高分辨率机载SAR成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SyntheticAperture Radar,简称SAR)是一种全天时、全天候的高分辨率微波成像系统。经过几十年的发展,常规分辨率的单基SAR成像技术已经逐渐趋于成熟。但是,应用现有成像技术聚焦X波段超高分辨率SAR或者双基SAR回波数据时仍然存在很多问题。
     超高分辨率条件下,线性调频变尺度算法(Chirp Scaling Algorithm,简称CSA)等近似频率域算法的相位误差变大,导致SAR图像聚焦质量显著下降。针对此问题,本文研究了在步进调频体制下对两种近似频率域算法进行改进,减小算法相位误差,从而实现X波段超高分辨率SAR回波数据的高精度聚焦处理。
     双基SAR系统中,发射机和接收机分置使得回波信号的多普勒相位历史较为复杂,高精度的双基成像算法的推导也较为繁琐。本文对双基极坐标格式算法(Polar Format Algorithm,简称PFA)和双基反投影算法(Back Projection Algorithm,简称BPA)进行了分析和完善。此外,对现有几种近似双基频谱的精度进行了比较,并推导了双基距离多普勒算法(Range DopplerAlgorithm,简称RDA)。
     论文第一章绪论,介绍了本文工作的研究背景,回顾了单基和双基SAR的发展历程和现状。最后,总结了本文的主要工作。
     论文第二章研究了基于步进调频信号的超高分辨率SAR成像算法。本章首先介绍了步进调频回波信号模型以及现有带宽合成方法。然后,分别讨论了直接接收和dechirp接收方式下回波信号的处理流程。该流程利用CSA或者扩展频率域变尺度算法(Extended Frequency ScalingAlgorithm,简称EFSA)聚焦接收子脉冲信号集,在二维频率域对子脉冲集进行拼接,并对拼接所得数据做二维逆傅立叶变换得到图像。最后,对上述处理流程和原始CSA/EFSA聚焦全带宽信号的相位误差进行了分析和比较。点目标仿真和相位误差分析均表明,本章提出的子脉冲数据聚焦后拼接的处理流程可以有效的改善图像聚焦质量。
     论文第三章讨论了基于尺度变换原理的双基PFA。首先简单介绍了双基聚束模式下的成像几何关系以及双基PFA流程。然后,讨论了尺度变换原理(Principle of Chirp Scaling,简称PCS)以及双基PFA距离向重采样的本质。最后,对直接接收和dechirp接收方式下的回波信号分别进行了距离向变标处理。由于应用尺度变换代替插值来实现数据的距离向重采样,双基PFA的运算效率得到了有效改善。
     论文第四章对双基PFA的波前弯曲误差进行了分析和校正。平面波前假设在双基PFA聚焦过程中引入了相位误差,导致图像出现空变几何失真和散焦现象。本章首先推导了波前弯曲误差的解析表达式。然后,基于此解析表达式,设计空变滤波器来补偿双基PFA图像中的散焦现象,并利用插值运算来校正图像中的几何失真。点目标仿真以及滤波后场景聚焦范围的分析表明该方法可以有效地补偿双基PFA的波前弯曲误差。
     论文第五章讨论了双基滤波反投影(Filter Back Projection,简称FBP)算法以及FBP算法与CSA之间的联系。基于电磁场模型和Born近似,SAR基带回波信号被视为场景复反射系数的傅立叶积分变换,对信号应用FBP类的逆转方法可以得到图像。本章进一步完善了该FBP方法在双基SAR成像中的应用,并对其本质进行了分析。然后,在单基配置下,对FBP算法与CSA之间的联系进行了推导。发现在忽略信号距离向调频斜率的空变性的条件下,FBP算法可以近似得到CSA处理流程。这也进一步验证了FBP的二维空变匹配滤波器本质。
     论文第六章对双基二维点目标响应频谱和双基RDA进行了分析。首先,简单介绍了现有三种近似的二维点目标响应频谱,并对频谱精度进行了分析和比较。分析表明改进后的Loffeld双基公式(Improved Loffeld’s Bistatic Formula,简称ILBF)与级数逆转(Method of SeriesReversion,简称MSR)频谱精度相当。基于ILBF频谱,本章推导并分析了双基RDA。与现有双基频率域算法相比,该算法形式上简洁,并可以适用于双基方位向空变以及空不变配置下。最后,仿真实验验证了该算法的有效性。
Synthetic aperture radar (SAR) is a high resolution microwave imaging system with all weather,day and night capability. After the developments in the past decades, the monostatic SAR imagingtechnologies in general resolution case become mature gradually. However, there are still someproblems when utilizing the existing algorithms to focus the X band ultra-high resolution SAR data orbistatic SAR data.
