植被生化组分高光谱遥感定量反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆地表面的70%为植被所覆盖,植被是陆地生态系统的基本组成成分。植物体内所含的叶绿素、水分、蛋白质、木质素和纤维素等组分以及碳、氮、氢等微量元素统称为植被生化组分。这些组分的含量和构成,能直接或间接影响并制约着生态系统中与人类生存息息相关的许多重要生态、生理过程。高光谱遥感作为目前研究的前沿和热点,除具备常规遥感大面积、适时监测和非破坏性等优点外,还具有常规遥感所不具备的优势:具有10~(-2)λ数量级范围内的光谱分辨率。因此通过其精细光谱特征在提取植被生化组分的研究中表现出明显优势并越来越受到关注。利用高光谱遥感数据实现对植被生化组分的快速实时监测,是生态学、农学、全球变化研究以及粮食估产、精细农业等应用行业的迫切需求。
     本论文围绕高光谱遥感定量提取植被生化组分这一前沿课题,以基于星载高光谱遥感图像提取冠层生化组分为研究重点。在阐明高光谱遥感估算植被生化组分意义的基础上,第一章对该研究的原理、研究层次、方法和试验基础等现状进行了综述,并由此引出了本论文的研究重点。论文的第二章主要介绍了数据资料的获取。详细介绍了在西双版纳地区开展的Hyperion星地同步试验,包括试验设计、样品采集、光谱测量及图像数据获取等。第三章主要介绍了利用高光谱响应特征提取叶片生化组分的研究,其中将含水量的定量提取作为重点内容之一,这章是冠层生化组分反演研究的基础和铺垫。论文第四章重点讨论了高光谱遥感图像处理,包括几何精纠正和大气校正。其中大气校正是遥感定量化研究中必需的。第五章是本论文的重点,主要探讨了利用Hyperion星载高光谱图像数据提取冠层生化组分并依此获得了该地区生化组分分布图。论文的第六章,主要是对全文进行概括总结,归纳了作者的主要研究成果并指出了今后的研究方向。
     论文的主要研究成果和结论如下:
     1、课题组在西双版纳地区成功开展了Hyperion星地同步试验,获得了生化组分数据、实测光谱数据以及高光谱遥感图像数据。论文中总结了试验过程的注意点并为今后相关试验的顺利开展提出了合理化建议。试验过程中“两个同步”的提出以及叶片保鲜和试验流程的规范化是至关重要的,这体现了论文的试验特色。
     2、利用LOPEX数据集中叶片生化数据和光谱数据,研究了叶片层次生化组分的估算。用一阶导数极值和面积归一化的一阶导数极值两个参数估算植被
Vegetation is one of the most important components of the ecosystem with 70 percent of the land surface coverage. Components such as chlorophyll, water, protein, lignin, cellulose and elements including carbon, nitrogen, hydrogen in the vegetation are defined as the vegetation biochemistry composition. The content and structure of these compositions can be directly or indirectly influenced on the ecological and physiological processing which is important to human being activities. As hot point and frontier in remote sensing, hyperspectral remote sensing technique not only has the advantages of traditional remote sensing that can be timely and nondestructively used to detect large vegetation area, but also has special advantages with the very high spectral resolution. More delicate spectral difference can help us to accurately retrieve vegetation biochemistry compositions and to monitor. Vegetation biochemistry extraction based on the remote sensing So composition estimation based on hyperspectral remote sensing technique is urgent not only for study in ecology, agronomy and global change but also for application in yield predict and precision farming.This thesis focuses on vegetation components retrieval with remote sensing especially hyperspectral remote sensing, and puts great emphasis on the study of extracting canopy biochemistry from the satellite-based hyperspectral imagery. The first chapter mainly introduced the principle, method and experiment basis of hyperspectral remote sensing in vegetation biochemistry, and then the emphasis of the article. In the second chapter, we primarily introduced the data obtainment, particularly discussed the satellite-land simultaneous experiment of XiShuangBanNa in Yunnan province. The experiment is included the design, sample collection, spectra measurement and imagery order. The third chapter is a foundation research for the canopy biochemistry retrieval. We mainly consider the leaf-level extraction using the hyperspectral response characteristics. The fourth part studied the hyperspectral imagery processing including the geometrical registration and atmospheric correction. The fifth part is the most important in this thesis. The relationship between the Hyperion spectra and the biochemical components is established and further obtain its distribution maps.
