利用新一代天气雷达观测资料制作流域径流预报的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用“淮河黄河流域暴雨洪水监测预报系统”试验项目和973中国暴雨项目外场试验资料中的合肥新一代天气雷达(ChIna New generation RADar,CINRAD)资料、气象部门和淮河水利委员会(淮委)收集的雨量计资料、淮委收集的蒸发和流量等水文资料,以淠河上游的响洪甸流域和佛子岭流域为研究区域,分别用地面加密雨量计测量的流域面雨量和雷达反演或外推的面雨量作为TOPMODEL(TOPography based hydrological MODEL)降水—径流模型的输入,进行降水-径流模拟和预报研究。研究内容和获得的主要结论有:
     提出了天气雷达波束阻挡的动态订正方法。以地面雨量计得到的面雨量为标准,利用2003年6月20日01:00GMT~7月12日00:00GMT的合肥新一代天气雷达资料,对分别用波束阻挡动态订正方法和固定的复合平面查找表(文中简称为静态波束阻挡订正)方法得到的雷达反演响洪甸流域面雨量系列进行比较。结果表明,采用动态波束阻挡订正方法进行雷达测量降水的结果好于采用静态波束阻挡订正方法的结果。
     在常用的相关方法跟踪回波运动的TREC(Tracking Radar Echo by Correlation)技术基础上,发展了基于差分图像的DITREC(Difference Image-based Tracking Radar Echo by Correlation)技术。个例分析表明:DITREC矢量场消除了TREC矢量场中由于回波型的迅速变化导致的一些无序矢量,使得DITREC矢量场的时间连续性和空间连续性好于TREC矢量场。研究了TREC和DITREC径向分量与多普勒径向速度的关系。个例分析表明,不能简单地用多普勒径向速度对TREC和DITREC的性能进行评估。同时,TREC和DITREC矢量的径向分量与多普勒径向速度的偏差,在一定程度上也反映出降水系统移动方向与多普勒雷达观测到的风向的偏差。
     用加密地面雨量计网测得的面雨量和雷达—雨量计联合测量降水或外推的面雨量作为TOPMODEL水文模型的降水输入进行了两个水库所控制的流域及其中一些子流域的流量模拟和预报研究。个例分析表明:TOPMODEL在所研究的两个流域是适用的,小流域模拟结果对降水输入相当敏感。用外推开始前1小时的雷达1小时累积降水和雨量计测值计算平均校准因子,对外推得到的雨量场进行校准后,可以明显提高外推1小时流域面雨量的精度,对外推2小时流域面雨量的精度也有所提高。小流域洪峰预报的预见期与流域属性和具体的降水过程有关。为了减小洪峰的预报误差,需要特别关注降水是否持续,以及可能的降水量。
The rainfall-runoff model TOPMODEL (TOPography based hydrological MODEL) was used to simulate and forecast the runoffs for Xianghongdian and Foziling subcatchments in the upper reaches of Pihe river. Analyses were based on the rain gauge observations and QPE/QPF (Quantitative Precipitation Estimate/Quantitative Precipitation Forecast) results derived from volume scans of HeFei CINRAD (ChIna New generation RADar) reflectivity observations supported by the project of Huaihe/Huanghe Basins Great Rainfall/ Flooding Monitoring System and the China National Key Development Planning Project for Basic Research (called 973 Project), as well as the evaporation and runoff data provided by the Huaihe River Commission of the Ministry of Water Resources, P. R. C. The conclusions are listed as follows:
     Firstly, a dynamical weather radar beam blockage correction method was presented. By comparing the radar rainfall estimates based on the dynamical method with the estimates based on the beam blockage correction method which using an unique hybrid scan "lookup table" for each radar (called the static method in this paper) using rain gauge mean-areal rainfall measurements from 01:00 GMT 20 June 2003 to 00:00 GMT 12 July 2003 for Xianghongdian subcatchment, it was shown that the radar rainfall estimates derived from the dynamical beam blockage correction method were better than the estimates from the static method.
     Secondly, a technique named Difference Image-based Tracking Radar Echo by Correlations (DITREC) was developed, in which the difference images from reflectivity image sequences were used to detect echo motion. The technique was compared with the well-known Tracking Radar Echo by Correlations (TREC) by two case studies. It was found that the DITREC can eliminate those erroneous vectors in the TREC caused by rapid changes of reflectivity within the radar patterns, and improve the temporal and spatial continuity of the echo motion velocity field. On the other hand, the TREC radial velocity and DITREC radial velocity versus the Doppler radial velocity were investigated. The results suggested that they are not quite comparable in our cases. In fact, the biases between the Doppler radial and the TREC or DITREC radial might partially reflect the deflection of the movement of the precipitation system to the Doppler radar observations.
     Thirdly, the rain gauge observations and QPE/QPF mean areal precipitation derived from radar were used for runoff simulation and forecast using a semi-distributed rainfall-runoff model (TOPMODEL) for Xianghongdian and Foziling subcatchments, as well as several watersheds subdivided (called small basins ) from Foziling. It manifested that the TOPMODEL performed well in two research subcatchments, and the simulated results of the small basins were quite sensitive to the precipitation inputs. The QPF results, before and after the mean-field bias adjustment using a multiplicative factor determined based on radar–rain gauge comparisons of the last hour, were compared using rain gauges. Results show that the QPF results after the adjustment were better than the QPF results before the adjustment. Moreover, the forecast lead times for peak discharge of small basins are related to basin attributes and specific precipitation events. In order to reduce the prediction errors of peak discharge, it is particularly necessary to concern whether the precipitation will persist and the rainfall magnitude in the subsequent hour.
引文
[1] Binder P., Schar C. Mesoscale Alpine Programme Design Proposal. 2d ed. Swiss Meteorological Institute, 1996, 79 pp
    [2] 杨扬, 张建云, 戚建国, 等. 雷达测雨及其在水文中应用的回顾与展望. 水科学进展, 2000, 11(1): 92-98
    [3] Damrath U., Doms G.., Frühwald D., et al. Operational quantitative precipitation forecasting at the German Weather Service. Journal of Hydrology, 2000, 239: 260-285
    [4] Glaudemans M. J., Erb R. A., Wells E. B., et al. Overview and status of the hydrologic forecast system in the National Weather Service Weather Forecast Offices. Preprints, 18th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, American Meteorological Society, Orlando, FL, 2002. Paper7.6
    [5] Moore R. J., Jones A. E., Jones D. A., et al. Weather radar for flood forecasting: some UK experiences, 6th Int. Symp. On Hydrological Applications of Weather Radar, Melbourne, Australia, 2004
    [6] www.smhi.se/cost717/doc/WDF_MC_200505_1.pdf. 292pp
    [7] 刘晓阳, 毛节泰, 李纪人, 等. 雷达估测降水模拟史灌河流域径流. 北京大学学报(自然科学版, 2000, 38(3): 342-349
    [8] 刘晓阳. 遥感估计降水在径流模拟中的应用: [博士学位论文]. 北京: 北京大学图书馆, 2001
    [9] 刘晓阳, 毛节泰, 李纪人, 等. 雷达联合雨量计估测降水模拟水库入库流量. 水利学报, 2002, 第4期: 342-349.