     In ultra-high resolution case, the phase errors in the approximated frequency domain algorithms,such as chirp scaling algorithm (CSA), become larger, which degrade the focal quality of SAR imagesignificantly. To solve this problem, this dissertation investigates the modification of two frequencydomain algorithms in ultra-high resolution SAR imaging with the transmitted stepped frequencywaveform. With this modification, the phase errors in these algorithms are reduced so as to focus theX band ultra-high resolution SAR data with high precision.
     In bistatic SAR, the separation of transmitter and receiver results in a complicate form of theDoppler phase term of the received signal, and hence the derivation of bistatic algorithm with highprecision is complex. The bistatic polar format algorithm (PFA) and bistatic back projection algorithm(BPA), which are obtained by extending the corresponding monostatic algorithms, are analyzed andimproved in this dissertation. Then, the existing approximate bistatic spectrums are analyzed andcompared, and the bistatic range Doppler algorithm (RDA) is derived.
     Chapter I is the introduction, which introduces the background of this paper and describes thehistory and latest developments in monostatic and bistatic SAR. Then, the difficulties and maincontents in our research are outlined.
     Chapter II investigates the ultra-high resolution SAR imaging with the transmitted steppedfrequency waveform. This chapter first introduces the signal model of received stepped frequencywaveform and existing bandwidth combination methods. The new processing flows for the receivedchirp and dechirped stepped frequency signal are then proposed and discussed, respectively. The CSAand extended frequency scaling algorithm (EFSA) are applied to focus the sub pulses, respectively.After combining the focused sub pulses in the2-D frequency domain, the image can be obtained viaperforming2-D IFFT on the combined data. The phase error in the above processing flows and in theoriginal CSA/EFSA are analyzed and compared finally. Point target simulation and phase erroranalyses indicate that our proposed methodology can improve the focal quality of image effectively.
     In Chapter III, the implementation of bistatic PFA using the principle of chip scaling (PCS) isproposed. The bistatic spotlight mode SAR data collection geometry and bistatic PFA are introducedfirst. Then, the PCS and essence of range resampling in bistatic PFA are discussed. Finally, the scalingprocessing flows for the chirp and dechirped signal are described, respectively. Since the scalingmethodology is used to implement the range resampling, the efficiency of bistatic PFA is improvedeffectively.
     Chapter IV analyzes and corrects for the wavefront curvature error in bistatic PFA image. Theunrealistic planar wavefront assumption in bistatic PFA introduces phase error in the focused imageand results in space variant geometry distortion and defocusing effect. This chapter first derives theanalytical expression of wavefront curvature. Then, the space variant filter is designed and applied tocompensate for the defocusing effect in bistatic PFA image, and interpolation operation is used tocorrect for the geometry distortion. Analysis of the focused scene size after space-variant filteringvalidates this algorithm.
     Chapter V studies the bistatic filtered back projection (FBP) algorithm and the link betweenFBP and CSA. Based on the microwave model and Born approximation, the received baseband signalin SAR can be considered as the fourier integral transform of the reflectivity of the illuminated scene.The image can be obtained by applying a FBP-type inversion algorithm. This chapter completes theapplication of FBP algorithm in bistatic SAR imaging, where the essence of this methodology is alsodiscussed. Moreover, the link between FBP and CSA in monostatic case is derived. When ignoring therange variance of range modulation rate, the processing flow of FBP can be approximated as that ofCSA, which also indicates that the essence of FBP is a2dimensional space variant matched filter.