    The last chapter summarized the whole thesis and listed the achievement of this study, as same as, pointed out the research direction in the future. Main development and conclusion as follows:1. Satellite-land simultaneous experiment of XiShuangBanNa in Yunnan province collected the biochemical, measured spectra and hyperspectral remote sensing imagery data. We summarized the emphases and proposed some reasonable suggest for the related experiment. It indicated the experimental feature.2. Using spectral position (wavelength) variable analysis technique, two parameters, namely, first derivative extremum and area normalized first derivative extremum are brought forward and employed to retrieve leaf total nitrogen, cellulose, lignin, starch and water content with good results. Research indicates that the parameters can effectively remove the background influence.3. Leaf water content is retrieved and tested using the LOPEX dataset. The research results indicate that model inversion precision can be improved based on the leaf type and water expression. The spectra indices SR and Ratio975 is the best for FMC and EWT extraction, respectively.4. Simulation results by ACRM model exhibit that the short-wave infrared not the near-infrared wavelength is sensitivity to water content, namely the 1600nm and 820nm. So the two bands combined can strengthen the vegetation water content information. A soil adjusted water index (SAWI) based on the two bands is proposed to compute the canopy water content. SAWI simulation results under different LAI and Cw, different LAI and N combination showed that the index is a possibly applicable in water calculation.5. Hyperspectral imagery processing is studied including geometrical registration and atmospheric correction. Atmospheric correction of Hyperion image is managed both the dark/bright empirical method and 6S physical model. The key of the former is the selection of the calibration objects which need large enough, near Lambert and short of vegetation cover. 6S model atmospheric correction based on MOD IS data can overcome the difficult obtainments of water vapor, ozone concentration and aerosol optical depth. The two methods achieve the satisfactory correction accuracy.
    Through the partial least squares method, canopy chlorophyll, water, total carbon, total nitrogen, hydrogen and carbon-nitrogen ratio are retrieved and mapped using the processed Hyperion image and measured biochemistry data. It indicated that 1) the carbon-nitrogen ratio in this area is around 30;2) the reflectance in the wavelength of 2052nm and 2173nm is sensitive to canopy total nitrogen, carbon-nitrogen ratio and carbon content. From the practical point of view, using the sensitive bands can produce the instruments to detect the canopy nitrogen and carbon-nitrogen ratio timely and nondestructively. This part established a good foundation for vegetation hyperspectral remote sensing and carbon or nitrogen cycle research in our southwest tropical and sub-tropical humid climate.
引文
[1] Abet J D, and Federer C A, A generalized, lumped-parameter model of photosynthesis, evaportranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 1992, 92: 463-474.
    [2] Allen W A, Gayel T V and Richardson A J. Plant-canopy irradiance specified by the Duntley equation. J. Opt. Soc. Amer., 1970, 60: 372-376.
    [3] Allen W A, Richardson A J. Interaction of light with a plant canopy. J. Opt. Soc. Amer., 1968, 58:1023-1028.
    [4] Aoki M, Yabuki K, Totsuka T, et al. Remote sensing of chlorophyll content of leaf (Ⅰ) Effective spectral reflection characteristics of leaf for the evaluation of chlorophyll content in leaves of dicotyledons. Environ. Control in Biol., 1986, 24(1): 21-26.
    [5] Bach H, Mauser W. Improvements of plant parameter estimations with hyperspectral data compared to multispectral data. Proc. Of SPIE, 1997, 295(9): 59-67.
    [6] Baret F, Guyot G. 1991. Potentials and Limits of Vegetation Indices for LAI and APAR Assessment. Remote Sensing of Environment, 35(2): 161~173.
    [7] Baret F, Vanderbilt V C, Steven M D, et al. Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical properties. Remote Sensing of Environment, 1994, 48: 253-260.
    [8] Beck R. EO-1 user guide (Version 2.3). IEEE, 2003.
    [9] Belanger M J, Miller J R, Boyer M G. Comparative relationships between some red edge parameters and seasonal leaf chlorophyll concentrations. Canadian Journal of Remote Sensing, 1995, 21: 16-21.
    [10] Bisun D. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote Sensing of Environment, 1998, 66: 111-121.
    [11] Blackburn G A, Milton E J. Seasonal variations in the spectral reflectance of deciduous tree canopies. International Journal of Remote Sensing, 1995, 16(4): 709-720.
    [12] Blackburn G A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sensing of Environment, 1998, 66: 273-285.
    [13] Boochs F. Shapes of the red edge as vitality indicator for plants. Journal of Remote Sensing, 1990, 11(10): 1741-1753.
    [14] Broadley M R, Willey N J, Mead A. A method to assess taxonomic variation in shoot caesium concentration among flowering plants. Environmental Pollution. 1999, 106, 341-349.
    [15] Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment, 2002, 81: 45-57.
    [16] Bunnik N J J. The multispectral reflectance of shortwave radiation by agricultural crops in relation with their morphological and optical properties. Mededelingen Landbouwhoge school, Wageningen, The Netherlands, 1978, 78-1.175.
