韩国背后岭隧道水压致裂法地应力测量与围岩稳定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了对地下洞室进行科学合理的开挖设计和施工,就必须对影响工程稳定性的各种因素进行充分的调查。在诸多的影响岩体开挖工程稳定性的因素中,地应力状态是最重要最根本的因素之一。一切与围岩有关的工作,如隧道的布置、隧道支护设计,锚杆支护衬砌设计,是确定工程岩体力学属性,进行围岩稳定性分析,实现岩石工程开挖设计和决策科学化的必要前提条件。对隧道设计来说,只有掌握了具体工程区域的地应力条件,才能合理确定隧道的总体布置,确定其最佳断面形状、断面尺寸、开挖步骤、支护形式、支护结构参数等,从而保证围岩稳定性。所以,研究岩体的初始地应力,测量岩体的初始应力值状态,其目的不单纯在于初始地应力自身理论的发展和测试技术的改进,还在于如何把初始地应力实测值转化为地面和地下工程设计荷载,即初始地应力与地面和地下工程关系的研究。岩体的初始地应力状态的测试及研究的意义是多方面的。地应力测量是用来确定工程岩体力学属性,进行围岩稳定性分析,实现岩土工程开挖设计和决策的必要前提。由于地应力场会受到其他多种因素的影响,因而造成了地应力状态的复杂性和多变性。即使在同一地区,不同点的地应力状态也可能是很不相同的,要了解一个地区的地应力状态,惟一的有效方法就是进行原地应力测量。
     本论文结合为韩国新北-北山BHL((?))国道改扩建工程,并依据提供科学技术支撑的Geogeny公司来开展研究工作。考虑到本文所依托的工程当时正处于规划与设计施工伊始阶段,相关的前期线路工程地质专项调查论证已经完毕。因此,本文的研究成果是基于野外地质调查和少量室内试验,并结合新北-北山BHL地区刚建的相关工程实例类比而得出的初步认识,其中大量的问题值得深入研究和分析,还需要做大量实际细致的工作。本论文所做的试验研究区域在韩国的Chuncheon-Yanggu地区,属于Kyeonggi断层带的东北部。大部分测试地区属于崎岖不平的多山地段区域。
     本文对水压致裂地应力测量原理、设备、现场试验方法及数据处理等进行了比较深入的阐述,初步选定十五个钻孔作为水压致裂测量孔,有30个测点,平均每孔两个测点。详细分析了水压致裂曲线压力-时间的特征及破裂压力、重张压力、关闭压力及最大水平主应力的破裂方向的确定方法。此外,在获得已知各个测点的地应力大小和方向后,进一步分析工程区地应力及侧压力系数的分布规律,并采用相关数值分析方法来建立隧道工程区的地应力场分布的模型。在320m以内,测压系数随着深度的不断加深它的值也有下降并趋于稳定的趋势,其中最大主应力方向是北偏东790(N790E)。
     在收集、分析前人研究的基础之上,通过对初始应力场、深部地质构造、岩石力学特性的现场调查和测试,室内试验分析以及模拟计算,结合地下工程实例,运用工程地质学、岩石力学等多学科理论和方法,了解各种工况条件下其应力、应变状态,综合研究工程岩体的破坏机理,为下一阶段的工程设计、施工和安全运营提供必要的工程资料,并以之为向导,进行工程作业。确定工程区不同隧道部位的平面应力的大小、方向及相应的岩体力学参数,不但可以为了对工程区应力场有一个全面的认识,而且可以为下一步的隧道围岩稳定性分析做充分的理论依据。
     本文重点研究三个方面。1:通过工程现场地质调查,对隧道工程区的地质环境进行了评价;2:通过水压致裂地应力测量研究工程区地应力相关参数的确定及数据处理;3:在水压力测量地应力及室内试验分析方法相结合下,利用所得到的相关物理力学参数,通过相关数值模拟软件进行数值模拟,研究不同围岩类别下及不同测压系数下的围岩的变形破坏情况,来验证基于地应力测量结果的隧道围岩支护设计的合理性和可能性。主要研究手段:1:进行前人理论和试验的收集、研究。试验收集包括在韩期间野外的现场试验,研究不同应力条件下水压致裂压力-时间曲线特征,总结破裂、关闭及重张压力特征点的方法。2:进行现场测试,分析总结测试结果,获取地应力场的准确资料,关键是对测试曲线的合理解释和破裂、关闭及重张压力特征点的准确识别。得出最大最小水平应力及其随深度变化的情况。3:通过对现场测试所得的相关数据求出最大最小水平主应力、方向及应力随深度变化的情况。其中测压系数随深度变化而变化的分析图对下一步的模拟分析起到关键的作用。4:采用理论分析法和基于数值计算软件,利用所测得不同断面的测压系数随深度而变化的情况,分析模拟部分隧道断面在所测得地应力条件下的应力分布,当测压系数不变在不同种类围岩下及围岩类别不变在不同测压系数下隧道发生失稳破坏的区域,应用到施工的过程中。为隧道的下一步支护提供有力的依据,并验证基于地应力测量结果的隧道围岩支护设计的合理性和可靠性。
Knowledge of the in situ state of stress in the Earth's crust is very important in many problems dealing with rocks in geology, geophysics, as well as civil and mining. In civil and mining engineering, the characteristic of in situ rock stress has potent influence on the failure and deformation behavior around openings and also control the distribution and magnitude of the stresses around underground openings such as mines, shafts and tunnels. As the depth and scale of underground structures tend to increase recently, its importance is getting more attention. The overstressed condition may induce progressive and brittle failures such as spalling, slabbing and rock bursting. In foreign countries, a lot of researches on in situ rock stress have been carried out by in situ tests and data analyses. From them, many empirical and theoretical formulate have been proposed to accurately estimate the initial rock stress such as Korea. In China, on the contrary, a few studies on rock stress have been carried out but their results do not provide with detailed information of the initial rock stress.