     In Chapter IV, bistatic point target response spectrum and bistatic RDA are analyzed. Threeexisting approximate spectrums are analyzed and compared first. The improved Loffeld’s bistaticformula (ILBF) spectrum is proved to be comparably accurate with the spectrum derived using themethod of series reversion (MSR). Based on the expansion of the ILBF spectrum, a new bistatic RDAis developed to process the azimuth invariant and variant bistatic SAR data. Compared with theexisting bistatic frequency domain algorithm, the new algorithm has a simpler formulation, and is ableto cope with bistatic SAR data in azimuth invariant and variant configurations. Finally, point targetssimulations validate the new algorithm.
引文
[1]. D. A. Ausherman, A. Kozma, et Al.,“Developments in radar imaging”, IEEE Trans. OnAerospace and Electronics System, vol.20, no.4,1984, pp.363-399.
    [2]. W. G. Carrara, R. S. Goodman, et.al.,“Spotlight synthetic aperture radar signal processingalgorithms”, Artech House, Boston,1995.
    [3]. J. C. V. Jakowatz, D. E. Wahl, et al.,“Spotlight mode synthetic aperture radar: A signalprocessing approach”, Kluwer Academic Publisher, Boston,1996.
    [4]. I. Cumming, and F. Wong,“Digital Processing of synthetic aperture radar Data-Algorithmsand Imeplementation”, Artech House, Boston,2005.
    [5].张澄波,“综合孔径雷达:原理、系统分析与应用”,科学出版设,北京,1989。
    [6].保铮,邢孟道,王彤,“雷达成像技术”,电子工业出版社,北京,2005。
    [7]. F. Ahmad, M. Amin, and S. A. Kassam,“Synthetic aperture beamforming for imaging througha dielectric wall”, IEEE transactions on Aerospace and Electronincs System, vol.41, no.1,2005,pp.271-283.
    [8]. M. Dehmollaian, K. Sarabandi,“Refocusing through building walls using synthetic apertureradar”, IEEE Transaction on Geoscience and Remote Sensing, vol.46, no.6,2008, pp.1589-1599.
    [9].王昭,“穿墙雷达动目标检测与定位方法研究”,硕士学位论文,电子科技大学,2008。
    [10]. M. Soumekh,“Bistatic synthetic aperture radar inversion with application in dynamic objectimaging”, IEEE Transaction on Signal Processing, vol.39,1991, pp.2044-2055.
    [11]. Y. Ding, D. C. Munson Jr,“Fast back projection algorithm for bistatic imaging”, IEEE ICIP,vol.2,2002,pp.449-452.
    [12]. P. K. Varshney, D. D. Weiner, H. Schwarzlander, et al.,“Ambiguity function analysis forbistatic radar”, Techinical Report of Syracuse University,1995.
    [13]. J. H. G. Ender, A. R. Brenner,“PAMIR-A wideband phased array SAR/MTI system”, IEEEProceedings on Radar, Sonar and Navigation, vol.150, no.3,2003, pp.165-172.
    [14]. D. D’Aria, A. M. Guarnieri, F. Rocca,“Focusing bistatic synthetic aperture radar using dipmove out”, IEEE Transactions on Geoscience and Remote Sensing, vol.42, no.7,2004, pp.1362-1376.
    [15]. S. I. Tsunoda, F. Pace, et al.,“Lynx: A high-resolution synthetic aperture radar”, SPIEAerosense, vol.3704,1999, pp.1-8.
    [16]. R. Horn,“E-SAR—The experimental airborne L/C-band SAR system of DF-VLR”,IGARSS’88Proceedings, pp.1025-1026.
    [17]. A. Moreira, R. Spielbauer, et al.,“Conceptual design, performance analysis and results of thehigh resolution real-time processor of the DLR airborne SAR system”, IGARSS’94Porceedings,vol.2,1994, pp.912-914.
    [18]. J. H. G. Ender, et al.,“Experimental results achieved with the airborne multi-channel SARsystem AER-II”, EUSAR’98,1998, pp.315-318.
    [19]. F. Lombardini, J. H. G. Ender, et al.,“Experimental of interferometric layover solution with thethree-antenna airborne AER-II SAR system”, IGARSS’04, Alasks,2004, pp.3341-3344.