    [17] Card D H. Peterson D L. Matson P A. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Envrionment. 1988. 26: 123-147.
    [18] Carter G A, Knapp A K. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot.. 2001. 88: 677-684.
    [19] Ceccatoa P. Flasse S, Tarantola S. et a!. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 2001. 77(1 ):22~33.
    [20] Chappelie E W, Kim M S, and McMurtrey J E. Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll A. chlorophyll B and the carotenoids in soybean leaves. Remote Sensing of Environment. 1992,39:239-247.
    [21] Che N, Price J C. Survey of Radiometric Calibration Results and Methods for Visible and Near Infrared Channels of NOAA 7. 9 and 11 AVHRR. Remote Sensing of Environment. 1992,41(1): 19-27.
    [22] Chuvieco E, Deshayes M. Stach N. et al. Short-term fire risk: foliage moisture content estimation from satellite data. Chuvieco E. Eds. Remote sensing of large wildfires in the European Mediterranean Basin. Berlin. 1999. 228.
    [23] Collins W. Remote sensing of crop type and maturity. Photo-grammetric Engineering and Remote Sensing, 1978, 44: 43-55.
    [241 Coops N C. Smith M L. Martin M E. et al. Prediction of Eucalypt Foliage Nitrogen Content From Satellite-Derived Hyperspectral Data. IEEE Transactions on Geoscience & Remote Sensing. 2003, 41(6): 1338-1346.
    [25] Curran P J, Dungan J L. Macler B A. et al. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical composition. Remote Sensing of Environment. 1992. 39. 153-166.
    [26] Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 2001. 76: 349-359.
    [27] Curran P J, Kupiec J A and Smith G M. Remote sensing the biochemical composition of a slash pine canopy. IEEE Transactions on Geoscience and Remote Sensing. 1997. 35. 415-420.
    [28] Curran P J, Windham W R. Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine leaves. Tree Physiology. 1995, 15: 203-206.
    [29] Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment. 1989. 30. 271-278.
    [30] Danson F M, Steven M D. Malthus T J. et al. High-spectral resolution data for determining leaf water content. International Journal of Remote Sensing. 1992. 13: 461-470.
    [31] Daughtry C S T, Walthall C L. Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment. 2000. 74: 229-239.
    [32] David R. Patrick V, Emilio C. et al. Estimation of Fuel Moisture Content by Inversion of Radiative Transfer Models to Simulate Equivalent Water Thickness and Dry Matter Content: Analysis at Leaf and Canopy Level. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(4): 319-326.
    [33] Dawon T P, Curran P J, North P R J, et al. LIBERTY: modeling the effects of leaf biochemistry on reflectance spectra. Remote Sensing of Environment, 1998,65:50-60.
    [34] Dawson T P, Curran P J, North P R J, et al. The propagation of foliar biochemical absorption features in forest canopy reflectance: a theoretical analysis. Remote Sensing of Environment, 1999, 67, 147-159.
    [35] Dinguirard M, Slater P N. Calibration of space-multispectral imaging sensors: a review. Remote Sensing of Environment, 1999, 68, 94-205.
    [36] Dungan J L, Johnson L, Billow C, et al. High spectral resolution reflectance of Douglas fir grown under different fertilization treatments: experiment design and treatment effects, Remote Sensing of Environment, 1996, 55, 217-228.
    [37] Egbert D D. A practical method for correcting bi-directional reflectance variation. Proc. Machine Processing Remote Sensed Data Symposium, 1977, 178-179.
    [38] Egbert D D. Determination of the optical bi-directional reflectance from shadowing parameters. Ph. D. Dissertation, 1976, Univ. of Kansas.
    [39] Elvidge C D, Chen Z, Groeneveld D P. Detection of trace quantities of green vegetation in 1990 AVIRIS data. Remote Sensing of Environment, 1993, 44: 271-279.
    [40] Feng Y, Miller J R. Vegetation green reflectance at high spectral resolution as a measureof leaf chlorophyll content. Proc. Of the 14th Canadian Symposium on Remote Sensing. Calgary Alberta, 1991, 351-355.
    [41] Ferrier U. Evaluation of Apparent Surface Reflectance Estimation Methodologies. International Journal of Remote Sensing, 1995, 16(12): 2 291-2 297.
    [42] Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric satus. International Journal of Remote Sensing, 1994, 15(7): 1 459-1 470.
    [43] Fourty Th, Baret F. On spectral estimates of fresh leaf biochemistry. International Journal of Remote Sensing, 1998, 19(7): 1 283-1 297.
    [44] Fraser R S, Kaufman Y J. The relative importance of aerosol scattering and absorption in remote sensing. IEEE Trans Geosci Remote Sensing, 1985, 23, 625-633.