    [10] “淮河黄河流域暴雨洪水监测预报系统”试验项目技术组编. “淮河黄河流域暴雨洪水监测预报系统”试验项目成果汇编, 2004.
    [11] Pierce C. E., Hardaker P. J., Collier C. G., et al. A system for generating automated nowcasts of convective precipitation. Meteorological Applications, 2000, 7: 341-360
    [12] Brandes E. Optimizing rainfall estimates with the aid of radar. J. Appl. Meteor., 1975, 14: 1339-1345
    [13] Koistinen J., Puhakka T. An improved spatial gauge-radar adjustment technique. Proc. 20th Conf. on radar meteorol., AMS, 1981. 179-186
    [14] Collier C. G., Larke P. R., May B. R. A weather radar correction procedure for real-time estimation of surface rainfall. Quart. J. R. Meteorol. Soc., 1983, 109: 589-608
    [15] 张培昌, 戴铁丕, 王登炎, 等. 最优化法求 Z-I 关系及其在测定降水量中的精度. 气象科学, 1992, 12(3): 333-338
    [16] 李建通, 张培昌. 最优插值法用于天气雷达测定区域降水量. 台湾海峡, 1996, 15(3): 255-259
    [17] 李建通, 杨维生, 郭林, 等. 提高最优插值法测量区域降水量精度的探讨. 大气科学, 2000, 24(3): 263-270
    [18] Krajewski W. F. Co-kriging radar-rainfall and rain gauge data. J. Geophys. Res., 1987, 92(d8): 9571-9580.
    [19] Sun X., Mein R. G., Keenan T. D., et al. Flood estimation using radar and raingauge data. Journal of Hydrology, 2000, 239: 4-18
    [20] Ahnert P. R., Krajewski W. F., Johnson E. R. Kalman filter estimation of radar-rainfall field bias. In preprints 23rd Conf. On radar ,meteor, 1986. JP33-JP37
    [21] Ninomiya K., Akeyama, T. Objective analysis of heavy rainfalls based on radar and gauge measurement. J. Meteor. Soc. Japan, 1978, 50: 206-210
    [22] Fulton R. A., Breidenbach J. P., Seo D., et al. The WSR-88D Rainfall Algorithm. Wea. Forecasting, 1998, 13: 377-395
    [23] Smith J. A., Seo D. –J., Baeck M. L., et al. An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 1996, 32: 2035-2045
    [24] Anagnostou E. N., Krajewski W. F., Seo D. –J., et al. Mean-field radar rainfall bias studies for WSR-88D. ASCE J. Hydrol. Eng., 1998, 3: 149-159
    [25] Anagnostou E. N., Krajewski W. F. Real-time radar rainfall estimation. Part I: Algorithm formulation. J. Atmos. Ocean. Technol. 1999a, 16: 189-197
    [26] Anagnostou E. N., Krajewski W. F. Real-time radar rainfall estimation. Part II: Case study. J. Atmos. Ocean. Technol., 1999b, 16: 198-205
    [27] Byers H. R. The use of radar in determining the amount of rain falling over a small area. Trans. Am. Geophys. Union, 1948, 29: 187-196
    [28] Doneaud A. A., Niscov S. I., Priegnitz D. L., et al. The area-time integral as an indicator for convective rain volumes. J. Climate Appl. Meteorol., 1984, 23: 555-561
    [29] Chiu L. S. Rain estimation from satellite: Areal rainfall-rain area relations. Third conference on satellite meteorology and oceanography. Anaheim, AMS, 1988. 363-368
    [30] Atlas D., Rosenfeld D., Short D. A. The estimation of convective rainfall by area integrals. Part I: The theoretical and empirical basis. J. Geophy. Res., 1990, 95, D3: 2153-2160
    [31] Atlas D., Bell T. L. The relation of radar to cloud area-time integrals and implications for rain measurements from space. Mon. Wea. Rev., 1992, 120: 1997-2008
    [32] Kedem B., Chiu L. S., Karni Z. An analysis of the threshold method for measuring area-average rainfall. J. Appl. Meteorol., 1990, 29: 3-20
    [33] Kedem B., Pavlopoulos H. On the threshold method for measuring area rainfall estimation, choosing the optimal threshold level. J. Amer. Stat. Assoc., 1991, 86: 626-633
    [34] Rosenfeld D., Atlas D., Short D. A. The estimation of convective rainfall by area integrals. Part II: The height-area threshold (Hart) method. J. Geophys. Res., 1990, 95, D3: 2161-2176
    [35] Cheng M. H., Brown R. Estimation of area-average rainfall for frontal rain using the threshold method. Quart J. Roy. Meteor. Soc., 1993, 119: 825-844
    [36] Cheng M. H., Qi Y. J. Frontal Rainfall-Rate Distribution and Some Conclusions on the Threshold Method. J. Appl. Met, 2002, 41: 1128-1139
    [37] Browning, K. A. The FRONTIERS plan: A strategy for using radar and satellite imagery for very-short-range precipitation forecasting. The Meteorological Magazine, 1979, 108: 161-184
    [38] Calheiros R. V., Zawadzki I. Reflectivity-rain rate relationships for radar hydrology in Brazil. J. Climate Appl. Meteor., 1987, 26: 118-132
    [39] Krajewski W. F., Smith J. A. On the estimation of climatological Z–R relationships. J. Appl. Meteor., 1991, 30: 1436–1445
    [40] Rosenfeld D., Wolff D. B., Atlas D. General probability-matched relations between radar reflectivity and rain rate. J Appl. Meteor., 1993, 32: 50-72
    [41] Rosenfeld D., Wolff D. B., Amitai E. The window probability matching method for rainfall measurements with radar. J. Appl. Meteor., 1994, 33: 682–693
    [42] Rosenfeld D., Amitai E. Comparison of WMPP vursus regression for evaluating Z-R relationships. J. Appl. Meteor., 1998, 37: 1241-1249
    [43] Wexler R., Atlas D. Radar reflectivity and attenuation of rain. J. Appl. Meteorol., 1963, 2: 276-280
    [44] Doviak R. J., Zrnic D. S. Doppler Radar and Weather Observations. Academic Press, New York. 1984. 458pp
    [45] Sergey Y. Matrosov. A Dual-Wavelength Radar Method to Measure Snowfall Rate. J. Appl. Meteor., 1998, 37: 1510-1521
    [46] Chandrasekar V., Bringi V. N. Error structure of multiparameter radar and surface measurements of rainfall. Part I: differential reflectivity. J. Atmos. Ocean. Technol., 1988, 5: 783-795