    [20]. H. Hellsten, L. M. Ulander, et al.,“Development of VHF CARABAS II SAR”, Proceeding ofSPIE, vol.2747,1996, pp.48-60.
    [21]. A. Gustavsson, L. M. H. Ulander, et al.,“The experimental airborne VHF SAR sensorCARABAS: A Status Report”, IGARSS’96, Lincoln,1996, pp.1877-1880.
    [22]. G. R. Sloan, D. F. Dubbert,“Affordable, Miniaturized SAR for Tactical UAV applications”,Proceedings of SPIE, vol.5408,2004, pp.74-83.
    [23]. A. D. Sweet, D. F. Dubbert, and et al.,“A portfolio of gine resolution Ku-band MiniSARImages: Part I”, SPIE Defense&Security Symposium, Radar Sensor Techonology X,2006, vol.6210, Orlando FL.
    [24]. A. D. Sweet, D. F. Dubbert, and et al.,“A portfolio of gine resolution Ku-band MiniSARImages: Part II”, SPIE Defense&Security Symposium, Radar Sensor Techonology X,2006,vol.6210, Orlando FL.
    [25]. D. F. Dubbert, A. D. Sweet, G. R. Sloan, and et al.,“Results of the sub-thirty-pound, highresolution Mini SAR demonstration”, Airborne Interlligence, Surveillance System andApplication III. Proceedings of SPIE, vol.6209,2006.
    [26]. D. L. Coa, J. Dupas, O. D. Plessis,“Development status of the ONERA airborne SAR facilities(RAMSES)”, EUSAR’98,1998.
    [27]. P. D. Fernandez, et al.,“The ONERA PAMSES SAR: Status in2004”, Radar2004Symposim,Toulouse,2004.
    [28]. H. Cantalloube, E. Colin, et al.,“The ONERA RAMSES SAR: latest significant results andfuture developments”, Proceeding of IEEE Radar conference,2006, pp.518-524.
    [29]. J. H. G. Ender, P. Berens, et al.,“Multi channel SAR/MTI system development at FGAN: fromAER to PAMIR”, IGARSS’02, Toronto, Canada,2002, pp.1679-1701.
    [30]. A. R. Brenner, J. H. G. Ender,“First experimental results achieved with the new very widebandSAR system PAMIR”, Proceeding of EUSAR’02, Germany,2002, pp.4-6.
    [31]. J. H. G. Ender, A. R. Brenner,“PAMIR-A wideband phased array SAR/GMTI system”, IEEProceeding of Radar Sonar and Navigation, vol.150, no.3,2003, pp.165-172.
    [32]. A. R. Brenner, J. H. G. Ender,“Demonstration of advanced reconnaissance techniques with theairborne SAR/GMTI sensor PAMIR”, IEE proceeding of Radar Sonar and Navigation, vol.153,no.2,2006, pp.152-162.
    [33]. M. L. Skolnik,“Introduction to radar systems”, McGraw-Hill Book Company, NewYork,1980.
    [34]. R. A. Simpson,“Spacecraft studies of planetary surfaces using bistatic radar”, IEEETransactions on Geoscience and Remote Sensing, vol.31, no.2,1993, pp.465-482.
    [35]. T. A. soame and D. M. Gould,“Description of an experimental bistatic radar system”, IEERadar’87International Radar Conference, no.281,1987, pp.12-16.
    [36]. M. R. B. Dunsmore,“Bistatic radars for air defense”, IEE Radar’87International radarconference, no.281,1987, pp.7-11.
    [37]. G. Yates, M. A. Horne, A. P. Blake, R. Middleton, and et al.,“Bistatic SAR image formation”,Proceedings of EUSAR, Ulm, Germany,2004, pp.581-584.
    [38]. Marc Rodr’iguez-Cassol’a, G. Krieger, M. Wendler,“Azimuth-invariant, Bistatic airborne SARprocessing strategies based on monostatic algorithms”, IGARSS-2005.