     In this study, the study area was Chuncheon-Yanggu region, the east-north part of Kyeonggi Massif in Korea where most of the study areas are high and rugged mountainous region. The characteristics of initial rock stress there were studied using more than thirty-five field stress measurements in fifteen vertical boreholes were conducted at the depth from 20m to 320m of in situ hydraulic fracturing method test with the help of Geogeny consultants group 1nc.
     Based on the test data set, it introduces the whole procedure of hydraulic fracturing measurement method, field hydraulic fracturing test system, the technique of geophysical imaging technique and test data analysis to obtain critical pressure parameters from the pressure time records.
     Based on the measurement data, the main purpose of the study area was that one was to investigate the characteristics of the regional stress state of the target region and the other was to evaluate the potential possibility of stress induced brittle failures at the future excavation work. The study results revealed that the different initial rock stresses had formed with the formation rock type. For the depth less than 320m, the stress ratio (K) had a tendency to decrease and stabilize with the depth. The average orientation of all SH data was approximately 790 from the north (N790E).
     Based on the collection analyses of predecessors', on the field investigation about the rock mechanics characteristic, the initial stress field, deep architectonic, indoor test analyses as well as analog calculation and field condition, to know the stress and strained condition under different kinds of behavior situation, analysis rock mass engineering failure mechanism in order to direct the construction on the security transport operation, supplying necessary engineering data and holding the engineering work safely.
     The keynote of this research has three aspects:the first one is to appraise the geologic environment condition of the tunneling region based on the geologic survey of project site; the second one is to determine the relevant parameters and process the data coming from the hydraulic fracturing method; the last one is between the method of determining the initial stress under the measurement of hydraulic fracturing and the analytical procedure of indoor test, using the numerical simulation software to make the simulating in order to research the rock wall's variation under different kinds of stress ratio K and rock types to demonstrate the rationality and feasibility of the tunnel supporting.
引文
[1]郭怀志,马启超等.岩体初始应力场的分析方法,岩土工程学报,1983,5(3):68-71.