    [47] Gorgucci E., Scarchilli G., Chandrasekar V. A robust estimator of rainfall rate using differential reflectivity. J. Atmos. Ocean. Technol., 1994: 11, 586-592
    [48] Ryzhkov A. V., Zrnic D. S. Comparison of dual-polarization radar estimators of rain. J. Atmos. Ocean. Technol., 1995, 12: 249-256
    [49] Sauvageot H. Polarimetric radar at attenuated wavelengths as a hydrological sensor. J. Atmos. Ocean. Technol., 1996, 13: 630-637
    [50] Sachidananda M., Zrnic D. S. Differential propagation phase shift and rainfall rateestimation. Radio Sci., 1986, 21: 235-247
    [51] Ryzhkov A., Zrnic D. S. Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 1996, 35: 2080-2090
    [52] Gorgucci E., Scarchilli G., Chandrasekar, V. Specific differential phase estimation in the presence of nonuniform rainfall medium along the path. J. Atmos. Ocean. Technol., 1999, 16: 1690-1697
    [53] Testud J., Amayenc P., Marzoug M. Rainfall-rate retrieval from a spaceborne radar: Comparison between single-frequency, dual-frequency, and dual-beam technique. J. Atmos. Ocean. Technol., 1992, 9: 599-623
    [54] Durden S. L., Im E., Li F. K., et al. ARMAR: An airborne rain-mapping radar. J. Atmos. Ocean. Technol., 1994, 11(3): 727-737
    [55] Kummerow C., Barnes W., Kozu T., et al. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol., 1998, 15: 809–817
    [56] Durden S. L., Haddad Z. S., Kitiyakara A., et al. Effects of Nonuniform Beam Filling on Rainfall Retrieval for the TRMM Precipitation Radar. J. Appl. Meteor., 1998, 15: 635-646
    [57] 张培昌, 戴铁丕, 伍志芳, 等. 用变分方法校准数字化天气雷达测定区域降水量基本原理和精度. 大气科学, 1992, 16(2): 248-256
    [58] 尹忠海, 张沛源. 利用卡尔曼滤波校准方法估算区域降水量. 应用气象学报, 2005, 16(2): 213-219
    [59] 史锐, 程明虎, 崔哲虎, 等. 用反射率因子垂直廓线联合雨量计校准估测夏季区域强降水. 应用气象学报, 2005, 16(6): 737-745
    [60] 蔡启铭, 徐宝祥, 刘黎平. 降雨强度雨区衰减与双线偏振雷达观测量关系的研究. 高原气象, 1990, 9(5): 347-355
    [61] 张鸿发, 王致君, 徐宝祥, 等. 差分反射率ZDR和反射率Ze测雨精度的对比分析. 大气科学, 1995, 19(1),31-39
    [62] 刘黎平, 钱永甫, 王致君, 等. 双线偏振雷达测雨效果的对比分析. 大气科学, 1996, 20(5): 615-619
    [63] 王建林, 刘黎平, 曹俊武. 双线偏振多普勒雷达估算降水方法的比较研究. 气象, 2005, 31(8): 25-30
    [64] 曹俊武, 刘黎平, 葛润生. 模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究. 大气科学, 2005, 29(5): 827-836
    [65] 窦贤康, Testud J., Amayenc P. 星载测雨雷达降雨量反演算法及模拟验证. 科学通报, 1997, 42(3): 292-295
    [66] 窦贤康, 刘万栓, 刘锦丽. 机载雷达定量测雨中衰减的订正研究. 大气科学, 1999a, 23(4): 403-410
    [67] 窦贤康, 刘万栓, Amayenc P., 等. 机载雷达测雨中雨滴谱参数的优化. 应用气象学报, 1999b, 10(3): 293-298
    [68] Cheng M. H., He H. Z., Mao D. Y., et al. Study of 1998 heavy rainfall over the Yangtze river basin using TRMM data. Advances in Atmospheric Sciences, 2001, 18: 387-396
    [69] 李万彪, 陈勇, 朱元竞, 等. 利用热带降雨测量卫星的微波成像仪观测资料反演陆地降水. 气象学报, 2001, 59(5) : 592-601
    [70] 姚展予, 李万彪, 高慧琳, 等. 用 TRMM 卫星微波成像仪资料遥感地面洪涝的研究. 气象学报, 2002, 60(2): 243-249
    [71] 何会中, 程明虎, 周康军, 等. TRMM/PR 与香港雷达资料对比分析. 气象, 2002, 28(10): 32-36
    [72] 王成刚, 葛文忠, 魏 鸣. TRMM PR 雷达与阜阳雷达降水资料的对比研究. 遥感学报, 2003, 7(4): 332-336
    [73] Fu Yunfei, Lin Yihua, Liu Guosheng, et al. Seasonal Characteristics of Precipitation in 1998 over East Asia as Derived from TEMM PR. Advances in Atmospheric sciences, 2003, 20(4): 511-529
    [74] 俞小鼎, 姚秀萍, 熊廷南, 等. 新一代天气雷达原理与应用讲义. 北京: 中国气象局培训中心科学技术培训部, 2000. 435pp
    [75] Koistinen, J., Michelson D. B., Hohti H., et al. Operational Measurement of Precipitation in Cold Climates. Springer monograph series “Physics of Earth and Space Environment”, Meischner, P. (ed.), 2003. 337 pp
    [76] Kitchen M., Jackson P. M. Weather radar performance at long range-simulated and observed. J. Appl. Meteor., 1993, 32: 975-985
    [77] Anderson I. Measurements of 20-GHz transmission through a radome in rain, IEEE Trans. Antennas and Propagation, AP-23, 1975. 619-622
    [78] Gekat F., Meischner P., Friedrich K., et al. The state of weather radar operations, networks and products. Springer monograph series “Physics of Earth and Space Environment”, Meischner P. (ed.), 2003. 337 pp
    [79] Andrieu H., Creutin J., Delrieu G.., et al. Use of a weather radar for the hydrology of a mountainous area, part I: radar measurement interpretation. J. Hydrol., 1997, 193: 1-25
    [80] Creutin, J. D., Andrieu. H., Faure D. Use of a weather radar for the hydrology of a mountainous area, part II: radar measurement validation. J. Hydrol., 1997, 193: 26-44,
    [81] Harju A. E., Puhakka T. M. A method of correcting quantitative radar measurements for partical beam blocking. 19th International Conference on Radar Meteorology, Amer. Meteor. Soc., 1989. 234-239
    [82] Delrieu G., Creutin J. D., Andrieu H. Simulation of radar mountain returns using a digitized terrain model. J. Atmos. Oceanic Technol., 1995, 12: 1038-1049
    [83] Frank E., Borga M., Anagnostou E. N. Hydrological modeling of mountainous basins usingradar rainfall data, 29th International Conference on Radar Meteorology, Amer. Meteor. Soc., 1999. 717-720
    [84] Huggins A., Kingsmill D. Quantitative precipitation estimates from a mountaintop WSR-88D: Data pre-processing considerations. 29th International Conference on Radar Meteorology, Amer. Meteor. Soc., 1999. 709-712
    [85] Kucera P. A., Krajewski W. F., Young C. B. Radar beam occultation studies using GIS and DEM technology: an example study of Guam. J. Atmos. Oceanic Technol., 2004, 21: 995-1006