    [39]. I. Walterscheid, J. Ender, A. Brenner, and O. Loffeld,“Bistatic SAR processing andexperiments”, IEEE Transactions on Geoscience and Remote Sensing, vol.44, no.10,2006, pp.2710-2717.
    [40]. J. Balke,“Field test of bistatic forward-looking synthetic aperture radar”, IEEE internationalRadar Conference,2005, pp.424-429.
    [41]. J. Balke,“Forward-looking synthetic aperture radar”, SEE Radar2004, Toulouse.
    [42]. H. S. Shin, J. T. Lim,“Omega-k algorithm for airborne forward-looking bistatic spotlight SARimaging”, IEEE Geoscience and Remote Sensing Letters, vol.6, no.2,2009, pp.312-316.
    [43]. X. L. Qiu, D. H. Hu, C. B. Ding,“Some reflections on bistatic SAR of forward-lookingconfiguration”, IEEE Geoscience and Remote Sensing Letters, vol.5, no.4,2008, pp.735-739.
    [44]. A. Broquetas, M. Fortes, and et al.,“Bistatic SAR based on TerraSAR-X and ground basedreceivers”, IGARSS2010, pp.114-117.
    [45]. H. Breit, T. Fritz, U. Balss, and et al.,“Processing of bistatic TanDEM-X data”, Geoscienc andRemote Sensing Symposium, IGARSS’2010, pp.2640-2643.
    [46]. H. Nies, O. Loffeld, K. Natroshvili, and et al.,“The bistatic aspect of the TanDEM-X mission”,IGARSS’07, pp.631-634.
    [47]. M. Rodrguez-Cassola, S. V. Baumgartner, and et al.,“Bistatic TerraSAR-X/F-SARspaceborne-airborne SAR experiment: Description, Data processing, and results”, IEEETransactions on Geoscience and Remote Sensing, vol.48, no.2,2010, pp.781-794.
    [48]. I. Walterscheid, T. Espeter, A. R. Brenner, and et al.,“Bistatic SAR experiments with PAMIRand TerraSAR-X-setup, processing, and image results”, IEEE Transactions on Geoscience andRemote Sensing,2010, vol.48, no.8, pp.3268-3279.
    [49]. M. Rodrguez-Cassola, S. V. Baumgartner, and et al.,“New processing approach and results forbistatic TerraSAR-X/F-SAR spaceborne-airborne experiments”, IGARSS’2009, pp. II242-245
    [50]. I. Walterscheid, J. H. G. Ender, O. Loffeld,“Bistatic image processing for hybrid SARexperiment between TerraSAR-X and PAMIR”, IGARSS2006, pp.1934-1937.
    [51]. T. Espeter, I. Walterscheid, J. Klare, and et al.,“Synchronization techniques for the bistaticspaceborne/airborne SAR experiment with TerraSAR-X and PAMIR”, IGARSS2007, pp.2160-2163.
    [52]. H. Nies, G. Behner, S. Reuter, and et al.,“Polarimetric and interferometric applications inbistatic hybrid SAR mode using TerraSAR-X”, IGARSS2010, pp.110-113.
    [53]. D. C. Munson, JR., J. D. D’brien, and W. K. Jenkins,“A tomographic formulation ofspotlight-mode synthetic aperture radar”, Proceeding of the IEEE, vol.71, no.8,1983, pp.917-925.
    [54]. M. D. Desai, W. K. Jenkins,“Convolution backprojection image reconstruction for spotlightmode synthetic aperture radar”, IEEE Transaction on Image Processing, vol.1, no.4,1992, pp.505-517.
    [55]. M. D. Desai,“A new method of synthetic aperture radar image using modified convolutionbackprojection algorithm”, Ph. D. Dissertation, University of Illinois,1985.
    [56]. M. Soumekh,“Bistatic synthetic aperture radar inversion with application in dynamic objectimaging”, IEEE Transaction on Signal Processing, vol.39,1991, pp.2044-2055.
    [57]. J. L. Bauk and W. K. Jenkins,“Convolution-backprojection image reconstruction for bistaticsynthetic aperture radar”, in Proceeding IEEE international Symp on Circuits and Systems,Portland. OR,1989, pp.1512-1515.
