大黄素对非酒精性脂肪肝单纯肝脂肪变性改善作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     非酒精性脂肪肝(Nonalcoholic Fatty Liver Disease, NAFLD)作为一种慢性肝脏损害性疾病在很多国家普遍存在。非酒精性脂肪肝的整体发生率在西方国家达到15%-40%,在亚洲发生率为9%-40%,并且在过去的十五年迅速地增长。本病包括了一系列的疾病过程,从单纯性脂肪肝,非酒精性脂肪性肝炎(Non-alcoholic steatohepatitis, NASH)到肝纤维化,肝硬化,最终进展为肝细胞癌。非酒精性脂肪肝的存在与心包脂肪增加,颈动脉狭窄,心血管死亡率增加有关,这就使本病的预后更加严重。该病已成为严重影响我国人民身心健康和国民经济、社会发展和稳定的主要疾病之一。
     NAFLD病机不甚明了,大多数学者较为认可的有“二次打击”学说,“初次打击”主要为胰岛素抵抗,各种病因所致NAFLD几乎普遍存在胰岛素抵抗现象。胰岛素抵抗通过促使外周脂解增加和高胰岛素血症引起肝细胞脂肪储积,并诱致对内外性损害因子敏感性增高;二次打击主要为反应性氧化代谢产物增多,导致脂质过氧化及其异常细胞因子的作用,进而引起坏死、甚至进展性肝纤维化。
     最近研究显示,脂肪细胞分泌的细胞因子具有调节肝脏细胞脂质代谢的作用,其中脂联素成为研究热点,而存在于肝脏细胞中的脂联素受体2被认为NAFLD的发病机制有关。脂联素与其结合后通过调控与肝脏脂质氧化相关核转录因子PPAR-alpha及其控制的脂质氧化限速酶来增加肝脏细胞脂质氧化,从而减少肝脏脂质沉积。目前世界范围内尚无疗效确切,安全稳定的治疗NAFLD的药物,研发通过化学合成或从中草药中寻找干预脂联素受体2-PPAR-alpha信号途径,增加肝脏脂质氧化,达到治疗目的药物成为热点。
     非酒精性脂肪肝属中医“肥胖”“胁痛”“黄疽”等病范畴。多由过食肥甘厚味,湿热蕴藉中焦,湿热阻滞,气机受阻,气血运行不畅,而疲血内生。病理关键在“湿(痰)”“热”,“瘀”。大黄素为中药何首乌、大黄的主要活性成分之一,何首乌能补益肝肾,又能润肠通便而泄浊,大黄下瘀热祛浊瘀,于本病病机和主治最是合拍,自古为中医家治疗“肥胖”“胁痛”“黄疽”等病的要药,而大黄素在降脂、保护肝细胞等方面有一定效果,作用于NAFLD关键病理因素。本实验旨在用现代分子生物学手段系统观察其疗效,并深入探讨其可能的作用靶点,为从中草药中开发治疗NAFLD药物作探索性研究。
     目的
     1.观察大黄素对非酒精性脂肪肝早期体内及体外模型的影响,包括对体质量、’肝质量、肝细胞脂肪变、肝功能、血脂代谢的影响,肝细胞株内TG、肝酶等影响。
     2.研究大黄素治疗非酒精性脂肪肝的可能作用机制,包括改善脂质沉积、保护肝细胞、减轻氧化应激以及对脂联素受体2、PPAR-alpha、CPT1、ACOX1的蛋白及基因表达的.影响
     方法
     C57BL6小鼠62只,正常喂养1周后随机分为分为2组,空白组对照(A,13只)和模型组(M,49只),组间大鼠体重差异无显著性(P>0.05)。空白对照组给以普通饲料,其余各组均给以高脂饲料。正常组给予标准饲料,模型组给予高脂饲料(88%标准饲料+10%猪油+2%胆固醇)喂养,自由饮水和进食,动物房保持安静,自然采光,温度25℃左右,喂养持续8周,分别从正常对照组和空白模型组随机挑选一只,取肝脏做病理切片,证实非酒精性脂肪肝形成。再将模型组完全随机法分为4组:模型组、大黄素组、人参皂苷组、罗格列酮组。8周后,空白对照组灌胃给以DMSO,(5%DMSO20mg/kg体重)、人参皂苷组.灌胃给以人参皂苷(20mg/kg)、大黄素组灌胃给以大黄素(20mg/kg),罗格列酮组给予罗格列酮灌胃(10mg/kg)。
     治疗4周,取小鼠血清及肝脏组织标本。测体质量,称肝质量,计算肝指数,根据试剂盒说明测定血清谷丙转氨酶、谷草转氨酶、甘油三酷(TG)、胆固醇(TC)、低密度脂蛋白(LDL-C)、高密度脂蛋白(HDL-C),游离脂肪酸(FFA);对肝组织进行病理学检查,HE染色观察其脂肪变程度;蛋白免疫印迹法(westeoblotting)检测脂联素受体2、PPAR-alpha、CPT1、 ACOX1蛋白表达;实时荧光定量(real-timePCR)检测脂联素受体2、PPAR-alpha、CPT1、 ACOX1基因表达。
     HepG2细胞,用1640培养基+10%FBS培养(37℃,5%CO2)。分组:设空白组、造模组、大黄素组、人参皂苷组、罗格列酮组。取对数生长期的HepG2细胞,每组设2个复孔,加入诱导液(油酸:棕榈酸2:1)诱导24h,分别加入大黄素、人参皂苷、罗格列酮,观察24h、48h、72h。油红染色观察细胞内脂质沉积,测定TG、肝酶含量,蛋白免疫印迹法(westeoblotting)检测脂联索受体2、PPAR-alpha、CPT1、ACOX1蛋白表达;实时荧光定量(real-timePCR)检测脂联素受体2、PPAR-alpha、CPT1、ACOX1基因表达。
     所有数值以均数士标准误表示,用SPSS11.5软件进行t检验或者方差分析(ANOVA),当P<0.05时,认为处理组和对照组之间有显著性差异。
     结果
     第一部分体内实验
     1.根据肝脏病理状态,可见弥漫性肝细胞大泡样脂肪变,无明显炎症、坏死及纤维化,NAFLD小鼠早期单纯性肝脂肪变性阶段模型复制成功。
     2.与模型组相比,大黄素可降低小鼠体质量,但无明显差异(P>0.05)。降低肝脏质量,肝指数(P<0.05,P>0.05).肝脏病理显示,大黄素可明显改善肝脏脂肪沉积(P<0.01)。肝细胞形态、排列均明显好转。大黄素可明显降低血清ALT、AST (P<0.05),明显降低血清TG, FFA, CHO水平(P<0.05),降低血清LDL,升高HDL(P>0.05)。大黄素可降低MDA水平(P>0.05),明显升高SOD水平(P<0.01)。
     3.大黄素能上调脂联素受体2. PPAR-alpha、CPT1、ACOX1的蛋白及基因表达(P<0.01)。
     第二部分大黄素治疗非酒精性脂肪肝体内实验
     1.诱导液诱导HepG2细胞株24h后,油红染色显示细胞内有大小不等的脂滴存在,且细胞活力及形态较好,表明NAFLD单纯肝脂肪变性体外模型形成。
     2.大黄素可以改善细胞内脂质沉积、降低TG含量(P<0.05),降低ALT及AST含量,升高SOD含量(P<0.01)。
     3.大黄素能上调HepG2细胞株造模后脂联素受体2. PPAR-alpha、CPT1、ACOX1的蛋白及基因表达(P<0.01)。
     结论
     通过上述大黄素对NAFLD体内、体外药效及其可能的作用机制初步研究得出一下结论:
     1.大黄素能减轻NAFLD大鼠体质量,减轻肝脏肿大及肝脏湿质量,改善肝细胞内的脂质沉积。显示大黄素有一定的减肥作用,通过减轻内脏脂肪堆积达到治疗NAFLD。
     2.大黄素能降低小鼠血清肝酶及肝细胞释放的肝酶,改善NAFLD单纯性肝脂肪变性阶段由脂质沉积肝细胞导致的肝细胞受损。
     3.大黄素能减少血.清FFA,降低血清TG、TC、LDL-C,增加HDL-C,纠正血脂紊乱。可能机制是通过减少进入肝细胞游离脂肪酸,从而降低肝脏甘油三合成,减轻过量FFA的毒性作用,逆转肝脏脂肪沉积,改善肝功能,保护肝细胞。
     4.大黄素能增强体内抗氧化能力,减少活性氧及自由基的产生,抑制脂质过氧化,减轻肝脏炎症及脂肪肝进展。其机制可能是通过减少循环中血清FFA,减少肝细胞FFA的摄入,从而减轻线粒体氧化负荷,改善线粒体β氧化,减少活性氧及自由基的产生。
     5.大黄素能在体内及体外上调脂联素受体2及PPAR-alpha蛋白及基因的表达,并上调PPAR-alpha所调控的肝脏细胞内的脂肪酸氧化过程中的限速酶CPT1a及ACOX1的蛋白及基因表达,表明大黄素改善肝脏脂质沉积与增强肝脏脂质氧化有关,从而成为治疗NAFLD重要靶点。
     6.人参皂苷Rb1对于NAFLD单纯性肝脂肪变性与大黄素有相似的作用及机制。
Non-alcoholic fatty liver (NAFLD) as a chronic liver disease is prevalent in many countries. the Mothidity of of Non-alcoholic fatty liver in Western countries is about15%-40%and9%-40%in Asia, and with rapid growth in the past15years. NAFLD consists of as pectrum of liver disease, ranging from simple steatosis to non-alcoholic steato hepatitis(NASH), fibrosis, cirrhosis and Hepatocellular carcinoma finally. The presence of non-alcoholic fatty liver disease is in connection with pericardial fat, carotid artery stenosis and increase in cardiovascular mortality, which makes the prognosis more serious. The disease has become one of the major diseases of serious impact on physical and mental health of our people, and the national economy, social development and stability in our country.
     Pathogenesis of NAFLD is no tvery clear until now,"two hits"theory is approved by most medical scientists."firsthit", is insulin resistance(IR). NAFLD almost exist insulin resistance. Insulin resistance lead liver cells to fatty degeneration through increasing lipolysis, in the mean time, sensitivity of damage factor inside and outside is rose."seeond hit", is lipid Peroxidation caused by exceed lipid peroxide(LPO) and some cytokine. The "second hit" leads liver cells to inflammation, necrosis, fibrosis.