    [86] Kitchen M., Brown R., Davis A. G. Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Quart. J. Roy. Met. Soc., 1994, 120: 1231-1254
    [87] Joss J., Lee R. The application of radar–gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor., 1995, 34: 2612–2630
    [88] 张培昌, 戴铁丕, 杜秉玉, 等. 雷达气象学. 北京:气象出版社, 1988. 179pp
    [89] Zawadzki I., Fabry F., Elia R. de, et al. On quantitative interpretation of radar measurements. Preprints 29th Intern. Conf. on Radar Meteorology, Amer. Met. Soc., Boston, 1999. 784-786
    [90] Blanchet B., Neuman A., Jacquet G., et al. Improvement of rainfall measurements due to accurate synchronization of raingauges and due to advection use in calibration, volume Cluckie I. D. and Collier C. G. (eds). Hydrological applications of weather radar, Ellis Horwood, England, 1991. 213-218
    [91] Fabry F., Bellon A., Duncan M. R., et al. High resolution rainfall measurements by radar for very small basins: the sampling problem reexamined. J. Hydrol., 1994, 161: 415-428
    [92] Hannesen R., Gysi H. An enhanced precipitation accumulation algorithm for radar data. In Proc. 2nd European Conference on Radar in Meteorology and Hydrology (READ), Delft, Netherlands, Copernicus GmbH, 2002
    [93] Gray W. R., Seed A. W. The characterisation of orographic rainfall. Meteorol. Appl., 2000, 7: 105-119
    [94] Gunn R., Kinzer G. D. The terminal velocity of fall for water droplets in stagnant air. J. Meteorol., 1949, 6: 243-248
    [95] Kessler E. Kinematic effect of vertical drafts on precipitation near earth’s surface. Mon. Weather Review, 1987, 115: 2862-2864
    [96] Lee A. C. L. The influence of vertical air velocity on the remote microwave measurement of rain. J. Atmos. Oceanic Tech., 1988, 5: 727-735
    [97] Collier C. Applications of weather radar systems: a guide to uses of radar data in meteorology and hydrology. 2nd Edition, Praxis John Wiley & Sons Ltd., 1996. 390pp
    [98] Joss J., Waldvogel A. Precipitation measurement and hydrology, a review. Radar Meteorology, D. Atlas, Ed. Boston, MA: American Meteorol. Soc, 1990. 577-606
    [99] 梁丰, 陈明轩, 王玉彬. 近两届奥运会气象服务保障综述. 气象, 2002, 28(10): 3-8
    [100] Eilts M. D., Johnson J. T., Mitchell E. D., et al. Severe weather warning decision support system. 18th Conf. on Severe Local storms, Amer. Meteor. Soc., san Fransisco, CA, 1996. 536-540
    [101] Dixon M, Wiener G.. TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting-A Radar-based Methodology. J. Atmos. Oceanic Tech., 1993, 10(6): 785-797
    [102] Mueller C., Saxen T, Roberts R., et al. NCAR Auto-Nowcast System. Wea. Forecasting, 2003, 18(4): 545~561
    [103] Joe P., Falla M., Rijn P. V., et al. Radar Data Processing for Severe Weather in the National Radar Project of Canada. 21th Conf. SELS., San Antonio, TX, AMS, 2003. 221-224
    [104] Golding B. W. Nimrod: A system for generating automated very short range forecasts. Meterorol. Appl., 1998, 5: 1-16
    [105] Hand W. H., Conway B. J. An object-oriented approach to nowcasting showers. Weather and Forecasting, 1995, 10: 327–341
    [106] Hand, W. H. A technique for nowcasting heavy showers and thunderstorms. Met. Apps., 1996, 3: 31-41
    [107] Pierce C. E., Cooper A. M. Comparison of the performance of 2 km resolution Object-Oriented Model and Nimrod advection precipitation nowcast schemes .Forecasting Research Technical Report No. 350, Met office, UK. 2000
    [108] Webb R. M., Treloar A., Colquhoun J., et al. Overview of Sydney Weather During the Forecast Demonstration Project. AMS 30th Int. Conf. Radar Met., Munich, Germany, Amer. Meteor. Soc., 19-24 July, 2001. 477-479
    [109] Donaldson N., Pierce C., Sleigh M., et al. Comparison of forecasts of widespread precipitation during the Sydney 2000 Forecast Project. Preprints 30th International Conference on Radar Meteorology, Munich, Germany, 2001. 503-505
    [110] 汤达章, 赵清云. 雷达跟踪回波运动方法的研究(I)—相关分析法的误差及其来源. 南京气象学院学报, 1988, 11(1): 89-99
    [111] 汤达章, 傅德胜, 张亚萍. 暴雨回波跟踪及临近预报初探. 南京气象学院学报, 1992, 15(1): 66-71
    [112] 肖艳姣, 汤达章, 李中华. 风暴的自动识别、跟踪与预报. 南京气象学院学报, 1998, 21(2): 223-229
    [113] 金鸿祥, 杨金政. 长江中游暴雨监测预报业务系统(MYTRONS)的设计和结构. 气象, 1994, 20(8): 17-21
    [114] 徐双柱, 项经魁, 万玉发, 等. MYTRONS 系统在暴雨临近预报和研究中的应用. 气象, 1994, 20(8): 37-42
    [115] 黄伟健, 黎守德, 李炳华. 从雷达回波的移动趋势预报短期的降雨情况.粤港澳中尺度天气预测分析会, 深圳, 1998 年8月10-11日
    [116] 李炳华, 黎守德. 交叠雨带和辐合线上强对流的雷达观测分析. 全国季风与暴雨科学讨论会.珠海季风与暴雨学术研讨会, 珠海, 中国, 2000 年4月12日
    [117] 李炳华, 林超英. 临近预报在城市地质灾害中的应用. 中国气象学会 2003 年年会学术报告(特邀报告), 中国, 北京, 2003 年12月8-10 日
    [118] 黎守德, 李炳华. 「小涡旋」—1999 及 2000 年暴雨验证及最新发展策略.第十五届粤港澳重要天气研讨会, 中国, 香港, 2001 年2月14-15 日
    [119] 陈建宇, 李炳华. 临近预报在香港『山泥倾泻警告』中的应用. 第十七届粤港澳气象科技研讨会报告, 中国, 澳门, 2003 年1月22-23 日
    [120] Steinacker R., Dorninger M., W?lfelmaier F., et al. Automatic tracking of convective cells and cell complexes from lightning and radar data. Meteor. Atmos. Phys., 1999, 73: 101-110
    [121] Hohti H., Koistinen J., Nurmi P. Precipitation nowcasting using radar-derived atmospheric motion vectors. Phys. Chem. Earth (B), 2000, 25: 1323-1327
    [122] Moore R. J., Jones D. A., Black K. B., et al. RFFS and HYRAD: Integrated systems for rainfall and river flow forecasting in real-time and their application in Yorkshire. Analytical techniques for the development and operations planning of water resource and supply systems. BHS National Meeting, University of Newcastle, BHS Occasional Paper No. 4, 1994. 12pp