    [2]许百立,刘世煌.地下工程设计理论与实践,地下工程技术,1999,3:1-12
    [3]陶振宇,朱焕春,高延法,李广平.岩石力学的地质与物理基础.武汉:中国地质,大学出版社1996.10
    [4]廖椿庭,吴满路,张春山,等.青藏高原昆仑山和羊八井现今地应力测量及其工程意义[J].地球学报,23(4):353-357
    [5]彭华,马秀敏,李金锁.南水北调西线工程区内地震对工程稳定性的影响[A],青藏高原地质过程与环境灾害效应论文集[c],北京:地震出版社,2005.11:177-187
    [6]Chunting Liao,Chunshan Zhang,Manlu Wu,et al.Stress change near the Kunlun fault before and after the Ms 8.1 Kunlun earthquake[J].GEOPHYSICAL RESEARCH LETTERS.2003,30(20):3-3.
    [7]李方全,王连捷.华北地区地应力测量[J].地球物理学报,1979,22(1)
    [8]蔡美峰.地应力测量原理与技术.
    [9]Zhang Xing-qiang Qi Lan Research on Complicated Dam Foundation During Excavation with Three-Dimension Visc-Elastic Plastic Condensed FEM Transaction of Tianjin University 2000 6(1)60-64)
    [10]戚蓝,马启超,李广远.对坝基开挖工程岩体稳定性有影响的几个问题天津大学学报.199932(1)27-32)
    [11]戚蓝,熊开智.地下厂房岩壁吊车梁结构研究水利水电技术.2002 33(7)5-7
    [12]马启超.戚蓝.侯晓暾.影响大型地下洞群围岩稳定的几个问题.岩石力学与工程学报.199817(增)846-853.)
    [13]Yoon.W.S.,Jeong U.J.Kinematics analysis for sliding failure of multi-faced rock slopes,Engineering Geology,2002,67(1),51-61
    [14]Cave.S.R.,Edwards D.W.,Chemical Process Route Selection Basedon Assessment of Inherent Environmental Hazard,Computers&Chemical Engineering,1997,21(1),31-36
    [15]Chander.R.,On Categorizing induced natural tectonic earthquakes nearnew reservoir.Engineering Geology,1997,46(2),81-92)
    [16]Haimson, B.C. (1973) Earthquake related stresses at Rangely, Colorado, in Proc.14th US Symp. Rock Mech., University Prak, pp.689-708.
    [17]Aydan, O., Kawamoto, T.,1997, The general characteristics of the stress state in the various parts of the earth's crust, Proceeding of the International Symposium on Rock Stress, Kumamoto, Japan, October 7-10, pp.369-380
    [18]邵国建.初始地应力场对洞室围岩稳定性的影响.水文地质工程地质.2003(6)44-48
    [19]金艳丽,刘汉东.初始地应力场反演及回归分析方法研究.隧道建设.2004.24(2):6-8
    [20]邓建辉,廖勇龙.边坡初始地应力场位移的反分析初步研究.贵州工业大学学报.1997.26(supp.):102-107
    [21]朱伯芳.岩体初始地应力的反分析.水利学报.1994(10):30-35)
    [22]马震岳,金长宇,张运良.基于FLAC及神经网络的初始地应力场反演.2005.23(3):44-45
    [23]石敦敦,傅永华.人工神经网络结合遗传算法反演岩体初始地应力的研究.武汉大学,学报(工学版).2005.38(2):73-76
    [24]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    [25]Kim.K and Franklin. J. A.地应力测量与研究.丁健民译.北京:地震出版社,1982.
    [26]国家地震局地壳应力研究所译.地壳应力研究的进展.北京出版社,1990.
    [27]苏恺之编著.地应力测量方法.地震出版社,1985年.
    [28]B.C.海姆森,H.A.图尔恰尼诺夫,等.丁健民等译.地应力测量与研究[M].地震出版社.1982
    [29]蔡美峰,乔兰,于波,等.峨口铁矿地应力测量原理和结果分析[J],北京科技大学学报,1996,18(2):101-106
    [30]蔡美峰,乔兰,李华斌.地应力测量原理和技术[M],科学出版社,1995.
    [31]王连捷,潘立宙,丁原辰,等.地应力测量及其在工程中的应用[M],地震出版社,1996.