     Recent research suggests that cytokines secreted by fat cells regulate lipid metabolism in liver cells. Signaling Pathways of adiponectin closely linked to two hits. Its regulation mechanism beeome the hot spot being researched by most medical scientists. Adiponectin receptor2existing in liver cells is suggested to relate to the pathogenesis of NAFLD. Adiponectin binding to its receptor in liver cells regulates the expression of nuclear transcription factor PPAR-alpha related to liver lipid oxidation, and increase expression of rate-limiting enzyme in lipid oxidation, thereby increases Liver lipid oxidation and reduces liver lipid deposition.
     There is no NAFLD in chinese tradional medicine, NAFLD is equivalent to Chinese "obesity""hypochondriac pain""jaundicet"..According toTCM theory, intake excessive energy caused dampness and heat stagnating in spleen, dampness-heat in middle jiao, then qiji is blocked by dampness-heat, with the passing of time blood stasis is indueed. To sum up, dampness, heat and blood stasis are the key for NAFLD. Emodin is one of the main active ingredient of Polygonum multiflorum and rhubarb. Polygonum multiflorum have the function of tonifing the liver and kidney, loosening bowel to relieve constipation. Rhubarb have the function of removing stagnated heat. Emodin has some effect in terms of lipid-lowering, protecting the liver cells, the role of the key pathological factor in NAFLD..The experiment aims to observe the systematic effect of Emodin on NAFLD, and make further reseach the mechanism. The conclusion of this experiment provid for exploratory research to develop the treatment of NAFLD drugs from Chinese herbal medicine.
     Objectives
     1. Observation of influence of emodin on nonalcoholic fatty liver early in vivo and in vitro models, including body weight, liver weight, liver steatosis, liver function, blood lipid metabolism and TG and liver enzymes in liver cell lines.
     2. Study on the possible mechanism of emodin in treating nonalcoholic fatty liver, including the improvement of lipid deposition, and protection on liver cells, reducing oxidative stress, and protein and gene expression of adiponectin receptor2, PPAR-alpha, CPT1, ACOX1.
     Methods
     62C57BL6mice were randomly divided into blank control group, model group and ginsenoside group and emodin group, the rosiglitazone group. The blank control group had been fed with normal diet, and other groups were given a high fat diet(88%ordinal forage+10%lard+2%cholesterin)for8w. After8W,two rats were randomly choosed from each group, liver tissue sections that stained with HE method is observed by light microscope to confirm NAFLD model mice replicated successfully. Then, the model group were randomly divided into4groups, namely blank model group, emodin group, ginsenoside group, rosiglitazone group. After eight weeks, the blank control group was given DMSO (5%DMSO20mg/kg)by intragastric administration, Ginsenoside group was given ginsenoside(20mg/kg),Emodin group was given emodin(20mg/kg), The rosiglitazone group was given given rosiglitazone(1Omg/kg).
     After treating for4w, all mice were fasted for12h,then were killed after being narcotized with chloraldurat to get serum and hepatic tissue rapidly according to routine, which is affixed by formalin, Packed with Paraffin, sectioned, stained with HE, evaluated the degree of hpatic steatosis and inflammation under the optical microscope. Then calculate liver index, to detect the content of serurn ALT, AST, TG,CHO, LDL, HDL. Hepatic tissue was leave over to make10%liver homogenate at4℃for detecting content of TG, FFA, SOD, MDA, detected the protein expression of AdipoR2, PPAR-alpha, CPT1a, ACOX1by wersten blotting.The mRNA expression levels of AdipoR2, PPAR-alpha, CPT1a, ACOX1by real time quantitative RT-PCR.
     HepG2cells were cultured in1640medium supplemented with7%newborn calf serum.50Upenicillin/mL and50μg streptomycin/mL. For subculturing purposes, cells were detached by treatment with0.25%trypsin/0.02%EDTA at37℃. Cultures were used at75%confluency. Cultures were divided into5groups. To induce fat-overloading of cells, HepG2cells at75%confluency were exposed to a long-chain mixture of FFAs(oleate and palmitate) for24h. Emodin, ginsenoside and rosiglitazone were added to each group for24h、48h、72h. Cells were stained with Oil-Red-O to examine the amount of fat accumulation in the cells. TG,ALT, AST, SOD, MDA in homogenates from cells were measured using a commercial kit. The mRNA and protein expression levels of AdipoR2, PPAR-alpha, CPT1a, ACOX1were detected by real time quantitative RT-PCR and wersten blotting respectively. Data are expressed as mean±S.D. The Student's t-test was used to determine the statistical significance of the experimental data.
     Results
     Experiment1Emodin treatment of nonalcoholic fatty liver in vivo experiments
     1. According to the hepatic tissue pathology and the state of hepatic function of mice, we succeeded in replicating the models of rats with NAFLD.