    [45] Freemantle J R, Pu R, Miller J R. Calibration of Imaging Spectrometer Data to Reflectance Using Pseudo-Invariant Features[A]. Proceeding of the 15th Canadian Symposium on Remote Sensing[C]. Toronto: 1992, 452-455.
    [46] Gao Bo-Cai.1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment,58(3): 257-266
    [47] Gitelson A A, Merzlyak M N, and Grits Y. Novel algorithms for remote sensing of chlorophyll content in higher plants. IEEE Trans. Geosci. Remote Sens. 1996, 4: 2 355-2 357.
    [48] Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 1997,18: 2 691-2 697.
    [49] Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physical, 1996, 148: 494-500.
    [50] Goetz A F H, Vane G, Solomon J E. et al. Imaging spectrometry for earth remote sensing. Science, 1985. 228:1147-1153.
    [51] Goetz S J and Prince S D. Remote sensing of net primary production in boreal forest stands. Agricultural and Forest Meteorology, 1996.78: 149-179.
    [52] Gond V, De Pury D G. Veroustraete F, et al. Seasonal variations in leaf area index, leaf chlorophyll, and water content: scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest. Tree Physiology,, 1999, 19: 673-679.
    [53] Gong P, Pu R, Heald R C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Intemationai Joumal of Remote Sensing. 2002 23(9): 1827-1850.
    [54] Gordon H R. Atmospheric correction of ocean color imagery in the earth observation system era. Journal of Geophysics Research, 1997, 102(14): 17081-17106.
    [55] Govaerts Y M, Verstraete M M. Evaluation of the capability of BRDF models to retrieve structural information on the observed target as described by a tridimensional ray tracing code. in Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources. Proc. SPIE'1994, 2314, 9-20.
    [56] Grossman Y L, Ustin S L, Jacquemoud S. et al. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sensing of Environment. 1996.56: 182-193.
    [57] Haboudane D, Miller J R, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment. 2002, 81: 416-426.
    [58] Hardisky M A, Kiemas V, Smart R M. The influence of soil salinity, growth form and leaf moisture on the spectral reflectance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens., 1983.49(1): 77-84.
    [59] Hare E W. Miller J R and Edwards GR. Geobotanical remote sensing of small localized swamps and bogs in northern Ontario. Proc. Of the Int. Symposium on R. S.. Third Thematic Conference, R. S. for Exploring Geology. April 16-19. 1984. 671-682.
    [60] Hare E W. Studies of the vegetation red reflectance edge in geobotanical remote sensing in eastern Canada. Proc. Of the 9th Canadian Symposium on Remote Sensing, August 13-17, 1984. 433-440.
    [61] Heam D, Digenis C J, Lencioni D E, et al. EO-1 advanced land imager overview. International Geoscience and Remote Sensing Symposium, IGARSS'2001. Sydney. Australia, July 9—13.
    [62] Hill J, Sturm B. Radiometric correction of multi-temporal Thematic Mapper data for use in agricultural land-cover classification and vegetation monitoring. International Journal of Remote Sensing, 1991. 12, 1471-1491.
    [63] Hosgood B, Jacquemoud S. Andreoli G. et al. 1995. leaf optical properties experiment 93 (LOPEX'93). European Commission, Joint Research Center Institute of Remote Sensing Applications. lspra, ltaly
    [64] Huete A R. 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25(3): 295—309.
    [65] Hunt E R, Rock B N. Detection of Changes in leaf water content using near- and middle-infrared reflectances. Remote Sensing of Environment, 1989, 30(1): 43-54.
    [66] Hunt G R. Electromagnetic radiation: the communication link in remote sensing. In: Remote Sensing in Geology. Siegal B, Gillespia A. Wiley New York. 1980, 702.
    [67] Idso B, deWit C T. Light relations in plant canopies. Appl. Opt., 1970, 9: 177-184.
    [68] Inoue Y, Morinaga S, Shibayama M. Non-destructive estimation of water status of intact crop leaves based on spectral reflectance measurements. Japanese Journal of Crop Science, 1993, 62(4): 462-469
    [69] Jackson R D, Reginato R J, Printer P J, et al. Plant canopy information extraction from composite scene of row crops. Appl. Opt, 1979, 18: 3 775-3 782.
    [70] Jacquemoud S, Baret F. PROSPECT: a model of leaf optical properties. Remote Sensing of Environment, 1990,34:75-91.
    [71] Jacquemoud S, Verdebout J, Schmuck G, et al. Investigation of leaf biochemistry by statistics, Remote Sensing of Environment, 1995, 54: 180-188.