    [58]. C. J, Nolan and M. Cheney,“Synthetic aperture inversion”, Inv. PRobl., vol.18,2002, pp.221-236.
    [59]. C. J. Nolan and M. Cheney,“Synthetic aperture inversion for arbitrary flight paths and non-flattopography”, IEEE Transaction on Image Process, vol.12, no.9,2003, pp.1035-1043.
    [60]. B. Yazici and M. Cheney,“Synthetic aperture inversion for arbitrary flight paths in thepresence of noise and clutter”, in Proc. IEEE Int. Radar Conf.,2005, pp.806-810.
    [61]. C. E. Yarman, B. Yazici and M. Cheney,“Bistatic synthetic aperture radar imaging forarbitrary flight trajectories”, IEEE Transaction on Image Processing, vol.17, no.1,2008, pp.84-93.
    [62]. C. W. Chen,“Modified polar format algorithm for processing spaceborne SAR data”,Proceedings of IEEE Radar Conference2004, pp.44-49.
    [63].肖靖,“聚束SAR极坐标格式算法研究”,硕士学位论文,南京航空航天大学,2004。
    [64].李琛,“聚束模式SAR大场景成像算法研究”,硕士学位论文,南京航空航天大学,2006。
    [65]. B. D. Rigiling, R. L. Moses,“Taylor expansion of the differential range for monostatic SAR”,IEEE Transaction on Aerospace and Electronic System, vol.41, no.1,2005, pp.60-64.
    [66]. A. W. Doren,“Wavefront curvature limitations and compensation to polar format processingfor synthetic aperture radar images”, Sandia Report,2007.
    [67]. N. E. Doren,“General formulation for wavefront curvature correction in polar-formattedspotlight SAR images using space-variant post-filtering”, Proceeding of InternationalConference on Imaging Processing, Santa Barbara, CA. USA, IEEE Signal Processing Society,vol.1,1997, pp.861-864.
    [68]. C. V. Jakowatz, Jr. D. E. Wahl, P. A. Thompson, et al.,“Space-variant filtering for correction ofwavefront curvature effects in spotlight-mode SAR imagery formed via polar-formatting”,Proceedings of the SPIE, Orlando. FL, USA, Apr23-241997, the international Society ofOptical Engineering, vol.3070, pp.33-42.
    [69]. N. E. Doren,“Space-variant post-filtering for wavefront curvature correction inpolar-formatted spotlight-mode SAR imagery”, Ph. D dissertation, the University of NewMexico,1999.
    [70]. B. D.Rigling.,“Signal Processing Strategies for Bistatic Synthetic Aperture Radar”, Ph. DDissertation, The Ohio State University,2003.
    [71]. B. D. Rigling, R. L. Moses,“Polar format algorithm for bistatic SAR”, IEEE Transactions onAerospace and Electronic Systems, vol.40, no.4,2004, pp.1147-1159.
    [72]. O. Loffeld, H. Nives, et al,“Models and useful relations for bistatic SAR processing”, IEEETransactions on Geoscience and Remote Sensing, vol.42, no.10,2004, pp.2031-2038.
    [73]. K. Natroshvili, O. Loffeld,“Focusing of general bistatic SAR configuration data with2-Dinverse scaled FFT”, IEEE Transactions on Geoscience and Remote Sensing, vol.44, no.10,2006, pp.2718-2727.
    [74]. R.Wang, O.Loffeld, et al,“Focusing spaceborne/airborne hybrid bistatic SAR data usingwavenumber-domain algorithm”, IEEE Geoscience and Remote Sensing Letters, vol.47, no.7,2009, pp.2275-2283.
    [75]. Y. L. Neo, F. H. Wong, et al,“A two-dimensional spectrum for bistatic SAR processing usingseries reversion”, IEEE Geoscience and Remote Sensing Letters, vol.4, no.1,2007, pp.93-96.
    [76]. X. P. Geng, H. H. Yan, and Y. F. Wang,“A two dimensional spectrum model for general bistaticSAR”, IEEE Transactions on Geoscience and Remote Sensing, vol.46, no.8,2008, pp.2216-2223.