     2. Compared with model group, the body weight and liver index of emodin group decrease, but has no considered significant (P>0.05). the liver weight of emodin group decrease significantly (P<0.05). Emodin can significantly improve liver fat deposition according to liver pathology (P<0.01). Emodin can improve Liver cell morph and arrangement significantly. Emodin can significantly reduce the serum ALT, AST, TG, FFA and CHO (P<0.05), reduce serum LDL and increase HDL, but has no considered significant(P>0.05). Emodin can reduce content of FFA and increase SOD in hepatic tissue significantly (P<0.05),can reduce content of TG and MDA in hepatic tissue, but has no considered significant (P>0.05)
     3. Compared with model group, protein and gene expression of adiponectin receptor2, PPAR-alpha, CPT1, ACOX1in emodin group increase significantly (P<0.01) Experiment2Emodin treatment of nonalcoholic fatty liver in vivo experiments
     1. After induced by FFAs for24h, Intracellular lipid vacuoles in HepG2cell line were seen by phase-contrast microscopy and confirmed by Oil Red O staining with fine cell viability and morph, indicating that the formation of the NAFLD lipid deposition in vitro model.
     2. Emodin can reduce intracellular lipid deposition reduce the TG, ALT and AST content significantly (P<0.05), and increase SOD content significantly (P<0.05)
     3. Emodin can increase protein and gene expression of adiponectin receptor2, PPAR-alpha, CPT1, ACOX1of the HepG2cell line after induced by FFAs (P<0.01)
     Conclusions
     1. Emodin can decrease significantly the body weight, improve hepatomegaly, reduce liver wet weight and the liver index. It is suggested that to reduce the abdomen fat may be one of the mechanism of emodin in the treatment of NAFLD.
     2. Emodin can decrease liver enzymes in serum and released from liver cell, improve damage on liver cells caused by lipid deposition in the simple fatty liver stage of NAFLD.
     3. Emodin can decrease the serum of FFA, TG, TC and LDL-C and increase HDL-C to correct the dyslipidemia. The possible mechanism for emodin to reverse liver fat deposition, improve liver function and protect the liver cells is reducing the entrance of free fatty acids into the liver cells, reducing triglyceride synthesis and reducing the toxic effects of excess FFA.
     4. Emodin can enhance the anti-oxidization ability, reduce lipid peroxidation. Emodin reduce liver cell free fatty acids flowing into the liver cells, reduce oxidative load of mitoehondrial, thereby improve (3-oxidation, reduce Ros and free radicals.
     5. Emodin can increase protein and gene expression of adiponectin receptor2and PPAR-alpha in vitro and in vivo, and raise protein and gene expression of CPTla and ACOX1, the rate-limiting enzyme in the fatty acid oxidation process regulated by PPAR-alpha in liver cells, indicating that the emodin can alleviate the NAFLD lipid deposition through this way. It is concluded that emodin can be an important target for the treatment of NAFLD.
     6. Ginsenoside Rbl has the same effect and mechanism on NAFLD as emodin.
引文
[1]Farrell GC, Larter CZ. Nonalcoholic fatty liver disease:from steatosis to cirrhosis. Hepatology.2006;43(2 Suppl1):S99-S112.
    [2]Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, Mc-Cullough AJ. Nonalcoholic fatty liver disease:a spectrum of clinical and pathological severity. Gastroenterology.1999; 116(6):1413-9.
    [3]Day CP, Jam es OFW.Steatohepatitis-a tale of two "hits".Gastroenterology,1998,114:842-845.
    [4]Angulo P. Nonalcoholic fatty liver disease. New Engl J Med,2002,346:1221-1231.
    [5]Girard J. Is leptin the link between obesity and insulin res is tance? Diabetes Metab,1997,3:16-24.
    [6]van der Poorten D, Milner KL, Hui J, Hodge A, Trenell MI, Kench JG, et al. Visceral fat:a key mediator of steatohepatitis in metabolic liver disease. Hepatology.2008;48(2):449-57.
    [7]Song HR, Yun KE, Park HS. Relation between alanine aminotransferase concentrations and visceral fat accumulation among nondiabetic overweight Korean women. Am J Clin Nutr.2008;88(1):16-21.
    [8]Koda M, Kawakami M, Murawaki Y, Senda M. The impact of visceral fat in nonalcoholic fatty liver disease: cross-sectional and longitudinal studies. J Gastroenterol.2007;42(11):897-903.
    [9]Yamauchi T,Kamon J,Ito Y,Tsuchida A,Yokomizo T,Kita S,Sugiyama T,Miyagishi M,Hara K, Tsunoda M,Murakami K,Ohteki T,Uchida S, Takekawa S,Waki H,Tsuno NH,Shibata Y, Terauchi Y,Froguel P,Tobe K,Koyasu S,Taira K,Kitamura T,Shimizu T,Nagai R,Kadowaki T.Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.Nature 2003;423:762-769.
    [10]Shklyaev S,Aslanidi G,Tennant M,Prima V, Kohlbrenner E,Kroutov V,Campbell-Thompson M,Crawford J,Shek EW,Scarpace PJ,Zolotukhin S.Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats.Proc Natl Acad Sci U S A2003;100:14217-14222.
    [11]Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M,et al. Targeted disruption of AdipoRl and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med.2007;13:332-9.
    [12]Tsao TS, Tomas E, Murrey HE, Hug C, Lee DH, Ruderman NB, et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem.2003;278:50810-7.
    [13]Wang Y, Lam KS, Chan L, Chan K.W, Lam JB, Lam MC, et al. Posttranslational modifications of the four conserved lysine residues within the collagenous domain of adiponectin are required for the formation of its high molecular weight oligomeric complex. J Biol Chem.2006;281:16391-400.
    [14]Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al.Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56:1387-94.
    [15]骆丽娟,自拟化浊降脂方治疗脂肪肝临床观察.上海中医药杂志,2000,11:20-21
    [16]赵文霞,段荣章,苗明三.脂肝乐胶囊治疗痰湿瘀阻型脂肪肝的临床与实验研究.中国中西医结合杂志,1997,17(8):457
    [17]司晓晨.益肾降脂片治疗脂肪肝34例分析.江苏中医,1996;17(7):9
    [18]王丽萍.益肾消脂汤治疗脂肪肝30例.浙江中医,2001,36(6):21
    [19]陈嘉,薛博瑜.脂肪肝的中医药治疗进展.江苏中医药,2003,24(4):58-60
    [20]唐亚军,赵瑜等.中药有效成分防治脂肪肝的研究进展.中西医结合肝病杂志,2011,21(3):185-187
    [21]王雨秾,孙佳犄等.人参皂苷对胰岛素抵抗大鼠模型中GLUT4和PI3K表达的影响.辽宁中医药大学学报,2009,11(6):234-236
    [22]Srinivasqantorj, Srinivasp.Emod ininduces apotosis of human cervical cancer cells Through Poly(ADP-ribose)Polytneras celeavage and activation of caspase-9(J).EurJ Pharmaeol,2003;473:117-12.
    [23]Dong H, Lufe, GaoZQ, Semple SJ, Pyke SM, Reynolds GD.Effeets of emodinon treating murine nonalcoholic fatty liver induced by high caloric laboratoty chaw[J].World J Gastroentero,2005:11(9):1339-134.
    [24]蔡海江,范乐明.中药丹参及大黄对实验性高脂血症大鼠LDL受体基因表达的影响[J].中国病理生理杂志,1993:9(1):108-10.
    [25]干文俊,吴咸中,姚智,李会强,卢奕.中药有效成分对IL-2及IFN-γ分泌的影响(J).大津中医,1995;12(2):23-2.