    [72] Jarecke P, Yokoyama K. Radiometric calibration of the hyperion imaging spectrometer instrument from primary standards to end-to-end calibration. In Proc. of SPIE, 2000, 4135: 254-263.
    [73] Jelle F, Andrew K and Alfred S. A bootstrap procedure to select hyperspectral wavebands related to tannin content. International Journal of Remote Sensing, 2006, 27(7), 1413-1424.
    [74] Jupp D L B, Walker J and Penridge L K. Interpretation of vegetation structure in Landsat MSS imagery: A case study in disturbed semi-arid Eucalypt woodlands. Part 2: model based analysis. J. Environment Management, 1986, 23: 35-57.
    [75]Karpouzli E, Malthus T. The Empirical Line Method for the Atmospheric Correction of IKONOS Imagery. International Journal of Remote Sensing, 2003, 24(5): 1 143-1 150.
    [76] Kaufman Y J, Sendra C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int J Remote Sensing. 1988, 9, 1 357-1 381.
    [77] Kaufman Y J, Tanre D, Gordon H R, et al. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. Journal of Geophysics Research, 1997, 102(14): 16 815-16 830.
    [78] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999, 67: 267-287.
    [79] Kokaly R F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment, 2001, 75: 153-161.
    [80] Kupiec J A, Curran P J. Decoupling the effect of the canopy and foliar biochemical concentration in AVIRIS spectra. International Journal of Remote Sensing, 1995, 16: 1 731-1 739.
    [81] Kuusk, A. A computer-efficient plant canopy reflectance model. Computer & Geosciences, 1996,22: 149-163.
    [82] Kuusk, A. A fast, invertible canopy reflectance model. Remote Sensing of Environment,1995a, 51:342-350.
    [83] Kuusk, A. A Markov chain model of canopy reflectance. Agricult Forest Meteorol, 1995b, 76:221-236.
    [84] Kuusk, A. A multispectral canopy reflectance model. Remote Sensing of Environment, 1994,50:75-82.
    [85] Kuusk, A. A two-layer canopy reflectance model. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001. 71: 1 -9.
    [86] Li X. Strahler A H. Geometric-optical bi-directional reflectance modeling of a conifer forest canopy. IEEE Trans. On Geoscience and Remote Sensing. 1986. 24: 906-919.
    [87] Li X. Strahler A H. Geometric-optical modeling of a conifer forest canopy. IEEE Trans. On Geoscience and Remote Sensing, 1985. 23: 705-721.
    [88] Li X. An invertible coniferous canopy reflectance model. MA. Thesis. University of California, Santa Barbara.
    [89] Lichtenthaler H K. Gitelson A. Lang M. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. J. Plant Physiol., 1996, 148:483-493.
    [90] Markham B L. Barker J L. Thematic Mapper bandpass solar exoatmosphericirradiances. International Journal of Remote Sensing, 1987. 8, 513-523.
    [91] Marten G. Shenk J, Barton F E. Near infrared reflectance spectroscopy (NIRS): Analysis of forage quality. U. S. Dept. of Agric. Handbook 643. USDA. Washington. DC. 1989.
    [92] Mbow C. Proposition of a method for early fires planning using ground and satellite (NDVI/NOAA-AVHRR) data from Niokolo Koba National Park (Southeast Senegal). Poster Presentation in Proceedings of the Second International Symposium on Operationalization of Remote Sensing[C], Lnschede, The Netherlands. 1999, 16-20.
    [93]McCabe G. Reuter DC, Dimitroc R, et a). The LEISA / Atmospheric Corrector (LAC) on EO-1. In IEEE 2001 International Geoscience and Remote Sensing Symposium, July 9-13, 2001.
    [94] McLellan T M. Aber .1 D, Martin M E. et al. Determination of nitrogen, iignin, and cellulose content of decomposing leaf material by near infrared reflectance spectroscopy. Can. J. For. Res.. 1991.21: 1684-1688.
    [95] Miller J R. Hare E W, Neville R A, et al. Correlation of metal concentrations with anomalies in narrow band muitispectral imagery of the vegetation red reflectance edge. Proc. Of the Int. Symposium on R. S.. 4th Thematic Conference. R. S. for Exploration Geology, April 16-19. 1985. 143-153.
    [96] Miller J R. Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance. 1. An inverted-gaussian reflectance model. Internationa] Journal of Remote Sensing, 1990, 11(10): 1 775-1 795.
    [97] Miller J R, Wu J. Boyer M G. et al. Season patterns in leaf reflectance red edge characteristics. International Journal of Remote Sensing. 1991. 12(7): 1 509-1 523.