    [32]M.G.卡法基斯.李方全译.各向异性岩石中的水压致裂应力测量和理论分析[A].地壳应力研究的新进展[M].北京出版社,1990.
    [33]Clark, J.B. (1949) A hydraulic process for increasing the productivity of wells. Institute of Mining Eng. T.P.2510,186,1-8.
    [34]Hubbert, K.M. and Wiilis, D.G (1957) Mechanics of hydraulic fracturing. Petrol Trans. AIME, T.P. 4597,210,153-66.
    [35]Fairhurst, C (1964) Measurement of in situ rock stresses with particular references to hydraulic fracturing. Rock Mech. Eng. Geol.2,129-47
    [36]Kehle, R.O. (1964) Determination of tectonic stresses through analysis of hydraulic well fracturing. J. Geophys. Res 69,252-73.
    [37]Hubbert, K.M. and Wiilis, D.G. (1957) Mechanics of hydraulic fracturing. Petrol. Trans. AIME, T.P. 4597,210,153-66.
    [38]Scheidegger, A.E. (1962) Stresses in the Earth's crust as determined from hydraulic fracturing data. Geologie Bauwesen,27,45-53.
    [39]Haimson, B.C. (1968) Hydraulic fracturing in porous and nonporous rock and its potential for determining in situ stresses at great depth, unpublished PhD Thesis, University of Minnesota,234 pp.
    [40]Batchelor, A.S and Pine, R.J. (1986) the results of in situ stress determinations by seven methods to depths of 2500m in the Carnmenellis granite, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurement, Stockholm, Centek Publ., Lulea. Pp.467-78
    [41]) Dey, T.N. and Brown, D.W. (1986) Stress measurements in a deep granite rock mass using hydraulic fracturing. Int. J. Rock Mech. Min. Sci & Geomech. Abstr.,26,507-13.
    [42]Haimson, B.C and Fairhurst, C. (1967) Initiation and extension of hydraulic fractures in rocks. Soc. Petrol. Eng. J., Sept.,310-18
    [43]Haimson, B.C and Fairhurst, C (1970) In situ stress determination at great depth by means of hydraulic fracturing technique and its use at a site of induced seismicity, in Proc.25th US Symp. Rock Mech., Evanston, SME/AIME,pp.194-203.
    [44]Bernard Amadei, Ove Stephansson.Rock stress and its measurement. Chapman & Hall 1997. London. pp 121-129
    [45]Jeffery, R.I. and North, M.D. (1993) Review of recent hydro fracture stress measurements made in the Carboniferous coal measures of England, in Proc.7th Cong. Int. Soc. Rock Mech. (ISRM), Aachen, Balkema, Rotterdam, Vol.3, pp.1699-703
    [46]Zoback, M.L. et al. (1989) Global patterns of tectonic stress. Nature,341,291-8
    [47]任希飞,王连捷.深部地应力测量方法[A].水文地质与工程地质(二)[C].北京:地质出版社,1985.
    [48]国际岩石力学学会试验方法委员会确定岩石应力建议方法.1987
    [49]郭启良.水压致裂应力测量方法的新发展[J],中国大陆地壳应力环境研究[M],地质出版社,2003.
    [50]Batchelor, A.S and Pine, R.J. (1986) the results of in situ stress determinations by seven methods to depths of 2500m in the Carnmenellis granite, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurement, Stockholm, Centek Publ., Lulea. Pp.467-78
    [51]刘允芳,刘鸣.水压致裂法地应力测量破裂准则的探讨[J].长江科学院院报,1995,12(2).
    [52]陈群策,安美建,李方全.水压致裂法三维地应力测量的理论探讨[J].地质力学学报,1998,4(1)
    [53]苏恺之.地应力测量方法[M],地震出版社,1985.
    [54]刘鹏,柴建中,等.水压致裂原地应力测量方法的改进[A],地壳构造与地壳应力文集(3)[C],地震出版社,1989.