    [26]KuoYC, MengHC, Tsaiwj.Regulation of ilProliferation inflammatory cytokine Production and caleiumm obilization in Primary human T imphocytes by emodin from Poiygonum hyPoleucum Ohwi[J].Inflamm Res, 2001;50(2):73-82.
    [27]郑新梅:姜惟;周珉:薛博瑜:王旭:.脂肝康胶囊治疗脂肪肝患者的临床研究[J].,2006,(09):78,80
    [28]郑新梅,周珉,姜惟,薛博瑜,方旭,方泰惠.脂肝康胶襄对高血.脂鹌鹑血脂影响的研究[J].,2004,(04):631,632.
    [1]中华肝脏病学会脂肪肝和酒精性肝病血组.非酒精性脂肪肝并诊断标准.中华肝脏病志.2003:11:73
    [2]Videla LA, Rodrigo R, Araya J, Poniachik J. Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease. Trends Mol Med 2006; 12:555-558.
    [3]Adams LA, Angulo P. Recent concepts in non-alcoholic fatty liver disease. Diab Med 2005; 22:1129-1133.
    [4]Videla LA.2008. Oxidative stress and insulin resistance as interdependent pathogenic mechanisms in non-alcoholic fatty liver disease associated with obesity. In:S. Alvarez, P. Evelson(Eds.), Free Radical Pathophysiology. pp.369-385. Transworld Research Network, Kerala, India.
    [5]Angulo P. Nonalcoholic fatty liver disease. N Eng J Med 2002;346:1221-1231.
    [6]Reddy JK, Rao MS. Lipid metabolism and liver inflammation.Ⅱ. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 2006; 290:852-858.
    [7]Adams LA, Angulo P. Treatment of non-alcoholic fatty liver disease. Postgrad Med J 2006; 82:315-322.
    [8]Saadeh S, Younossi ZM, Remer EM, Gramlich T, Ong JP, Hurley M, Mullen KD, Cooper JN, Sheridan MJ. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002; 123:745-750.
    [9]Rafiq, N., and Z. M. Younossi.2008. Effects of weight loss on nonalcoholic fatty liver disease. Semin. Liver Dis.28:427-433.
    [10]Zivkovic, A. M., J. B. German, and A. J. Sanyal.2007. Comparative review of diets for the metabolic syndrome:implications for nonalcoholic fatty liver disease. Am. J. Clin. Nutr.86:285-300.
    [11]Browning, J. D.2006. Statins and hepatic steatosis:perspectives from the Dallas Heart Study. Hepatology. 44:466-471.
    [12]Ratziu, V., P. Giral, S. Jacqueminet, F. Charlotte, A. Hartemann-Heurtier, L. Serfaty, P. Podevin, J. M. Lacorte, C. Bernhardt, E. Bruckert, et al; LIDO Study Group.2008. Rosiglitazone for nonalcoholic steatohepatitis:one year results of the randomized placebocontrolled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) trial. Gastroenterology.135:100-110.
    [13]Guruprasad, P. A., J. A. Thomas, P. V. Kaye, A. Lawson, S. D. Ryder, I. Spendlove, A. S. Austin, J. G. Freeman, L. Morgan, and J. Webber.2008. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology.135:1176-1184.
    [14]Bray GA, Bellanger T. Epidemiology, trends, and morbidities of obesity and the metabolic syndrome. Endocrine 2006;29:109-17.
    [15]Kroh M, Liu R, Chand B. Laparoscopic bariatric surgery:what else are we uncovering? Liver pathology and preoperative indicators of advanced liver disease in morbidly obese patients. Surg Endosc. 2007;21:1957-1960.
    [16]Silverman JF, O'Brien KF, Long S, et al. Liver pathology in morbidly obese patients with and without diabetes. Am J Gastroenterol.1990;85:1349-1355.
    [17]Farrell GC, Larter CZ. Nonalcoholic fatty liver disease:from steatosis to cirrhosis. Hepatology. 2006;43:S99-S112.
    [18]Pardina E, Baena-Fustegueras JA, Catalan R, Galard R, Lecube A, Fort JM, et al. Increased expression and activity of hepatic lipase in the liver of morbidly obese adult patients in relation to lipid content. Obes Surg 2009; 19:894-904.
    [19]Westerbacka J, Kolak M, Kiviluoto T, Arkkila P, Siren J, Hamsten A, et al. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes 2007;56:2759-2765.
    [20张淼.虎杖昔对非酒精性脂肪肝保护作用及机制研究[D].2010
    [21]Nakayama H, Otabe S, Ueno T, Hirota N, Yuan X,Fukutani T, et al. Transgenic mice expressing nuclear sterol regulatory element-binding protein lc in adipose tissue exhibit liver histology similar to nonalcoholic steatohepatitis. Metabolism 2007;56:470-475.
    [22]Kitade M, Yoshiji H, Kojima H, Ikenaka Y, Noguchi R, Kaji K, et al. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology 2006;44:983-991.
    [23]Sundaram SS, Whitington PF, Green RM. Steatohepatitis develops rapidly in transgenic mice overexpressing Abcbl 1 and fed a methionine-choline-deficient diet. Am J Physiol Gastrointest Liver Physiol 2005;288:G1321-1327.
    [24]Kashireddy PV, Rao MS. Lack of peroxisome proliferatoractivated receptor alpha in mice enhances methionine and choline deficient diet-induced steatohepatitis. Hepatol Res 2004;30:104-110.
    [25]Baffy G, Zhang CY, Glickman JN, Lowell BB. Obesityrelated fatty liver is unchanged in mice deficient for mitochondrial uncoupling protein 2. Hepatology 2002;35:753-761.
    [26]Sahai A, Malladi P, Pan X, Paul R, Melin-Aldana H, Green RM, et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis:role of short-form leptin receptors and osteopontin. Am J Physiol Gastrointest Liver Physiol 2004;287:G1035-1043.
    [27]Honda H, Ikejima K, Hirose M, Yoshikawa M, Lang T, Enomoto N, et al. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver.Hepatology 2002;36:12-21.
    [28]Leclercq IA, Farrell GC, Schriemer R, Robertson GR.Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol 2002;37:206-213.
    [29]Romestaing C, Piquet MA, Bedu E, Rouleau V, Dautresme M, Hourmand-Ollivier I, et al. Long term highly saturated fat diet does not induce NASH in Wistar rats. Nutr Metab (Lond) 2007;4:4.
    [30]Baumgardner JN, Shankar K, Hennings L, Badger TM,Ronis MJ. A new model for nonalcoholic steatohepatitis in the rat utilizing total enteral nutrition to overfeed a highpolyunsaturated fat diet. Am J Physiol Gastrointest Liver Physiol 2008;294:G27-38.
    [31]Deng QG, She H, Cheng JH, French SW, Koop DR, Xiong S, et al. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology 2005;42:905-914.
    [32]Svegliati-Baroni G, Candelaresi C, Saccomanno S, Ferretti G, Bachetti T, Marzioni M, et al. A model of insulin resistance and nonalcoholic steatohepatitis in rats:role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsaturated fatty acid treatment on liver injury. Am J Pathol 2006; 169:846-860.
    [33]Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, et al. Highfat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci 2006;79:1100-1107.
    [34]Carmiel-Haggai M, Cederbaum Al, Nieto N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J 2005;19:136-138.
    [35]Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 2003;37:909-916.
    [36]Rinella ME, Elias MS, Smolak RR, Fu T, Borensztajn J,Green RM. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet. J Lipid Res 2008;49:1068-1076.
    [37]de Oliveira CP, de Lima VM, Simplicio FI, Soriano FG, de Mello ES, de Souza HP, et al. Prevention and reversion of nonalcoholic steatohepatitis in OB/OB mice by S-nitroso-N-acetylcysteine treatment. J Am Coll Nutr 2008;27:299-305.