    [123] Mellor D., Sheffield J., O’Connell P. E., et al. A stochastic space-time rainfall forecasting system for real time flow forecasting I: development of MTB conditional rainfall scenario generator. Hydrology and Earth System Sciences, 2000, 4: 603-615
    [124] Brémaud P., Pointin Y. Forecasting heavy rain from cell motion using radar. J. Hydrol., 1993, 142: 373-389
    [125] Andersson T., Ivarsson K. A model for probability nowcasts of accumulated precipitation using radar. J. Appl. Meteorol., 1991, 30: 135-141
    [126] Redder A. A short term radar rainfall forecasting procedure for high resolution radar data. Phys. Chem. Earth (B), 1999, 24: 879-882
    [127] Johnson J. T., MacKeen P. L., Witt A., et al. The storm cell identification and tracking algorithm: an enhanced WSR-88D algorithm. Weather and Forecasting, 1998, 13: 263-276
    [128] Einfalt T., Denoeux T., Jacquet G. The development of the SCOUT 11.0 rainfall-forecasting method. In: Clukie I.D. and Collier C.G. (eds), Hydrologicalapplications of weather radar, Ellis Horwood, England, 1991. 359-367
    [129] Bellon A., Austin G. L. The evaluation of two years of real-time operation of a short-term precipitation forecasting procedure (SHARP). J. Appl. Met., 1978, 17: 1778-1787
    [130] Bellon A., Austin G. L. The accuracy of short-term radar rainfall forecasts. J. Hydrol., 1984, 70: 35-49
    [131] Handwerker J. Cell tracking with trace3d – a new algorithm. Atmos. Research, 2002, 61: 15-34
    [132] Rinehart R E, Garvey E T. Three-dimensional storm motion detection by conventional weather radar. Nature, 1978, 273: 287~289
    [133] Li L, Schmid W., Joss J. Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteor., 1995, 34: 1286~1300
    [134] Kunitsugu M., Makihara Y., Shinpo A. Nowcasting system in JMA. Fifth International Symposium on Hydrological Application of Weather Radar “Radar hydrology”. Proceedings, Heian-Kaikan, Kyoto, Japan, 2001. 267pp
    [135] 刘金清, 陆建华. 国内外水文模型概论. 水文. 1996, 第 4 期: 4-8
    [136] 熊立华, 郭生练. 分布式流域水文模型. 北京: 水利水电出版社, 2004. 224pp
    [137] Bowles D. S., O′Connell P. E. (editors). Recent advances in the modeling of hydrologic systems. Netherlands: Kluwer Academic Publishers, 1991
    [138] Singh V. P. (editor). Computer models of watershed hydrology. Water Resources Publications, USA, 1995
    [139] Nash J. E., Foley J. J. Linear models of rainfall-runoff systems. In: 'Rainfall-Runoff Relationship', Proceedings of the International symposium on Rainfall-Runoff modelling. Mississippi State University, May 1981, USA. Edited by V.P. Singn, Water Resources Publications. 1982. 51-66
    [140] Nash J. E., Barsi B. I.. A hybrid model for flow forecasting on large catchments. Journal of Hydrology, 1983, 65: 125-137
    [141] Todini E., Wallis J. R. Using CLS for daily or longer period rainfall –runoff modelling. In ed. Ciriani T. A., Maione U., Wallis J. R., Mathematical Models for Surface water Hydrology. John Wiley & Sons, London, 1977. 149-168
    [142] Ahsan M., O'Connor K. M.. A simple non-linear rainfall-runoff model with a variable gain factor. Journal of Hydrology, 1994, 155: 151-183
    [143] Napiórkowski J. J., Strupczewski W. G.. Problems involved in identification of the kernels of Volterra series. Acta Geophys. Pol., 1984, 32(4): 375-391
    [144] Liang G. C., O'Connor K. M., Kachroo R. K. A multiple-input single-output variable gain factor model. Journal of Hydrology, 1994, 155: 185-198
    [145] Hsu K. L., Gupta H. V., Sorooshian S. Artificial neural network modeling of therainfall-runoff process. Water Resources Research, 1995, 31: 2517-2530
    [146] 熊立华, 郭生练, 胡彩虹. TOPMODEL 在流域径流模拟中的应用研究. 水文, 2002, 22(5): 5-8
    [147] Sittner W., Schauss C., Monro J. Continuous Hydrograph Synthesis with an API-Type Hydrologic Model. Water Resources Research , 1969, 5(5): 1007-1022
    [148] Sugawara. M. The flood forecasting by a series storage type model. Int. Symposium Floods and their Computation, International Association of Hydrologic Sciences, 1967. 1-6
    [149] Sugawara M., Ozaki E., Watanabe I., Katsuyama Y. Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanga River and Nam Mune. Research note, National Research center for Disaster Prevention, No. 11, Kyoto, Japan, 1974. 1-64
    [150] Sugawara. M. Cahpter 6: Tank model. Computer models of watershed hydrology. Singh V. P., ed., Water Resources Publications, Littleton, Colo. 1995
    [151] Crawford N. H., Linsley R. K. The synthesis of continuous streamflow hydrographs on a digital computer. Tech. Rep. No. 12, Dept. of Civil Engineering, Stanford Univ., Palo Alto, Calif. 1962
    [152] Crawford N. H., Linsley R. K. Digital simulation in hydrology: Stanford Watershed Model IV. Tech. Rep. No. 39, Stanford Univ., Palo Alto, Calif. 1966
    [153] Burnash R. J. C., Ferral R. L., McGuire R. A. A generalized streamflow simulation system—conceptual modeling for digital computers. Rep., U.S. Dept. of Commerce, National weather Service, Silver springs, Md., and State of California, Dept. of Water Resources, Sacramento, Calif, 1973. 204pp
    [154] Khan H. Conceptual Modelling of rainfall-runoff systems. M. Eng. Thesis, National University of Ireland, Galway, 1986
    [155] Kachroo R. K. River flow forecasting, Part 1, A discussion of principles. Journal of Hydrology, 1992a, 133: 1-15