    [77]. R. Wang, O. Loffeld, et al,“A bistatic point target reference spectrum for general bistatic SARprocessing”, IEEE Geoscience and Remote Sensing letter, vol.5, no.3,2008, pp.517-521.
    [78]. R. Wang, O. Loffeld, et al,“Extending Loffeld’s bistatic formula for the general bistatic SARconfiguration”, IET Radar, Sonar&Naviga, vol.4, no.1,2010, pp.74-84.
    [79]. Y. L. Neo, F. H. Wang, et al,“Processing of azimuth invariant bistatic SAR data using the rangedoppler algorithm”, IEEE Transactions on Geoscience and Remote Sensing, vol.46, no.1,2008,pp.14-21.
    [80]. F. li, Shu li, and Y. Zhao,“Focusing azimuth-invariant bistatic SAR data with chirp scaling”,IEEE Geoscience and Remote Sensing letters, vol.5, no.3,2008, pp.484-486.
    [81]. R. Wang, O. Loffeld, et al,“Chirp-scaling algorithm for bistatic SAR data in the constant-offsetconfiguration”, IEEE Transactions on Geoscience and Remote Sensing, vol.47, no.3,2009, pp.952-963.
    [82].李燕平,“单/双基SAR成像和运动补偿研究”,博士学位论文,西安电子科技大学,2008。
    [83]. F. H. Wong, I. G. Cumming,“Focusing bistatic SAR data using the nonlinear chirp scalingalgorithm”, IEEE Transactions on Geoscience and Remote Sensing, vol.46, no.9,2008, pp.2493-2505.
    [84]. X. L. Qiu, D. H, Hu, C. B. Ding,“Non-linear chirp scaling algorithm for one-stationary bistaticSAR”, Proceedings of1st Asian pacific conference synthetic aperture radar, Huangshan, China,Nov5-9,2007, pp.111-114.
    [85]. Y. P. Li, Z. H, Zhang, M. D, Xing, and et al.,“Bistatic spotlight SAR processing using thefrequency-scaling algorithm”, IEEE Geoscience and Remote Sensing Letters, vol.5, no.1,2008,pp.48-52.
    [86]. X. L. Qiu, D. H, Hu, C. B. Ding,“An omega-k algorithm with phase error compensation forbistatic SAR of a translational invariant case”, IEEE Transactions on Geoscience and RemoteSensing, vol.46, no.8,2008, pp.2224-2232.
    [87]. X. L. Qiu, D. H. Hu, C. B. Ding,“Non-linear chirp scaling algorithm for one-stationary bistaticSAR”, Proceedings of APSAR, Huangshan, China, Nov.2007, pp.111-114.
    [88]. X. L. Qiu, D. H. Hu, C. B. Ding,“An improved NLCS algorithm with capability analysis forone-stationary biSAR”, IEEE Transactions on Geoscience and Remote Sensing, vol.46, no.10,2008, pp.3179-3186.
    [89].白霞,毛士艺,袁运能,“时域合成带宽方法:一种0.1米分辨率SAR技术”,电子学报,vol.34, no.3,2006, pp.472-477。
    [90]. R. T. Lord, M. R. Inggs,“High resolution SAR processing using stepped-frequencies”,IGARSS97, Singapore, pp.490-492.
    [91]. H. Schimpf, A. Wahlen, H. Essen,“High range resolution by means of synthetic bandwidthgenerated by frequency stepped chirps”, Electronics Letters, vol.39, no.18,2003, pp.1346-1348.
    [92]. Gavin, A.D.M., and Inggs, M.R.“Use of synthetic aperture and stepped-frequency continuouswave processing to obtain radar images”, Proceedings of South African Symposium onCommunications and Signal Processing1991,1991, pp.32-35.
    [93]. A. J. Wilkinson, R. T. Lord, M. R. Inggs,“Stepped-frequency processing by reconstruction oftarget reflectivity spectrum”, COMSIG98, South African: IEEE,1998, pp.101-104.
    [94]. C. Wu, B. Barkan, et al.,“Modeling and a correlation algorithm for spaceborne SAR signals”,IEEE Transactions on Aerospace and Electronic Sstems, vol.18, no.5,1982, pp.563-575.