    [55]鞠占斌,王行本,杨仲汤.水压致裂法测定岩体应力在马鹿塘工程中的应用[J],水力发电.1997(10)
    [56]彭华,吴珍汉,马秀敏.青藏铁路无人值守地应力综合监测站[J].地质力学学报,2006.12(1):96-104.)
    [57]Batchelor, A.S and Pine, R.J. (1986) the results of in situ stress determinations by seven methods to depths of 2500m in the Carnmenellis granite, in Proc. Int. Symp. on Rock Stress and Rock Stress Measurement, Stockholm, Centek Publ., Lulea. Pp.467-78
    [59]Christiansson, R. and Hudson, J.2003. ISRM Suggested Methods for rock stress estimation-Part 4: Quality control of rock stress estimation. Int. J. Rock Mech. Mining Sci.40:1021-1025
    [60]B.C. Haimson and F.H. Cornet, ISRM Suggested Methods for rock stress estimation-part 3:hydraulic fracturing and/or hydraulic testing of pre-existing fractures. Int J Rock Mech Min Sci 2003.
    [61]GeoGeny Consultants Group Inc. Characteristics of the Initial Rock Stress State in Korea by Hydraulic Fracturing Stress Measurement,2005
    [62]K. BENNACEUR. J. C. ROEGIERS. Mechanics of effecting pressure off line during fracturing, Int.J. Roek Meet Min. Sci.& Geomeeh. Abstr.VOI.26, No.6:
    [63]Cornet F.H. In Situ Stress heterogeneity identification with the HPF tool[A].In:Tillerson, wawersik, Rock Mechanics [C],1992Rotterdam:Balkema
    [64]Hayaski K, Sato A. Ito T. In suit stress measurement by hydraulic featuring for a rock mass with many planes of weakness [J].Int. J.Rockmech. Min. Sci,1997,27 (1):45-58
    [65]B.C. Haimson and F.H. Cornet, ISRM Suggested Methods for rock stress estimation-part 3:hydraulic fracturing and/or hydraulic testing of pre-existing fractures. Int J Rock Mech Min Sci 2003.
    [66]B.C. Haimson and F.H. Cornet, ISRM Suggested Methods for rock stress estimation-part 3:hydraulic fracturing and/or hydraulic testing of pre-existing fractures. Int J Rock Mech Min Sci 2003.
    [67]康红普.巷道围岩的关键圈理论[J].力学与实践,1997,19(1):34-36.
    [68]何满潮.软岩巷道工程概论[M].中国矿业大学出版社,1993.24-36.
    [69]田永山.巷道维护原理及其研究方向的探讨[J].东北煤炭技术,1993,(5):12-15.
    [70]黄明利,张绍文,田永山.巷道围岩应力分布影响因素的研究[J].阜新矿业学院学报1997,(3):375-380.
    [71]王述红,刘斌,刘之洋.南芬铁1号驱动站大硐室围岩自稳结构及其稳定性分析[J].中国矿业,1999,(5)84-87.
    [72]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993
    [73]陈志敏.不同岩性侧压比随深度变化规律探讨.西部探矿工程,2006,122(6):99-101.
    [74]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [75]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [76]钟世航.并行隧道超小净距施工技术.世界隧道,2002年增刊.
    [77]Terzaghi, K. and Richart, F.E. Stresses in rock about cavities. Geotechnique, Vol.3,1952, pages 57-90.
    [78]Tang C.A. (1997). Numerical simulation on progressive failure leading to collapse and associated seismicity. International Journal of Rock Mechanics and Mining Science, Vol.34, No.2, pp.249-261.
    [79]唐春安.岩石声发射规律的数值模拟初探[J].岩石力学与工程学报,1997,16(4):368-374.
    [80]北京科技大学,鲁中冶金矿山集团公司.高应力区软破岩采场巷道变形机理及控制技术[R].1998,11
    [81]鲁中矿业集团公司,东北大学,长沙矿冶研究院.大型紧缺金属矿产资源基地综合勘查与高效开发技术研究[R].2003,12
    [82]解联库,李华炜,杨天鸿,唐春安,陈长华,赵兴东.侧向压力作用下巷道围岩破坏机理的数值模拟,中国矿业,2006,15(3):54-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700