    [156] Kachroo R. K. River flow forecasting, Part 5, Applications of a conceptual model. Journal of Hydrology, 1992b, 133: 141-178
    [157] Nielsen S. A., Hansen E. Numerical simulation of the rainfall-runoff process on a daily basis. Nordic Hydrology. 1973, 4: 171-190
    [158] Havn? K., Madsen M. N., Dorge J. MIKE 11 – a generalized river modelling package, Computer Models of Watershed Hydrology (ed. Singh, V. P.), Water Resources Publications, Colorado, 1995. 733-782
    [159] 赵人俊. 流域水文模型: 新安江模型与陕北模型. 北京: 水利水电出版社, 1984. 180pp
    [160] Todini E. The Arno rainfall-runoff model. Journal of Hydrology, 1996, 175: 339-382
    [161] Abbott M. B., Bathurst J. C., Cunge J. A., et al. An introduction to the European Hydrological System-Système Hydrologique Européen, "SHE", 1: History and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 1986a, 87: 45-59
    [162] Abbott M. B., Bathurst J. C., Cunge J. A., et al. An introduction to the European Hydrological System-Système Hydrologique Européen, "SHE", 2: Structure of a physically-based, distributed modelling system. Journal of Hydrology, 1986b, 87: 61-77
    [163] Arnold J. G., Fohrer N. SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrol. Process. 2005, 19(3): 563-572
    [164] Dawdy D. R., Bergmann J. M. Effect of rainfall variability on streamflow simulation. Water Resour. Res., 1969, 5: 958-966
    [165] Natale L., Todini E. A constrained parameter estimation technique for linear models in hydrology. Mathematical models of surface water hydrology, Ciriani T. A., Maione U., and Wallis J. R., eds., Wiley, London, 1977. 109-147
    [166] Berod D. D., Singh V. P., Devrod D., et al. A geomorphologically nonlinear cascade (GNC) model for estimation of floods from small alpine watersheds. J. Hydrol., 1995, 166: 147-170
    [167] 夏军, 王纲胜, 吕爱锋, 等. 分布式时变增益流域水循环模拟. 地理学报, 2003, 58(5): 789-796
    [168] Beven K. J., Kirkby M. J. A Physically based variable contributing area model of basin hydrology. Hydrology Sci. Bull., 1979, 24: 43-69
    [169] Beven K. Lamb J., R., Quinn P., et al. TOPMODEL. In: Singh V. P., Computer Models of Watershed Hydrology, Chapter 18. Water Resources Publications, 1995. 627-668
    [170] Beven K. J., Kirkby M. J., Schoffield N., et al. Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments. Journal of Hydrology, 1984, 69: 119-143
    [171] Wolock D. M., Hornberger G. M., Beven K. J., et al. The relationship of catchment topography and soil hydraulic characteristics to lake Alkalinity in the Northeastern United States. Water Resour. Res., 1989, 25: 829-837
    [172] Quinn P. F., Beven K. J. Spatial and temporal predictions of soil moisture dynamics, runoff, variable source areas and evapotranspiration for Plynlimon, mid-Wales. Hydrol. Process, 1993, 7: 425-448
    [173] Band L. E., Moore I. D. Scale: landscape attributes and geographical information system. Hydrol. Process, 1995, 9: 401-422
    [174] Saulnier G. M., Beven K. J., Obled C. H. Including spatially variable soil depths inTOPMODEL. J. Hydrology, 1998, 202: 158-172
    [175] 郭方, 刘新仁, 任立良. 以地形为基础的流域水文模型——Topmodel 及其拓宽应用. 水科学进展, 2000, 11(3): 296 –301
    [176] 刘青娥, 夏军, 王中根. TOPMODEL 模型几个问题的研究. 水电能源科学, 2003, 21(2): 41-44
    [177] 陈仁升, 康尔泗, 杨建平, 等. TOPMODEL模型在黑河干流出山径流模拟中的应用. 中国沙漠, 2003, 23(4): 428-433
    [178] 任立良, 刘新仁. 数字时代水文模拟技术的变革. 河海大学学报, 2000, 28(5): 1-6
    [179] Crawford, N. H , R. K. Linsley. Digital simulation in hydrology: Stanford watershed model IV. Dept of Civil Engineering, Stanford University, Stanford , California, Technical Report 39, 1966
    [180] Morrissey D. J., Lines G. C., Bartholoma S. D. Three dimensional digital-computer model of the Ferron sandstone aquifer near Emergy. Utah , USGS , Water Resources Investigations 80, 1980
    [181] Miller C. L., Laflamme R. A. The digital terrain model - theory and application. Photogramm. Eng. Remote Sensing, 1958, 24: 433-442
    [182] Doyle F. J. Digital terrain models: an overview. Photogramm. Eng. Remote Sensing, 1978, 44: 1481-1485
    [183] 任立良. 长江三峡区间数字流域水系的构建. 长江流域资源与环境, 2001, 10(1): 43-50
    [184] 任立良, 刘新仁. 数字高程模型在流域水系拓扑结构计算中的应用. 水科学进展, 1999a, 10(2): 1129-134
    [185] 任立良, 刘新仁. 史灌河流域数字水文模型研究. 见:赵柏林,丁一汇主编, 淮河流域能量与水分循环研究, 北京: 气象出版社, 1999b: 229~236
    [186] Gourley J. J., Vieux B. E.. A method for evaluating the accuracy of quantitative precipitation estimates from a hydrologic modeling perspective. Journal of Hydrometeorology, 2005, 6: 115-133
    [187] Entekahbi D., and Coauthors. Report of a workshop on committee on predictability and limits to prediction in hydrologic systems. Committee on Hydrologic Science, National Research Council, National Academy Press, 2002. 118pp
    [188] Collier C. G. Applications of weather radar systems. A guide to uses of radar in meteorology and hydrology. Ellis Horwood Ltd., Chichester, 1989. 294pp
    [189] www.met.rdg.ac.uk/qpf/announcement.html. The world weather research programme's (WWRP) international conference on quantitative precipitation forecasting (QPF). University of Reading, United Kingdom., 2002
    [190] 布朗宁 K. A. [英]编. 周凤仙, 马振骅, 李泽椿译. 现时预报, 北京: 气象出版社,1986. 260pp
    [191] Cheng M. H. 1994. Estimation of precipitation using satellite, radar and rain gauge data. Ph.D. thesis. University of Bristol, United Kingdom.400pp.