    [98] Moran M. S.. Jackson R.D., Slater, P. N. et al. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sens. Environ., 1992,41:169-184,
    [99] Munden R, Curran P J, Catt J A. The relationship between red edge and chlorophyll concentration in the broadbalk winter wheat experiment at Rothamsted. International Journal of Remote Sensing. 1994. 15(3): 705-709.
    [100] Niemann K O. Remote sensing of forest stand age using airborne spectrometer data. Photogrammetric Engineering and Remote Sensing. 1995,61(9): 1 119-1 127.
    [101] Nilson, T.. and A. Kuusk (1984). Approximate analytic relationships for the reflectance of agricultural vegetation canopies, iiarth Research from Space. 5: 76-83.
    [102] Nilson, T., and A. Kuusk (1989). A reflectance model for the homogeneous plant canopy and its inversion. Remote Sensing of Environment, 27: 157-167.
    [103] Ollinger S V and Smith M L. Net Primary Production and Canopy Nitrogen in a Temperate Forest Landscape: An Analysis Using Imaging Spectroscopy, Modeling and Field Data. Ecosystems, 2005, 8(7): 760-778.
    [104] Otterman J. Albedo of a forest modeled as a plane dense protrusions. J. Climate Appl. Meteorol., 1984, 23: 297-307.
    [105] Otterman J. Reflection from soil with sparse vegetation. Adv. Space Res., 1981, 1: 115-119.
    [106] Park J K, Deering D W. Simple radiative transfer model for relationships between canopy biomass and reflectance. Appl. Opt., 1982, 21: 303-309.
    [107] Pearlman J, Carman S. Segal C, et al. Overview of the Hyperion Imaging Spectrometer for the NASA EO-1 Mission. International Geoscience and Remote Sensing Symposium, July 9—13, 2001.
    [108] Pearlman J. EO-1, a pathway to advanced spaceborne spectral imaging. Proceeding of the 13th international conference applied geologic remote sensing. 1999,13: 570-577.
    [109] Pefiuelas J, Baret F, and Fillella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 1995, 31: 221-230.
    [110] Pefiuelas J, Filella I, Sweeano L. Cell wall elastivity and water index (R970/R900) in wheat under different nitrogen availabilities. Int J Remote Sensing,1996, 17(3):373-382.
    [111] Pefiuelas J, Pinol J, Ogaya R, et al. Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Int J Remote Sensing, 1997, 18(13): 2869-2875.
    [112] Perry E M, Warner T, Foote P. Comparison of Atmospheric Modelling versus Empirical Line Fitting for Mosaicking HYDICE Imagery. International Journal of Remote Sensing, 2000, 21(4): 799-803.
    [113] Peterson D L, Aber J D, Matson P A, et al. Remote sensing of forest canopy and leaf biochemical contents. Remote Sensing of Environment, 1988, 24: 85-108.
    [114] Peterson D L, and Hubbard G S. Scientific issues and potential remote sensing requirements for plant biochemical content. J. Imaging Sci. TechnoL, 1992, 36:445-455.
    [115] Price J C. Calibration of satellite radiometers and the comparison of vegetation indices. Remote Sensing of Environment, 1987, 21, 15-27.
    [116] Pu R, Ge S, Kelly N M, et al. Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves. Int J Remote Sensing, 2003, 24(9): 1 799-1 810.
    [117] Qi J, Huete A R, Kerr Y H, et al. A Modified Soil Adjusted Vegetation Index. Remote Sensing of Environment, 1994,48(2): 119-126.
    [118] Rock B N, Hoshizaki T, Miller J R. Comparison of the in situ and airborne spectral estimates of the blue shift associated with forest decline. Remote Sensing of Environment, 1988,24: 109-127.
    [119] Roderick M, Smith R, Lodwick G. Calibrating long-term AVHRR-derived NDVI imagery. Remote Sensing of Environment, 1996, 58, 1-12.
    [120] Rondeaux G, Steven M, Baret F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sensing of Environment, 1996, 55(1): 95-107
    [121] Ross. J.. and Nilson, T.. 1968. The calculation of photosynthetically active radiation in plant communities. In: Regime of the Solar Radiation in a Vegetation Canopy. Inst. Phys. and Astronomy. Acd. Sci. Est. SSR, 5-54.
    [122] Sabins F F. Remote sensing: principles and interpretation. 1997. New York: WH Freeman & Co.
    [123] Sims D A, Gamon .1 A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment. 2002. 81: 337-354.
    [124] Smith G M, Milton E J. The Use of the Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance. International Journal of Remote Sensing, 1999. 20(13): 2 653-2 662.
    [125] Smith M L, Martin M E. Plourde L, et al. Analysis of Hyperspectral Data for Estimation of Temperate Forest Canopy Nitrogen Concentration: Comparison Between an Airborne (AV1R1S) and a Spaceborne (Hyperion) Sensor. IEEE Transactions on Geoscience & Remote Sensing, 2003. 41(6): 1332-1337.