    [38]Ito M, Suzuki J, Sasaki M, Watanabe K, Tsujioka S, Takahashi Y, et al. Development of nonalcoholic steatohepatitis model through combination of high-fat diet and tetracycline with morbid obesity in mice. Hepatol Res 2006;34:92-98.
    [39]Arsov T, Larter CZ, Nolan CJ, Petrovsky N, Goodnow CC, Teoh NC, et al. Adaptive failure to high-fat diet characterizes steatohepatitis in Almsl mutant mice. Biochem Biophys Res Commun 2006;342:1152-1159.
    [40]Brix AE, Elgavish A, Nagy TR, Gower BA, Rhead WJ, Wood PA. Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse. Mol Genet Metab 2002;75:219-226.
    [41]Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 2007;46:1392-1403.
    [42]Savransky V, Bevans S, Nanayakkara A, Li J, Smith PL, Torbenson MS, et al. Chronic intermittent hypoxia causes hepatitis in a mouse model of diet-induced fatty liver. Am J Physiol Gastrointest Liver Physiol 2007;293:G871-877.
    [43]Wortham M, He L, Gyamfi M, Copple BL, Wan YJ. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline-deficient diet. Dig Dis Sci 2008;53:2761-2774.
    [44]Wouters K, van Gorp PJ, Bieghs V, Gijbels MJ, Duimel H, Liitjohann D, et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 2008;48:474-486.
    [45]鲁晓岚,罗金燕,胡长根.三种大鼠脂肪肝模型的比较.胃肠病和肝病杂志,2005,14(3):243-248.
    [46]Holguin, F., Rojas, M., Hart, C.M.,2007. The peroxisome proliferator activated receptor gamma (PPARgamma) ligand rosiglitazone modulates bronchoalveolar lavage levels of leptin, adiponectin, and inflammatory cytokines in lean and obese mice. Lung 185,367-372
    [47]Chinetti,G., Zawadski, C., Fruchart, J.C., Staels, B.,2004. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR. Biochem. Biophys. Res. Commun.314,151-158.
    [48]Sun, X., Han, R., Wang, Z., Chen, Y.,2006. Regulation of adiponectin receptors in hepatocytes by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Diabetologia 49,1303-1310
    [1]Parks EJ, Hellerstein MK:Thematic review series:patientoriented research. Recent advances in liver triacylglycerol and fatty acid metabolism using stable isotope labeling techniques. J Lipid Res 2006, 47:1651-1660.
    [2]Donnelly KL, Smith CI, Schwarzenberg SJ, et al.:Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005,115:1343-1351.
    [3]Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008; 118:829-838.
    [4]Farquhar JW, Gross RC, Wagner RM, Reaven GM:Validation of an incompletely coupled two-compartment nonrecycling catenary model for turnover of liver and plasma triglyceride in man. J Lipid Res 1965,6:119-134.
    [5]Parks EJ, Krauss RM, Christiansen MP, et al.:Effects of a lowfat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J Clin Invest 1999,104:1087-1096.
    [6]Havel RJ:Conversion of plasma free fatty acids into triglycerides of plasma lipoprotein fractions in man. Metabolism 1961,10:1031-1034.
    [7]Goldberg IJ, Ginsberg HN:Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease. Gastroenterology 2006,130:1343-1346.
    [8]Adiels M, Westerbacka J, Soro-Paavonen A, et al.:Acute suppression of VLDL(1) secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 2007,50:2356-2365.
    [9]Namikawa C, Shu-Ping Z, Vyselaar JR, Nozaki Y, Nemoto Y, Ono M, et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol 2004; 40:781-6.
    [10]Adiels M, Packard C, Caslake MJ, et al.:A new combined multicompartmental model for apolipoprotein B-100 and triglyceride metabolism in VLDL subfractions. J Lipid Res 2005,46:58-67.
    [11]Adiels M, Boren J, Caslake MJ, et al.:Overproduction of VLDL 1 driven by hyperglycemia is a dominant feature of diabetic dyslipidemia. Arterioscler Thromb Vasc Biol 2005,25:1697-1703.
    [12]Prinsen BH, Romijn JA, Bisschop PH, et al.:Endogenous cholesterol synthesis is associated with VLDL-2 apoB-100 production in healthy humans. J Lipid Res 2003,44:1341-1348.
    [13]Gill JM, Brown JC, Bedford D, et al.:Hepatic production of VLDL1 but not VLDL2 is related to insulin resistance in normoglycaemic middle-aged subjects. Atherosclerosis 2004,176:49-56.
    [14]Riches FM, Watts GF, Naoumova RP, et al.:Hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 studied with a stable isotope technique in men with visceral obesity. Int J Obes Relat Metab Disord 1998,22:414-423.
    [15]Chan DC, Watts GF, Redgrave TG, et al.:Apolipoprotein B-100 kinetics in visceral obesity:associations with plasma apolipoprotein C-Ⅲ concentration. Metabolism 2002,51:1041-1046.
    [16]Watts GF, Barrett PH, Ji J, et al.:Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome. Diabetes 2003,52:803-811.
    [17]Verges B:New insight into the pathophysiology of lipid abnormalities in type 2 diabetes. Diabetes Metab 2005,31:429-439.
    [18]Austin MA, King MC, Vranizan KM, Krauss RM:Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 1990,82:495-506.
    [19]Lamarche B, Tchernof A, Moorjani S, et al.:Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation 1997,95:69-75.
    [20]Gardner CD, Fortmann SP, Krauss RM:Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. J Am Med Assoc 1996,276:875-881.
    [1].Angulo P. Nonalcoholic fatty liver disease. N Engl J Med.2002;346(16):1221-31.
    [2]Farrell GC. Non-alcoholic steatohepatitis:what is it, and why is it important in the Asia-Pacific region? J Gastroenterol Hepatol.2003;18(2):124-38.
    [3]Farrell GC, Larter CZ. Nonalcoholic fatty liver disease:from steatosis to cirrhosis. Hepatology.2006;43(2 Suppl 1):S99-S112.
    [4]Ong JP, Pitts A, Younossi ZM. Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. J Hepatol.2008;49(4):608-12.
    [5]Targher G, Marra F, Marchesini G. Increased risk of cardiovascular disease in non-alcoholic fatty liver disease:causal effect or epiphenomenon? Diabetologia.2008;51(11):1947-53.
    [6]Watanabe S, Yaginuma R, Ikejima K, Miyazaki A. Liver diseases and metabolic syndrome. J Gastroenterol. 2008;43(7):509-18.
    [7]Machado M, Cortez-Pinto H. Non-alcoholic steatohepatitis and metabolic syndrome. Curr Opin Clin Nutr Metab Care.2006;9(5):637-42.
    [8]Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M. Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middleaged Japanese men. Diabetes Care.2007;30(11):2940-4.
    [9]Gastaldelli A, Cusi K, Pettiti M, Hardies J, Miyazaki Y, Berria R, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology.2007; 133(2):496-506.
    [10]Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck JR, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes.2006;55(8):2159-70.
    [11]Liou I, Kowdley KV. Natural history of nonalcoholic steatohepatitis. J Clin Gastroenterol.2006;40 Suppl 1:S11-6.
    [12]Marra F. Leptin and liver tissue repair:do rodent models provide the answers? J Hepatol.2007;46(1):12-8.
    [13]Schnyder-Candrian S, Czarniecki J, Lerondel S, Corpataux J, Ryffel B, Schnyder B. Hepatic steatosis in the absence of tumor necrosis factor in mice. Cytokine.2005;32(6):287-95.