    [192] Moore R. J., Hall. M. J. (eds.) Special Issue. HYREX: the Hydrological Radar Experiment. Hydrology and Earth System Sciences, 2000, 4(4). 681pp
    [193] Schaake J. Importance of the HRAP grid for operational hydrology. Preprints, U.S./People's Republic of China Flood Forecasting Symp., Portland, OR, NOAA/NWS, 1989. 331-355
    [194] Mathewson, M. A. Using the AWIPS Forecast Preparation System (AFPS). Preprints, Twelfth International Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Atlanta, Amer. Meteor. Soc., 1996. 194-197
    [195] Erb R. A. Development of a headwater model application for National Weather Service Weather Forecast Office. 82th AMS Annual Meting, Interactive Symposium on the Advanced Weather Interactive Processing System, Orlando, Florida, January 13-17, 2002. J7.9
    [196] http://www.weather.gov/ohd/hrl/ahps.htm, 2006
    [197] 徐胜, 杨亚群, 丁韶辉. 淮河黄河流域暴雨洪水监测预报系统简介及其进展. 治淮, 2002, 10 月: 15-17
    [198] 徐胜. 雷达资料在监测淮南山区暴雨中的应用. 新世纪气象科技创新与大气科学发展——03.7 淮河大水的水文气象学问题.中国气象学会水文气象学委员会编, 北京:气象出版社, 2003. 411-413
    [199] Jain R., Kasturi R., Schunck B. Machine vision. New York: McGraw-Hill, 1995. 568pp
    [200] Smith P. L. Jr. On the minimum useful elevation angle for weather surveillance radar scans. J. Atmos. Oceanic Technol., 1998, 15: 841-843
    [201] Bourrel L., Sauvageot J., Vidal J. J., et al. Radar measurement of precipitation in cold mountainous areas: The Garonne basin. Hydrol. Sci. J., 1994, 39: 369–389
    [202] Westrick K. J., Mass C. F., Colle B. A. The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc., 1999, 80: 2289–2298
    [203] 刘钧. 多普勒天气雷达资料及其二次产品的网络数据库管理技术[硕士学位论文]. 南京: 南京气象学院图书馆, 2000
    [204] O'Bannon T. Using a “terrain-based” hybrid scan to improve WSR-88D precipitation estimates. Preprints, 28th International Conference on Radar Meteorology, Amer. Meteor. Soc., 1997. 506-507
    [205] Wilson J. W., Brandes E. A. Radar measurement of rainfall—a summary. Bull. Amer. Meteor. Soc., 1979, 60: 1048–1058
    [206] www.hbmc.gov.cn (淮河流域气象中心), 2006
    [207] 水利部淮河水利委员会编. 淮河流域淮河水系实用水文预报方案(上)—淮河干流及支流主要控制站. 山东济南: 黄河出版社, 2002. 284pp
    [208] Viessman W., Lewis G. L. Introduction to Hydrology. 4th ed. Harper-Collins, 1996. 760pp
    [209] Tabios G. Q., Salas J. D. A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour. Bull., 1985, 21: 365-380
    [210] 陈峪, 杨贤文 ,廖要明, 等. 2003 年淮河主汛期雨情及与 1991 年比较. 中国气象学会水文气象学委员会编. 新世纪气象科技创新与大气科学发展—03.7 淮河大水的水文气象学问题, 北京: 气象出版社, 2003. 13~17
    [211] Joss J., Pittini A. Real-time estimation of the vertical profile of radar reflectivity to improve the measurement of precipitation in an Alpine region. J. Meteor. Atm. Phys., 1991, 47: 61-72
    [212] Andrieu H., Creutin J. D. Identification of vertical profiles of radar reflectivities for hydrological applications using an inverse method. Part 1: formulation. J. Appl. Meteor., 1995, 34: 225-239
    [213] 杜秉玉, 高志球. 雷达反射率因子垂直廓线研究和多种遥感资料综合估计降水. 南京气象学院学报, 1998, 21(4): 729~736
    [214] Vignal B., Andrieu H., Creutin J. D. Identification of vertical profiles of reflectivity from volume scan data. J. Appl. Meteor., 1999, 38: 1214-1228
    [215] 史锐, 程明虎, 崔哲虎, 等. 多普勒雷达实时反射率因子垂直廓线观测研究. 气象, 2005, 31(9): 39~43
    [216] 夏军. 水文非线性系统理论与方法. 武汉: 武汉大学出版社, 2002: pp431
    [217] Nash J. E., Sutcliffe J. V. River flow forecasting through conceptual models, 1, A discussion of principles. J. Hydrol., 1970, 10: 282-290
    [218] Martz W., Garbrecht J. Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers & Geosciences, 1992, 18(6): 747-761
    [219] Garbrecht J., Campbell J. TOPAZ: an automated digital landscape analysis tool for topographic evaluation, drainage identification, watershed segmentation and subcatchment parameterization. TOPAZ User Manual, USDA-ARS, Oklahoma. 1997. 138pp
    [220] 王同如, 李涛. 淠河总干渠放水涵闸渗漏原因分析及对策. 中国农村水利水电, 1999, 8: 5-6
    [221] 吴险峰, 王中根, 刘昌明, 等. 基于 DEM 的数字降水径流模型—在黄河小花间的应用. 地理学报, 2002, 57(6): 671-678
    [222] O'Callaghan F., Mark D. M. The extraction of drainage networks from digital elevation data. Computer Vision Graphics and Image Processing, 1984, 28: 323-344
    [223] Martz L. W., De Jong E. Catch: a FORTRAN program for measuring catchment area from digital elevation models. Computers & Geosciences, 1988, 14(5): 627-640
    [224] 张仁铎. 空间变异理论及应用. 北京: 科学出版社, 2005. 628pp
    [225] Strahler A. N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union, 1957, 38: 913-920