    [126] Suits G H. The calculation of the directional reflectance of vegetative canopy. Remote Sensing of Environment, 1972.2: 1 17-125.
    [127] Swain P H, Davis S M. Remote sensing: the quantitive approach. 1978, New York: McGrowHill.
    [128] Tanre D, Herman M and Deschamps P Y. Influence of the background contribution upon space measurements of ground reflectance. Applied Optics, 1981, 20. 3676-3684.
    [129] Tanre D. Holben B N. and Kaufman Y J. Atmospheric correction algorithm for NOAA-AVHRR products: theory and application, IEEE Trans. Geosci. Remote Sens. 1992. 30(2): 231-248.
    [130] Thenkabail P S. Smith R B and De Pauw E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment. 2000. 71: 158-182.
    [131] Thompson K, Parkinson JA. Band SR. et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist. 1997. 136: 679-689.
    [132] Townsend P A. Foster J R. Chastain R A. et al. Application of Imaging Spectroscopy to Mapping Canopy Nitrogen in the Forests of the Central Appalachian Mountains Using Hyperion and AVIRIS. IEEE Transactions on Geoscience & Remote Sensing, 2003. 41(6): 1347-1354.
    [133] Turner R E, Spencer M M. Atmospheric model for correction of spacecraft data. 8th International Symposia Remote Sensing of the Environment. Ann Arbor. ML 1972. 895-934.
    [134] Vane G. Goetz A F H. Terrestrial imaging spectroscopy. Remote Sensing of Environment. 1988, 24: 1-29.
    [135] Verdebout J, Jacquemoud S. and Schmuck G. Optical properties of leaves: modeling and experimental studies. Imaging Spectrometry— a loo! for Environmental Observations. J. Hill and J. Megier, (Eds). Dordrecht. The Netherlands: Kluwe Academic Publishers. 1994. 4 335.
    [136] Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment, 1984. 16: 125-141.
    [137] Vermote E. F., Tanré D., Deuzé J. L. et al, Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sensing, 1997, 35: 675-686.
    [138] Verstraete M M, Pinty B and Myneni R B. Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sensing of Environment, 1996, 58: 201-214.
    [139] Verstraete M M, Pinty B. Designing optimal spectral indexes for remote sensing applications. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1254-1 265.
    [140] Wessman C A, Aber J D, Peterson D L, et al. Foliar analysis using near infrared reflectance spectroscopy. Can. J. For. Res. 1988a, 18:6-11.
    [141] Wessman C A, Aber J D, Peterson D L, et al. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems, Nature, 1988b, 335:154-156.
    [142] Wessman C A, Aber J D, Peterson D L. An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing, 1989, 10:1 293-1 316.
    [143] White J D, Trotter C M, Brown L J, et al. Nitrogen concentration in New Zealand vegetation foliage derived from laboratory and field spectrometry. International Journal of Remote Sensing, 2000, 21(12): 2525-2531.
    [144] Williams P C, Norris K H. Near-infrared technology in the agricultural and food industries. 1987.
    [145] Wold S, Albano C, Dunn W, et al. Pattern recognition: Finding and using regularities in multivariate data. in Food Research and Data Analysis, Martens H. & Russwurm H. (Ed.s), 1983, 147-188. Applied Sciences PuN.s, London.
    [146] Yoder B J, Daley L S. Development of a visible spectroscopic method for determining chlorophyll a and b in vivo in leaf samples. Spectrosc., 1990, 5(8):44-50.
    [147] Yoder B J, Pettigrew-Crosby R E. Predicting Nitrogen and Chlorophyll Content and Concentrations from Reflectance Spectra (400-2500nm) at Leaf and Canopy Scales. Remote Sensing of Environment, 1995, 53:199-211.
    [148] Zarco-Tejada P J, Miller J R, Morales A, et al. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 2004, 90(4): 463-476
    [149] Zhao W, Tamura M, and Takahashi H. Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code. Remote Sensing of Environment, 2000, 76, 202-212.
    [150] 阿布都瓦斯提·吾拉木,秦其明,朱黎江.基于6S模型的可见光、近红外遥感数据的大气校正.北京大学学报(自然科学版),2004,40(4):611-618.
    [151] 陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社,1998.
    [152] 陈述彭等.1990.遥感大辞典.北京:科学出版社.