    [14]Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab.2007;6:55-68.
    [15]Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56:1387-94.
    [16]Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol.2006;8:516-23.
    [17]Chandrasekar B, Boylston WH, Venkatachalam K, Webster NJ, Prabhu SD, Valente AJ. Adiponectin blocks interleukin-18-mediated endothelial cell death via APPL1-dependent AMP-activated protein kinase (AMPK) activation and IKK/NF-kappaB/PTEN suppression.J Biol Chem.2008;283:24889-98.
    [18]Saito T, Jones CC, Huang S, Czech MP, Pilch PF. The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation.J Biol Chem.2007;282:32280-7.
    [19]Park PH, Thakur V, Pritchard MT, McMullen MR, Nagy LE. Regulation of Kupffer cell activity during chronic ethanol exposure:role of adiponectin. J Gastroenterol Hepatol.2006;21 Suppl 3:S30-3.
    [20]Choi S, Diehl AM. Role of inflammation in nonalcoholic steatohepatitis. Curr Opin Gastroenterol. 2005;21:702-7.
    [21]Jarrar MH, Baranova A, Collantes R, Ranard B, Stepanova M, Bennett C, et al. Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol Ther.2008;27:412-21.
    [22]Tokio Matsunami, Yukita Sato, Satomi Ariga, Takuya Sato, Haruka Kashimura, Yuki Hasegawa, Masayoshi Yukawa. Regulation of oxidative stress and inflammation by hepatic adiponectin receptor 2 in an animal model of nonalcoholic steatohepatitis. Int J Clin Exp Pathol 2010;3:472-481.
    [23]Tomita K, Oike Y, Teratani T, Taguchi T, Noguchi M, Suzuki T, Mizutani A, Yokoyama H, Irie R,Sumimoto H, Takayanagi A, Miyashita K, Akao M,Tabata M, Tamiya G, Ohkura T and Hibi T. Hepatic AdipoR2 signaling plays a protective role against progression of nonalcoholic steatohepatitis in mice. Hepatology 2008;48:458-473.
    [1]. Videla LA, Rodrigo R, Araya J, Poniachik J. Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease. Trends Mol Med 2006; 12:555-558.
    [2]. Adams LA, Angulo P. Recent concepts in non-alcoholic fatty liver disease. Diab Med 2005; 22: 1129-1133.
    [3]. Videla LA.2008. Oxidative stress and insulin resistance as interdependent pathogenic mechanisms in non-alcoholic fatty liver disease associated with obesity. In:S. Alvarez, P. Evelson (Eds.), Free Radical Pathophysiology. pp.369-385. Transworld Research Network, Kerala, India.
    [4]. Angulo P. Nonalcoholic fatty liver disease. N Eng J Med 2002;346:1221-1231.
    [5]. Reddy JK, Rao MS. Lipid metabolism and liver inflammation.Ⅱ. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 2006; 290:852-858.
    [6]. Adams LA, Angulo P. Treatment of non-alcoholic fatty liver disease. Postgrad Med J 2006; 82:315-322.
    [7]. Saadeh S, Younossi ZM, Remer EM, Gramlich T, Ong JP, Hurley M, Mullen KD, Cooper JN, Sheridan MJ. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002; 123:745-750.
    [8]. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease:from steatosis to cirrhosis. Hepatology 2006; 43: 99-112.
    [9]. Fracanzani AL, Valenti L, Bugianesi E, Andreoletti M, Colli A, Vanni E, Bertelli C, Fatta E, Bignamini D, Marchesini G, Fargion S. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels:a role for insulin resistance and diabetes. Hepatology 2008; 48: 792-798.
    [10]. Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev 2008;60:311-357.
    [11]. Boza C, Riquelme A, Ibanez L, Duarte I, Norero E, Viviani P,Soza A, Fernandez JI, Raddatz A, Guzman S, Arrese M. Predictors of nonalcoholic steatohepatitis (NASH) in obese patients undergoing gastric bypass. Obesity Surgery 2005; 15:1148-1153.
    [12]. Marra F, Gastaldelli A, Svegliati-Baroni G, Tell G,Tiribelli C.Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 2008; 14:72-81.
    [13]. Zivkovic AM, German JB, Sanyal AJ. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr 2007; 86:285-300.
    [14]. Mendez-Sanchez N, Arrese M, Zamora-Valdes D, Uribe M. Current concepts in the pathogenesis of nonalcoholic fatty liver Disease. Liver Int 2007; 27:423-433.
    [15]. Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD).Prog Lipid Res 2009; 48:1-26.
    [16]. Aronis A, Madar Z, Tirosh O. Mechanism underlying oxidative stress-mediated lipotoxicity:exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic Biol Med 2005; 38:1221-1230.
    [17]. Videla LA, Rodrigo R, Orellana M, Fernandez V, Tapia G,Quinones L, Varela N, Contreras J, Lazarte R, Csendes A, Rojas J, Maluenda F, Burdiles P, Diaz JC, Smok G, Thielemann L, Poniachik J. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin Sci 2004; 106:261-268.
    [18]. Oliveira CP, Faintuch J, Rascovski A, Furuya CK Jr, Bastos MS; Matsuda M, Della Nina BI, Yahnosi K, Abdala DS, Vezozzo DC, Alves VA, Zilberstein B, Garrido AB Jr, Halpern A, Carrilho FJ, Gama-Rodrigues JJ. Lipid peroxidation in bariatric candidates with nonalcoholic fatty liver disease. Obes Surg 2005; 15:502-505.
    [19]. Malaguarnera L, Di Rosa M, Zambito AM, dell, Ombra N,Nicoletti F, Malaguarnera M. Chotitriosidase gene expression in Kupffer cells from patients with non-alcoholic fatty liver disease. Gut 2006; 55:1313-1320.
    [20]. Elizondo A, Araya J, Rodrigo R, Signorini C, Sgherri C, Comporti M, et al. Effects of weight loss on liver and erythrocyte polyunsaturated fatty acid pattern and oxidative stress status in obese patients with non-alcoholic fatty liver disease. Biol Res 2008; 41:59-68.
    [21]. Sies H, Stahl W, Sevanian A. Nutritional, dietary and postprandial oxidative stress. J Nutr 2005; 135: 969-972.
    [22]. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006; 440:944-948.
    [23]. Videla LA. Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms. World J Hepatol 2009; 1:73-79.
    [24]. George J, Liddle C. Nonalcoholic fatty liver disease:pathogenesis and potential for nuclear receptors as therapeutic targets.Mol Pharm 2008; 5:49-59.
    [25]. Seo YS, Kim JH, Jo NY, Choi KM, Baik SH, Park JJ, Kim JS, Byun KS, Bak YT, Lee CH, Kim A, Yeon JE. PPAR agonists treatment is effective in a nonalcoholic fatty liver disease animal model by modulating fatty-acid metabolic enzymes. JGastroenterol Hepatol 2008; 23:102-109.
    [1]Bugianesi, E.; Bellentani, S.; Bedogni, G.; Tiribelli, C. Clinical update on non-alcoholic fatty liver disease and steatohepatitis. Ann. Hepatol.,2008,7(2),157-160.
    [2]Chavez-Tapia, N.C.; Sanchez-Avila, F.; Vasquez-Fernandez, F.; Torres-Machorro, A.; Tellez-Avila, F.I.; Uribe, M. Non-alcoholic fatty-liver disease in pediatric populations. J. Pediatr. Endocrinol. Metab.,2007, 20(10),1059-1073.
    [3]Guerrero, R.; Vega, G.L.; Grundy, S.M.; Browning, J.D. Ethnic differences in hepatic steatosis:an insulin resistance paradox? Hepatology (Baltimore,Md.,2009,49(3),791-801.