    [226] Hewlett J. D., Hibbert A. R.. Factors affecting the response of small watersheds to precipitation in humid regions. In Forest Hydrology (eds. W.E. Sopper and H.W. Lull). Pergamon Press, Oxford, 1967. 275-290
    [227] Hewlett J. D., Troendle C. A. Nonpoint and diffused water sources: A variable source area problem. In Proceedings of a Symposium on Watershed Management, Utah State University. New York, American Society of Civil Engineers. 1975. 21-46
    [228] Quinn P. F., Beven K. J., Lamb R. The ln(α/ tanβ) index: how to calculate it and how to use it in the TOPMODEL frameword. Hydrol. Process, 1994, 9: 161-185
    [229] 孔凡哲, 芮孝芳. TOPMODEL 中地形指数计算方法的探讨. 水科学进展, 2003, 14(1): 42-45
    [230] 康绍忠主编. 土壤-植物-大气连续体水分传输理论及其应用. 北京: 水利电力出版社, 1994. 122-150
    [231] 徐时进, 钱名开等. 淮河史灌河流域水量平衡初步分析. 赵柏林, 丁一汇主编. 淮河流域能量与水分循环研究(一). 北京: 气象出版社, 1999. 273pp
    [232] www.es.lancs.ac.uk/hfdg/freeware/hfdg_freeware_top.htm
    [233] 王中根, 刘昌明, 左其亭, 等. 基于 DEM 的分布式水文模型构建方法. 地理科学进展, 2002, 21(5): 430-439
    [234] Colle B. A., Westrick K. J., Mass C. F. Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 1999, 14: 137~154
    [235] 程明虎, 刘黎平, 张沛源, 等. 暴雨系统的多普勒雷达反演理论和方法. 北京: 气象出版社, 2004. 254pp
    [236] 杨洪平, 万蓉, 石燕, 等. 淮河流域"6.30"暴雨过程的三部雷达联合反演降水分析. 见: 中国气象学会水文气象学委员会编. 气象科技创新与大气科学发展(7), 北京: 气象出版社, 2003. 423pp
    [237] 姚学祥, 徐晶. 2003 年淮河流域大水期间体积降水量的研究. 气象学报, 2004, 62(6): 803~813
    [238] Wilson J. W., Crook N. A., Muller C. K., et al. “Nowcasting thunderstorms: a status report”. Bull. Amer. Meteor. Soc., 1998, 79(10): 2079~2099
    [239] Berenguer M., Davila J., Corral ., et al. Hydrological evaluation of a nowcasting technique applied to flood forecasting. Preprints 31th Conf. on Radar Meteorology, Seattle, Washington, Amer. Meteor. Soc., 2003. 708~709
    [240] Hilst G. R., Russo J. A. Jr. An objective extrapolation technique for semi-conservative fields with an application to radar patterns. Tech. Memo. No. 3, Travelers Weather Research Center, Harford, CT., 1960. 34 pp
    [241] Kessler E., Russo J. A. Statistical properties of weather echoes. Preprints 10th weather radar conf., Washington, DC, Amer. Meteor. Soc., 1963. 25~33
    [242] Crane R. K. Automatic cell detection and tracking. IEEE Trans. Geosci Electron, 1979, GE-17: 250-262
    [243] Bjerkaas C. L., Forsyth D. E. Operational test of a three-dimensional echo tracking program. Preprints 19th Conf. Radar Meteorology Miami Beach, Amer. Meteor. Soc., 1980. 244~247
    [244] Smythe G. R., Zrni? D. S. Correlation analysis of Doppler radar data and retrieval of the horizontal wind. J. Climate and Appl. Meteor., 1983, 22: 297~311
    [245] Tuttle J. D., Foot G.. B. Determination of the boundary layer airflow from a single Doppler radar. J. Atmos. Ocean. Tech., 1990, 7: 218~232
    [246] Li P. W., Wong W. K., Chan K. Y., et al. SWIRLs-an evolving nowcasting system. Technical Note, 100, Hong Kong Observatory, 2000. 28pp
    [247] 郑媛媛, 俞小鼎, 方翀, 等. 2003 年 7 月 8 日安徽系列龙卷的新一代天气雷达分析. 气象, 2004, 30(1): 38~40
    [248] Rinehart R. E. A pattern recognition technique for use with conventional weather radar to determine internal storm motions. Atmos. Tech., 1981, 13: 119~134
    [249] Tuttle J., Gall R. A single-radar technique for estimating the winds in tropical cyclones. Bull. Amer. Meteor. Soc, 1999, 80(4): 653~668
    [250] Browning K. A. Airflow and precipitation trajectories within severe local storms which travel to the right of the winds, J. Atmos. Sci., 1964, 21: 634-639
    [251] Byers,H. R., Braham R. R. The Thunderstorm Project. U.S. Government Printing Office, Washington, D. C. 1949. 287pp
    [252] Browning K. A., Collier C. G.. Nowcasting of precipitation systems, Rev. Geophys., 1989, 27: 245-370
    [253] Smith D. L. The application of manually digitized radar data to short-range precipitation forecasting. Preprints 16th Conf. on Radar Meteorology, Houston, Texas, Amer. Meteor. Soc., 1975. 347~352
    [254] Tatehira R., Sato H., Makino Y. Short-term forecasting of digitised echo pattern. Kisho-cho Kenkyu Jiho, 1976, 26: 188~189
    [255] Collier C. G., Kzyzysztofowicz R. Quantitative precipitation forecasting. Journal of Hydrology, 2000, 239: 1-2
    [256] Grecu M., Krajewski W. F. A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting. Journal of Hydrology, 2000, 239: 69-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700