    [153] 高信曾,1984,植物学(形态、解剖部分),高等教育出版社
    [154] 蒋耿明。MODTS数据基础处理方法研究和软件实现。中国科学院研究生院(遥感应用研究所)硕士论文,中国科学院遥感应用研究所图书馆,2003。
    [155] 李小文,王锦地.植被光学遥感模型与植被结构参数化.北京:科学出版社,1995。
    [156] 梁之舜.概率论与数理统计[M].北京:高等教育出版社,1998
    [157] 刘建贵,吴长山,张兵等.PHI成像光谱图像反射率转换.遥感学报,1999.3(4):290-294.
    [158] 刘良云(2002)。高光谱遥感在精准农业中的应用研究。中国科学院遥感应用研究所博士后研究工作报告。中科院遥感所图书馆。
    [159] 刘勇卫译,日本遥感研究会编.遥感精解。测绘出版社,1993.
    [160] 牛铮,陈永华,隋洪智等(2000).叶片化学组分成像光谱遥感探测机理分析.遥感学报,4(2):125-130.
    [161] 浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000,87-89
    [162] 沈艳,牛铮,颜春燕.植被叶片及冠层层次含水量估算模型的建立.应用生态学报,2005,16.1218-1223.
    [163] 施吉林,刘淑珍,陈桂芝.计算机数值方法[M].北京:高等教育出版社,1999.
    [164] 施润和,牛铮,庄大方.利用高光谱数据估测植物叶片碳氮比的可行性研究。遥感技术与应用,2003,18(2):76—80。
    [165] 施润和,牛铮.庄大方.叶片生化组分浓度对单叶光谱影响研究——以2100nm吸收特征的碳氮比反演为例.遥感学报,2005,9 (1):1—7.
    [166] 唐伯惠,姜小光,唐伶俐等.星载高光谱Hyperion数据在海滩涂调查应用中的分析.地球信息科学,2004,6(2):81-87.
    [167] 田庆久,宫鹏,赵春江等。用光谱反射率诊断小麦水分状况的可行性分析。科学通报,2000,45(24):2645-2649。
    [168] 田庆久.遥感信息定量化理论、方法与应用潜力.遥感知识创新文集,中国科学技术出版社,1999,78—84.
    [169] 童庆禧,郑兰芬.高光谱遥感发展现状.遥感知识创新文集,中国科学技术出版社,1999,13—25.
    [170] 童庆禧.电子光学遥感系统的连去、现在和未来,成像光谱技术发展初探,遥感科学新进展.科学出版社,1995,51—60.
    [171] 王惠文.偏最小二乘回归方法及其应用,国防工业出版社,北京,1999.
    [172] 王纪华,王之杰,黄文江等。冬小麦冠层氮素的垂直分布及光谱响应。遥感学报,2004,8(4):309-316。
    [173] 王秀珍,黄敬峰,李云梅等。水稻生物化学参数与高光谱遥感特征参数的相关分析。农业工程学报,2003,19 (2):144-148。
    [174] 吴昀昭,田庆久,金震宇等.ETM+数据绝对反射率反演方法分析.遥感信息,2004,2:9-12
    [175] 徐永明.2005.基于实验室光谱的土壤营养元素反演研究.中国科学院遥感应用研究所博士论文.中国科学院遥感应用研究所图书馆.
    [176] 薛利红,曹卫星,罗卫红等。小麦叶片氮素状况与光谱特性的相关性研究。植物生态学报,2004,28(2):172-177。
    [177] 薛利红,曹卫星,罗卫红等。基于冠层反躬光谱的水稻群体叶片氮素状况监测。中国农业科学,2003,36 (7):807-812。
    [178] 薛利红,罗卫红,曹卫星,等.作物水分和氮素光谱诊断研究进展.遥感学报,2003.7(1):73-80.
    [179] 薛利红,杨林章.范小晖。基于碳氮代谢的水稻氮含量及碳氮比光谱估测。作物学报,2006,32(3):430-435。
    [180] 颜春燕、蒋耿明、王成等。植被单叶光谱特性的理论模拟。遥感学报,2003,7:81—85。
    [181] 颜春燕.2003.遥感提取植被生化组分信息方法与模型研究.中国科学院遥感应用研究所博士论文.中国科学院遥感应用研究所图书馆.
    [182] 杨敏华,刘良云,刘团结等.小麦冠层理化参量的高光谱遥感反演试验研究.测绘学报,2002,31(4),316-321.
    [183] 张霞,刘良云,赵春江,张兵。利用高光谱遥感图像估算小麦氮含量。遥感学报,2003,7(3):176-181。
    [184] 赵德华,李建龙,宋子键.高光谱技术提取植被生化参数机理与方法研究进展.地球科学进展,2003,18(1):94-99.
    [185] 赵英时等.遥感应用分析原理与方法.北京:科学出版社,2003.
    [186] 郑兰芬,王晋年.成像光谱遥感技术及其图像光谱信息提取的分析研究.环境遥感,1992,7(2):49-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700