    [4]Tarantino, G.; Saldalamacchia, G.; Conca, P.; Arena, A. Non-alcoholic fatty liver disease:further expression of the metabolic syndrome. J. Gastroenterol.Hepatol.,2007,22(3),293-303.
    [5]Chavez-Tapia, N.N.; Uribe, M.; Ponciano-Rodriguez, G.; Medina-Santillan,R.; Mendez-Sanchez, N. New insights into the pathophysiology of nonalcoholic fatty liver disease. Ann. Hepatol.,2009,8(Suppl 1), S9-17.
    [6]Nobili, V.; Alisi, A.; Raponi, M. Pediatric non-alcoholic fatty liver disease:preventive and therapeutic value of lifestyle intervention. World J. Gastroenterol.,2009,15(48),6017-6022.
    [7]Rafiq, N.; Younossi, Z.M. Effects of weight loss on nonalcoholic fatty liver disease. Semin. Liver Dis., 2008,28(4),427-433.
    [8]Larter, C.Z.; Yeh, M.M. Animal models of NASH:getting both pathology and metabolic context right. J. Gastroenterol. Hepatol.,2008,23(11),1635-1648.
    [9]Gomez-Lechon, M.J.; Donato, M.T.; Castell, J.V.; Jover, R. Human hepatocytes in primary culture:the choice to investigate drug metabolism in man. Curr. Drug Metab.,2004,5(5),443-462.
    [10]Donato, M.T.; Lahoz, A.; Castell, J.V.; Gomez-Lechon, M.J. Cell lines:a tool for in. vitro drug metabolism studies. Curr. Drug Metab.,2008,9(1),1-11.
    [11]Einhorn D, Reaven GM, Cobin RH, et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract 2003; 9:237-252
    [12]Federation ID. Worldwide definition of the metabolic syndrome. nition.pdf 2005 [cited]
    [13]Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 17 2002; 106:3143-3421 14. Ford ES, Giles WH, Mokdad AH. Increasing prevalence of the metabolic syndrome among u.s. Adults. Diabetes Care 2004; 27:2444-2449
    [14]Athyros VG, Bouloukos VI, Pehlivanidis AN, et al. The prevalenc of the metabolic syndrome in Greece: the MetS-Greece Multicentre Study. Diabetes Obes Metab 2005; 7:397-405
    [15]Reaven G. Why a cluster is truly a cluster:insulin resistance and cardiovascular disease. Clin Chem 2008; 54:785-787
    [16]Kashyap SR, Defronzo RA. The insulin resistance syndrome:physiological considerations. Diab Vasc Dis Res 2007; 4:13-19
    [17]Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 2000; 106:473-481
    [18]Katagiri H, Yamada T, Oka Y. Adiposity and cardiovascular disorders:disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res 2007; 101:27-33
    1. Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S. Prevalence of and risk factors for nonalcoholic fatty liver disease:the Dionysos nutrition and liver study. Hepatology 2005; 42:44-52
    2. Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease:a population-based cohort study. Gastroenterology 2005; 129:113-121
    3. Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease:a feature of the metabolic syndrome. Diabetes 2001; 50:1844-1850
    4. Grundy SM. Metabolic syndrome scientific statement by the American Heart Association and the National Heart, Lung, and Blood Institute. Arterioscler Thromb Vasc Biol 2005; 25:2243-2244
    5. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome:an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112:2735-2752
    6. Reisin E, Alpert MA. Definition of the metabolic syndrome:current proposals and controversies. Am J Med Sci 2005; 330:269-272
    7. Reynolds K, He J. Epidemiology of the metabolic syndrome. Am J Med Sci 2005; 330:273-279
    8. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1:diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15:539-553
    9. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med 1999; 16:442-443
    10. Athyros VG, Ganotakis ES, Elisaf MS, Liberopoulos EN, Goudevenos IA, Karagiannis A. Prevalence of vascular disease in metabolic syndrome using three proposed definitions. Int J Cardiol 25 2007; 117:204-210
    11. Einhorn D, Reaven GM, Cobin RH, et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract 2003; 9:237-252
    12. Federation ID. Worldwide definition of the metabolic syndrome. http://www.idf.org/webdata/docs/IDF_Meta-syndrome_defi] nition.pdf 2005 [cited]
    13. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 17 2002; 106:3143-3421
    14. Ford ES, Giles WH, Mokdad AH. Increasing prevalence of the metabolic syndrome among u.s. Adults. Diabetes Care 2004; 27:2444-2449
    15. Athyros VG, Bouloukos VI, Pehlivanidis AN, et al. The prevalenc of the metabolic syndrome in Greece: the MetS-Greece Multicentre Study. Diabetes Obes Metab 2005; 7:397-405
    16. Reaven G. Why a cluster is truly a cluster:insulin resistance and cardiovascular disease. Clin Chem 2008; 54:785-787
    17. Kashyap SR, Defronzo RA. The insulin resistance syndrome:physiological considerations. Diab Vasc Dis Res 2007; 4:13-19
    18. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 2000; 106:473-481
    19. Katagiri H, Yamada T, Oka Y. Adiposity and cardiovascular disorders:disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res 2007; 101:27-33
    20. Strazzullo P, Barbato A, Galletti F, et al. Abnormalities of renal sodium handling in the metabolic syndrome. Results of the Olivetti Heart Study. J Hypertens 2006; 24:1633-1639
    [1]孙建光.脂肪肝中医病因病机探析.中医临床研究[J],2011,3(5):15-17
    [2]袁洋,卜平,孔桂美,郑新梅,陈洁.112例菲酒精性脂肪肝证候病机的研究.中西医结合肝病杂志[J],2007,17(1):40-42
    [3]柳涛,唐志鹏,季光.温阳化气论治非酒精性脂肪性肝病.中西医结合学报[J],2011,9(2):135-137
    [4]张谷运.关茂桧辨治脂肪肝的经验.中西医结合肝病杂志[J],2003,13(2):108-109
    [5]朱小区,曹家麟.温肾升阳汤治疗非酒精性脂肪肝35例.实用中西医结合临床[J],2004,4(4):44
    [6]乔娜丽,杨钦河,纪桂元,谢维宁.论肝郁脾虚是脂肪肝的基本发病病机[J],时珍国医国药,2008,19(5):1238-1239
    [7]朱瑾,朱学葵.脂肪肝568例B超检查与中医辨证分型关系探讨[J].浙江中西医结合杂志,2003,13(3):160
    [8]赵晓威,王江河,马素云,洪慧闻.疏肝健脾方治疗非酒精性脂肪肝32例.中西医结合肝病杂志[J],2010,(03):183-184
    [9]邓海清,黄国荣,吴瑞林,等.祛淤化浊、疏肝解郁法治疗脂肪肝52例[J].山西中医,2006,27(1):24.
    [10]杨钦河,周迎春,郭桃美,张薇,潘丰满,夏棣其,唐纯志,孙景波,孔令人,胡巢凤,李菁,王斌会,戚仁斌,王彦平.不同治法方药对脂肪肝大鼠血脂作用的比较研究.新中医[J],2004,36(05):74-75
    [11]许雪荷,贺松其,段慧,管延美,李健薇,李莹莹.非酒精性脂肪肝的辨治规律探析.新中医[J],2009,41(03):8-9
    [12]缪伟峰,金小晶.脂肪肝中医发病机制的探讨.江西中医学院学报[J],2008,20(05):5-6.
    [13]孙建光.尹常健治疗脂肪肝经验.世界中医药[J],2011,6(05):401-402.
    [14]杜秀萍,陈建杰.陈建杰治疗脂肪肝经验.辽宁中医药大学学报[J],2011,13(05):81-82.