    [95]. R. K. Raney, H. Rung, R. Bamler, I. G. Cumming,“Precision SAR processing using chirpscaling”, IEEE Transaction on Geosciences and Remote Sensing, vol.32, no.4,1994, pp.786-799.
    [96]. G. W. Davidson, I. G. Cumming, M. R. Ito,“A chirp scaling approach for processing squintmode SAR data”, IEEE Transaction on Aerospace and Electronic Systems, vol.32, no.1,1996,pp.121-133.
    [97]. A.Moreria.,Josef, Mittermayer., Rolf,Scheiber et al.“Extended chirp scaling algorithm for airand spaceborne SAR data processing in stripmap and scanSAR imaging modes”, IEEETransactions on Geoscience and Romote Sensing, vol.41, no.5,2003, pp.953-963.
    [98]. J. Mittermayer, A. Moreira, O. Loffeld,“Spotlight SAR data processing using the frequencyscaling algorithm”, IEEE Transactions on Geoscience and Remote Sensing, vol.37, no.5,1999,pp.2198-2214.
    [99]. D. Y. Zhu, M. W. Shen, Z. D. Zhu,“Some aspects of improving the frequency scalingalgorithm for dechirped SAR dara processing”, IEEE Transactions on Geoscience and RemoteSensing, vol.46, no.6,2008, pp.1579-1588.
    [100]. D. Y. Zhu, Z. D. Zhu,“Range resampling in the polar format algorithm for spotlight SARimage formation using the chirp z transform”, IEEE Transactions on Signal Processing, vol.55,no.3,2007, pp.1011-1023.
    [101]. Y. Tang, M. D. Xing, Z. Bao,“The polar format imaging algorithm based on double chirp-ztransforms”, IEEE Geoscience and Remoete Sensing Letters, vol.5, no.4,2008, pp.610-614.
    [102]. D. Y. Zhu, S. H. Ye, Z. D. Zhu, et al.,“Polar format algorithm using chirp scaling for spotlightSAR imaging formation”, IEEE Transaction on Aerospace and Electronic Systems, vol.44, no.4,2008, pp.1433-1448.
    [103]. D. Y. Zhu, Z. D, Zhu,“A novel approach to residual video phase removal in spotlight SARimage formation”, Proceedings of IET International Conference on Radar Systems, Edinburgh,Oct,2007.
    [104].朱岱寅,聂鑫,毛新华等,“一种基于变尺度原理的合成孔径雷达极坐标格式成像算法”,中国专利,公开号:101216553,2008年7月。
    [105]. X. Wang, D. Y. Zhu, Z. D. Zhu,“An implementation of bistatic PFA using chirp scaling”,Journal of Electromagnetic Waves and Applications, vol.24, no.5-6,2010, pp.745-753.
    [106]. X. H. Mao, D. Y. Zhu, X. Nie, and Z. D. Zhu,“A two dimensional overlapped subaperturepolar format algorithm based on steeped-chirp signal”, Sensor, vol.8, no.5,2008, pp.3438-3446.
    [107].张玮,“基于方位向尺度变换的聚束SAR成像算法研究”,硕士学位论文,南京航空航天大学,2007。
    [108].毛新华,“PFA在SAR超高分辨率成像和SAR/GMTI中的应用研究”,博士学位论文,南京航空航天大学,2009。
    [109]. X. Wang, D. Y. Zhu,“Wavefront curvature correction in one stationary bistatic SAR imagefocused via PFA”, IET Electronics Letters, vol.46, no.18,2010, pp.1291-1293.
    [110]. R. Bamler,“A comparison of range-doppler and wavenumber domain SAR focusingalgorithms”, IEEE Transactions on Geoscience and Remote Sensing, vol.30, no.4,1992, pp.706-713.
    [111]. Y. L. Neo, F. H. Wong, I. G. Cumming,“A comparison of point target spectra derived forbistatic SAR processing”, IEEE Transactions on Geoscience and Remote Sensing, vol.46, no.9,2008, pp.2481-2492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700