告),福建省地震局,2004。
    Alfeld,Barnhill. 1984,A transfining C2 interpolant over tringles,Rolclay Mountain J. math.,14(1),17-19
    Aki, K.(1968). Seismic displacement near a fault. J Geophys. Res., 73,5359-5376.
    Aki, K. (1972). Scaling law of earthquake source time-function, Geophys. J R Asir Soc. 31, 3-25
    Aki K, and P G. Richards. Quantitative Seismology Theory and Methods. New York. W H Freeman, 1980, Chapter 2
    Andrews D.J. (1980). A stochastic fault model, 1. Static case, J Geophys. Res. 85, 3,867-3,877. Andrews D.J. (1981). A stochastic fault model, 2. Time-independent case, J Geop句vs. Res. 86, 10,821一10,834
    Beresnev L, Atkinson G. FINSIM-a FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seism. Res., 1998a, L, 69: 27-32
    Boore D M. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull. Seism, 1983, Soc. Am. 73, 1865-1894
    Bouchon M A simple method to calculate Green's functions for elastic layered media. Bull Seismol, 1981, Soc. Am., 71: 959-971
    Christopher BJ .Data structure for 3D spatial information system in geology [J]. Int.J.GIS, 1989,3(1):15-3
    Cornell C A. Engineering seismic risk analysis. Bull Seism. Soc. Am., 1968, 58(5): 1583-1606
    Cuyt,1987,A recursive computation scheme for multivariate rational interpolants,SIAM J. Numer. Anal.,24(1),228-239
    Das, S. and K. Aki (197乃.Fault plane with barriers: A versatile earthquake model. J. Geophys. Res. 82, 5,658-5,670
    Eric A. de Kemp, 3-D visualization of structural field data: examples from the Archean Caopatina Formation, Abitibi greenstone belt, Québec, Canada,Computers & Geosciences, Volume 26, Issue 5, 1 June 2000, P509-530
    Graves R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite difference. BSSA, 1996, 86(4): 109106
    Hartzell S H. Earthquake aftershocks as Green's functions. Geophys, Res. Lett, 1978, 5: 1-4
    Hartzell, S. H., and H. Heaton (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seism. Soc. Am. 73, 1553–1583.
    Hartzell S, Harmsen S, Frankel A. Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake. Bull. Seism. Soc. Am., 1999, 89: 1484-1504
    Heaton T, Hatzell S. Source characteristics of hypothetical subduction earthquakes in the Northwestern United States. Bull. Seism. Soc. Am., 1986, 76: 675-708
    Herrero, A. and E Bernard (1994). A kinematic self-similar rupture process for earthquake, Bull. Seism. Soc. Am. 84,1,216-1,228.
    Hisade,Y(2001), A theoretical omega-square model considering the spatial variation in slip and rupture velocity. Part 2: case for a two-dimensional source model. Bull Seism.Soc Am. 91(4), 651-666.
    HORSMAN J. Methods of constructing a 3D geological model from scatter data [DB/OL]. http://pubs.vsgs.gov/circle/c1997.htm, 2003-01-17
    Irikura K. Semi-empirical estimation of strong ground motions during large earthquakes. Bull. Disaster Prevention Research Institute, Kyoto Univ., 1983, 33: 63-104
    Irikura K, Kamae K. Estimation of strong motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique. Annali di Geofisica, 1994, 37: 1721-1743
    Jianya Gong,Penggen Cheng,Three-dimensional modeling and application in geological exploration engineering ,Computers&geosciences,2004,30(4),p391-404
    Jessell M. Three-dimensiona lgeological modeling of potential-field data[J]. Computer&Geosciences, 2001, 27(4):455-465.
    Joyner W, Boore D. On simulating large earthquakes by Green's function addition of smaller earthquakes. In: Earthquake Source Mechanics. Maurice Ewing Volume 6. Geophys Monogr. Am. Geophys. Union, 1986, 37, 269-274
    Kamae K, Irikura K, Pitarka A. A technique for simulating strong ground motion using Hybrid Green's function. Bull. Seism. Soc. Am. ,1998, 88: 357-367
    Kilb D, Gomberg J, Bodin P. Earthquake triggering by dynamic stresses. Nature, 2000, 408, 570-574
    King G C P, Stein R S, Lin J. Static stress changes and the triggering of earthquakes. Bull Seism Soc. Am. , 1994, 84: 935-953
    Kristek J, Moczo P, Irikura I, et al. The 1995 Kobe mainshock simulated by the 3D finite differences In: Irikura K. et al. (eds.). The Effects of Surface Geology on Seismic Motion, 1999, Vol. 3, Balkema, Rotterdam, 136368
    Kostrov, B.V (1966). Unsteady propagation of longitudinal shear cracks, J Applied Math. ana Mechanics, 30, 1241-124
    Levander A R. Finite-difference forward modeling in seismology in James D E., ED, 1989, The Encyclopedia of Solid Earth Geophysics: Van Nostrand Rheinhold, New York, 410-431.
    Madariaga, R. (1976). Dynamics of an expanding circle fault. Seis. Res. Lett., 66, 163-182
    Madariaga, R., K.B. Olson, and R.J. Archuleta (1997).3-D elastic finite diference simulation of a spontaneous rupture, Seis. Res. Lett., 68, 312 (abstract).
    Harold Magistrale, Steven Day, Robert W. Clayton, Robert Graves, The SCEC Southern California Reference Three-Dimensional Seismic Velocity Model Version 2, Bull. Seism. Soc. Am., 2000, 90: 65-76
    Mai P. M. and CSC. Beroza (2002). A spatial random field model to characterize complexity in earthquake slip. J Geophys. Res., 107(B11), 2308.