    [15]云小君.龙胆泻肝汤联合水匕蓟宾胶囊治疗脂肪肝(肝胆湿热型)30例临床观察.中国民族民间医药[J],2011,10:66.
    [16]陈黎,蒋阳昆,林海,张红星.非酒精性脂肪性肝病痰瘀证与代谢综合征的关系.中国中西医结合消化杂[J],2007,15(5):309-311
    [17]谷灿立,张龙江.从痰瘀学说探讨非酒精性脂肪肝的辨治思路.新中医[J],2007,39(11):5-6.
    [18]邹芷均,孙劲晖,田德禄.当归芍药散治疗脂肪肝探析.辽宁中医杂志[J],2006,33(10):1263-1264.
    [19]周琪,刘鉴,李军.李军教授从痰瘀论治脂肪肝临床经验探要.实用中医内科尔志[J],2008,22(01):15-16.
    [20]王亚平,杨悦亚,陈理书,张志银,要全保,庄敏之,胡南华,朱艳,郑昕,周菲,张迪,郭兆玮.加味降脂理肝汤治疗痰瘀质非酒精性脂肪肝病63例.上海中医药杂志[J],2008,42(06):23-25.
    [21]柳涛,唐志鹏,季光.温阳化气论治非酒精性脂肪性肝病.中西医结合学报[J],2011,9(02):135-137.
    [22]崔颖,杨新莉,卢秉久.卢秉久教授治疗脂肪肝经验撷菁.实用中医内科杂志[J],2008,22(02):13-14.
    [23]杨帆,黄江荣,向楠.肝脾肾功能火调与胰岛素抵抗的关系探讨.时珍国国药[J],2009,20(06):1556-1557.
    [24]闫道普,孙宁.中西医结合治疗脂肪性肝病的认识与思考.中国新药杂志[J],2011,20(22):2181-2183+2187.
    [25]张吕利.中医对脂肪肝的认识及防治.中国民族民间医药[J],2010,08:9.
    [26]曹建春.辨证治疗脂肪肝60例疗效观察.浙江中西医结合杂志[J],2002;12:490
    [27]丁怡敏,孟祥仁.中医辨证治疗脂肪肝疗效观察.中国社区医师(综合版)[J],2006,08(137):56.
    [28]陈腾云,何敏.脂肪肝中医辨证论治体会.中国误珍学员杂志[J],2005,5(13):2550-2551.
    [29]李元茂.疏肝活血法治疗脂肪肝70例疗效观察.中国医药导报[J],2007,4(08):116.
    [30]杨柏雄.中医药治疗社酒精性肝病62例.中国中医药科技[J],2011,18(、06):538-539.
    [31]许曹义,张梓风,吕作培,陈声荣.消脂汤治疗脂肪肝59例疗效观察.海峡药学[J],2011,23(11):178-179.
    [32]范志刚,贾高锁,梁培福,张红云,郭淑玲,张健,解鹏飞.柴苓降脂方治疗脂肪肝合并高脂血症110例.中医杂志[J],2011,52(03):238-239.
    [33]谢文,王凯民.荷叶降脂护肝汤治疗脂肪肝的临床研究.中国医药导报[J],2009,6(28):41-42.
    [34]陈润花,张海鹏,李军祥.李军祥教授治疗脂肪肝经验.光明中医[J],2008,23(04):425-426.
    [35]吴科研.李晓燕主任医师治疗脂肪肝经验撷萃.实用中医内科杂志[J],2008,22(07):14.
    [36]慕永平,都金星,刘平.刘平教授治疗非酒精性脂肪性肝炎遣方用药经验探析.中西医结合肝病杂志[J],2009,19(03):170-171.
    [37]焦琳,迟振海.电针治疗单纯性肥胖病并发脂肪肝.中国针灸[J],2008,03:1 83-1 86.
    [38]许佳年,张琴,谢萍,张毅明,李洁.针药结合治疗脂肪性肝病的临床观察.上海中医药杂志[J],2011,45(06):55-57.
    [39]庞崇祥,林桂权,周丽.针药联用治疗脂肪肝疗效观察.四川中医[J],2009,27(11):115-116.
    [40]孟胜喜.针刺治疗非酒精性脂肪性肝炎疗效观察.中国针灸[J],2009,29(08):616-618.
    [41]周丽,林桂权,庞崇祥,庞燕.针刺配合血栓通注射液治疗脂肪肝疗效观察.河北中医[J],2008,30(09):961-963.
    [42]赵燕平,朱肖鸿,胡洁,倪桂宝.枳棋子对非酒精性脂肪肝大鼠肝脏病理损伤的防治作用.中国中西医结合消化杂志[J],2010,18(01):12-14.
    [43]李晶,冯五金.生山楂、泽泻、莪术对大鼠脂肪肝的影响及其交互作用的实验研究.山西中医[J],2006,22(03):57-59.
    [44]汪兴生,解光艳,史学礼,邵盈银,王蓉,黄振.何首鸟等对脂肪肝模型大鼠血液指标的影响.安徽中医学院学报[J],2006,25(05):39-40.
    [45]余轶群,李军祥,姬爱冬.何首鸟、三七提取物对非酒精性脂肪性肝炎大鼠肝组织PPAR α、PGC-1α水平的影响.深圳中西医结合杂志[J],2009;19:69-80
    [46]张文洁,张春梅,王冬艳,英锡相.山里红叶提取物抗脂肪肝作用研究.中华中医药学刊[J],2008,26(03):559-561.
    [47]胡可荣,张志勇,袁剑锋.保肝降脂饮对非酒精性脂肪性肝炎大鼠肝组织TNF-α蛋白表达的影响.湖北中医杂志[J],2011,12:6-7.
    [48]杨钦河,王文晶,冯高飞,何秀敏,张玉佩,纪桂元,胡四平,王彦平,陈同炎,刘海涛,闫海震,黄进.疏肝健脾方药对非酒精性脂肪性肝病大鼠肝组织LXRα mRNA及蛋白表达的影响.中国老年学杂志[J],2011,22:4371-4375.
    [49]吴凌康,史亮亮,王章流,刘英超,单国栋,厉有名.益气养阴活血组方治疗2型糖尿病合并脂肪肝的临床研究.中华中医药杂志[J],2011,26(04):858-860.
    [50]赵敏.降脂宁颗粒治疗高脂血症性脂肪肝的实验研究.安徽中医学院学报[J],2009,28(05):61-64.
    [51]董柳,陈良,甄仲,李敏,赵昱,段军,潘琳,仝小林.消膏转浊方对肥胖型非酒精性脂肪肝大鼠脂质过氧化反应与胰岛素抵抗的影响.上海中医药大学学报[J],2011,06:58-62.
    [52]Kim WS,Lee YS,Cha SH,et al. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity [J].Am J Physiol Endocrinol Metab,2009,296 (4):E812-E819.
    [53]郑培永,马赞颂,柳涛等.葛根素对非酒精性脂肪肝大鼠肝脏脂质的影响[J].上海中医药杂志,2008,42(1):61-63.
    [54]周利玲,舒筱灿,吴和平等.大黄素干预鹌鹑脂肪肝病变的效果[J].中国临床康复,2006,10(32):57-59.
    [55]Bujanda L,Hijona E,Larza-bal M,et al. Resveratrol inhibits nonalcoholic fatty liver dis-ease in rats [J] BMC Gastroenterol,2008,8:40. (24c).
    [56]胡巢凤,陆大祥,孙丽萍,等.人参茎叶皂苷对小鼠脂肪肝的作用及机制研究[J].中国药理学通报,2009,25(5):663-667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700