    Mallet J L Discrete modeling for Nature objects. Mathematical Geology, 1997,29(2), 199~218
    Mallet J L Discrete smooth interpolation in geometric modeling. Computer aided design, 1992, 24(4), 178~190
    Mark Jessell , Three-dimensional geological modelling of potential-field data , Computers & Geosciences, Volume 27, Issue 4, 1 May 2001, P455-465
    Mikumo, T. and T Miyatake (1978). Dynamic rupture process on a three-dimensional fault with non-uniform frictions and near-field seismic waves, Geophys. J R. Astr Soc., 54,417-438.
    Olea, Optimal contouring mapping using universal kriging,Journal of geophysical Research,79(5),1974
    Olea, Optimum mapping technique using regionalized variable theory,Kansas geological Survey,reprinted,1983
    Olsen K B, Nigbor R, Konno T. 3D viscoelastic wave propagation in the upper Borrego Valley, California, constrained by borehole and surface data. Bull. Seism. Soc. Am., 2000, 90: 134-150
    Olson, A.H. and R.J. Aspel (1982). Finite fault and inverse theory with application to the 1979 Imperial Valley earthquake, Bull. Seism. Soc. Am. 72, 1969-2001.
    Oprsal I, Zahradník J. 3D finite difference method and hybrid modeling of earthquake ground Motion. J. Geophys. Res., 2002, 107, 10. 1029/2000JB000082, 16 pp
    Oprsal,Donat,Domenico,Three Dimensional Finite Difference modeling of Strong Ground Motion Site Effects Due to the Finite Extent Source - 1356 Basel Earthquake, Upper RhineE Graben,13th WCEE,2004
    Oprsal,Zahradník,3D Hybrid Simulation of The Source and Site Effects During the 1999 Athens Earthquake,13th WCEE,2004
    Pitarka A. 3D elastic finite-difference modeling of seismic motion using staggered grids, with nonuniform spacing. BSSA, 1999, 89: 54-68
    Pitarka A, Somerville P, Fukushima Y. Simulation of near-fault strong-ground motion using hybrid Green's functions. BSSA, 2000, 90: 566-586
    Papers Related to GOCAD, Nancy School of Geology, 1996, pp170
    Qiang Wu, Hua Xu, An effective method for 3D geological modeling with multi-source data integration, Computers&geosciences, 2005, 31(5), p35-43
    Wu, Q., Xu, H., 2003. An approach to computer modelling and visualization of geological faults in 3D. Computers &Geosciences 29 (4), 507–513.
    Sato, R. and T. Hirata (1980). One method to compute theoretical seismograms in a layered medium, J Phys. Earth, 28,145-169.
    Schwartz D P, Coppersmith K J. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. J. Geophys. Res., 1984,89(B7): 5681-5698
    Schwartz D P. Paleoseismicity, persistence of segments, and temporal clustering of earthquakes - Examples from the San Andreas, Wasatch, and Lost River fault zones, U.S G.S. Open-File Report, 1989: 89-315, 361-375
    Simon WH. 3D Geoscience Modeling: Computer Techniques for GeoLogical Characterization[M]. Springer-Verlag , 1994
    Somerville P, Irikura K, Graves R, et al. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seism. Res. Lett. , 1999, 70: 59-80
    Somerville P, Sen M, Cohee B. Simulations of strong ground motions recorded during the 1985 Michoacan, Mexico and Valparaiso, Chile, earthquakes. BSSA, 1991, 81, 1-27
    Takeshi Kimura,Yasumaro Kakehi, Rupture Process of the 2001 Hyogo-ken Hokubu, Japan, Earthquake (Mw 5.2) and Comparison between the Aftershock Activity and the Static Stress Changes, BSSA, 2005, 98, 145-158
    Tumarkin, A. and R. Archuleta (1994). Empirical ground motion prediction. Annali Di Geofrsica. 37, 1691一1720.
    Trifunac, M.D. and F.E. Udiwadia (1974). Parkfield, California, earthquake of June 27, 1969: A dimensional moving dislocation, Bull. Seism. Soc. Am., 64, 511-533.
    Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 1986, 51: 889-901
    Wang G Q, Igel H, Wang Haijiang,et al. Simulations of Strong Ground Motion in the Beijing Metropolitan Area Using the Finite Difference and Stochastic Combined Method (Abstract). EGS-AGU-EUG Joint Assembly Meeting (April 2-11), Nice, France, 2003
    Wang Qi, Zhang Peizhen, Freymueller J, et al. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 2001, 294: 574-577
    Wiener,1949,Extrapolation,interpolation,and smoothing of stationary time series with engineering application. The Technology press of MIT and Wilry
    Yu S B, Kuo L C, Punongbayanet R S et al.. GPS observation of crustal deformation in the Taiwan-Luzon Region. Geophysical Research Letters, 1999, 26(7): 923-926
    Zahradník J, Tselentis G A. Modeling strong-motion accelerograms by PEXT method, application to the Athens 1999 earthquake. Proc. of XXVIII Gen. Ass. of Europ. Seismol. Comm, 2002, 1-6 Sep. ,2002, Genoa (CD-ROM), or http: //seis30.karlow.mff.cun.cz/
    Zeng Y, Anderson J G, Guang. A composite source model for computing realistic synthetic strong ground motions reference. Geophys. Res. Left.,1994, 21: 725-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700