我国草地螟(Loxostege sticticalis)种群时空动态规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草地螟, Loxostege sticticalis Linnaeus (鳞翅目:螟蛾科)是我国北方农牧业生产的一种重大害虫。在长期适应北纬36°-53°的狭长地带的干旱和寒冷气候带中形成的迁飞和滞育两种重要的生活史对策,是草地螟能够在这些地区生存并且其种群动态经常发生变化的主要原因之一。因此,研究揭示草地螟种群的时空动态规律,无论是对于促进草地螟相关研究邻域的发展,还是对于改善和提高草地螟的预测预报和防治技术水平,减少草地螟造成的灾害损失,均具有十分重要的理论和实践意义。本文在认真总结分析了我国草地螟的发生危害特征、国内外已有研究进展的同时,针对国内外对草地螟种群时空动态规律研究比较薄弱的现状,采用种群生态学方法及原理,并结合地理统计分析方法和地理信息系统(GIS)的应用,对我国1953-2008年草地螟种群的时间动态特征、大发生种群的空间分布特征及影响因素,我国与俄罗斯及蒙古国草地螟大发生的虫源关系等开展较全面和系统的研究,取得了一些原创性结果,主要的为:
     明确了我国草地螟种群动态具有周期性大发生的特点,大发生类型属于周期性勃发式,且草地螟的大发生特征与研究尺度或涉及的范围紧密相关。对全国草地螟幼虫种群、内蒙自治区幼虫种群和农区幼虫种群,以及河北康保县一代幼虫种群和农区一代幼虫种群,河北康保县草地螟成虫种群进行自相关分析和相空间轨迹分析的结果表明:在1953-2008年间,全国和内蒙自治区尺度上草地螟的大发生均表现出周期性的特点,即1953-1959,、1978-1984和1996-2008三个大发生周期,其大发生类型均属于周期性勃发式大发生,而在1996-2008大发生周期内则呈现出了持续性勃发式大发生和周期性的特征;在康保县范围内,草地螟种群的时间种群动态规律则相对比较复杂,仅农区一代幼虫种群表现出周期性勃发式大发生的特点,而草地螟幼虫种群和成虫种群则无明显的自相关性。这些结果表明,草地螟种群时空动态规律与涉及的范围或研究的尺度紧密相关。因此,无论是对草地螟种群动态规律的研究、还是对草地螟预测预报和监控工作的开展均应尽可能从大尺度着手。
     在研究明确了环境温湿度是影响我国草地螟种群动态规律的主要环境因子的同时,研究比较了华北和东北地区草地螟的种群动态规律,明确了华北地区越冬种群是东北地区草地螟大发生的主要虫源之一。在研究明确了成虫盛发期的环境温湿度可以显著影响成虫种群和次代幼虫种群空间分布格局的基础上,确定了在成虫盛发期湿度大于44%,环境温度在19°C-25°C的区域内,幼虫的大发生显著高于其他区域。所得的研究结果还表明,由于华北和东北地区地理及环境条件的差异,特别是一代幼虫大发生期间的7月上中旬环境温度的影响,华北地区一、二代幼虫均可以滞育形成次年的越冬虫源,而东北地区仅在二代幼虫大发生年才有数量较多的越冬虫源。另外,华北地区草地螟越冬代成虫,在适当的环境条件下,在盛发期主导的西南气流携带下,可迁往东北地区,形成东北地区发生危害的主要虫源。
     在研究揭示了中国、俄罗斯亚洲部分和蒙古国的草地螟大发生具有高度同步性的同时,研究明确了在这三国相邻的草地螟区域内,存在着有利于越冬代和一代草地螟成虫从俄罗斯东西伯利亚地区和蒙古国东部地区向我国华北和东北地区迁入的高空气流,而大量一代成虫从俄罗斯东西伯利亚地区和蒙古国东部地区的迁入是我国2008年二代幼虫大发生的主要原因。应用相位分析对我国、俄罗斯及蒙古草地螟大发生历史进行分析的结果表明,在1978~1984年期间,中国和蒙古,中国和俄罗斯远东地区,中国和俄罗斯东、西西伯利亚地区的草地螟同步大发生年份分别为4,3,1和5年,在1985~1995年间草地螟处于同步低发期的年份分别为9,11,9和8年,而在1996~2008年的草地螟同步发生年份分别为2,4,8,11年,表明这些区域内的草地螟种群具有密切的关系;对草地螟越冬代和一代成虫盛发期间中国海拉尔,俄罗斯赤塔,蒙古乔巴山三地草地螟迁飞高度(850hPa)的高空风向分析表明,这些区域内的高空盛行西北风,有利于草地螟成虫从俄罗斯东西伯利亚地区和蒙古国东北向我国的华北和东北地区迁入;对2008年这三个国家的一代草地螟成虫盛发期的风场和迁飞轨迹进行分析的结果表明,2008年我国二代幼虫大发生的虫源系来自俄罗斯东西伯利亚地区和蒙古国东部地区,以及中俄和中蒙边境地区一代草地螟成虫。因此,我国草地螟大发生虫源与俄罗斯西伯利亚地区和蒙古国的有密切的联系。这些首次获得的结果为改善和提高草地螟的监测、预报和防治水平提供了重要的科学依据。
     研究明确了我国草地螟大发生成虫种群,越冬幼虫在大尺度空间范围内具有聚集分布的特点,且存在着明显的空间各向异性。运用地理统计方法,对我国草地螟大发生成虫种群和越冬幼虫的半方差函数进行结构分析,并基于半方差函数模型拟合,对各变量的空间分布进行克立格估计,结果表明:我国草地螟大发生成虫种群和由其产生的越冬幼虫均呈聚集分布,且具有明显的空间各向异性,半方差函数的变程分别为153.18~407.37公里,137.64~293.04公里,主变程方向分别为63.2°和65.5°,而其块金系数分别为0.11和0.45。二者的主要聚集方向集中在西南至东北方向上,且大发生期的成虫种群的聚集程度和最大相关范围亦明显高于越冬幼虫。而越冬幼虫的空间分布与前人的研究结果一致,但是次要越冬区的基数有明显的上升趋势。这些结果表明,草地螟在我国主要发生区范围内呈明显的聚集分布,主要的聚集方向为西南至东北方向,而由于成虫具有较强的迁飞能力,因此在空间分布上表现出更大的聚集范围。
     本文的主要创新点:
     1)应用自相关分析和相空间轨迹分析方法,首次确定了我国草地螟种群55年时间序列动态规律并具有周期性大发生规律的同时,进一步明确了我国草地螟大发生种群动态规律与涉及的尺度紧密相关:涉及的范围越广,成虫和幼虫的自相关关系均越密切;
     2)在研究明确了我国草地螟的发生危害程度主要受环境温湿条件影响的基础上,首次分析比较了我国华北和东北两大主要草地螟发生危害区的草地螟种群动态规律及虫源关系:华北地区的越冬代成虫羽化后可以随着气流迁飞到东北地区,因此华北地区也是东北地区的主要虫源地之一。
     3)通过对中国,俄罗斯和蒙古国的草地螟大发生同步性,三国相邻区域的高空气流条件,以及2008年我国一代成虫和二代幼虫大发生的虫源的科学分析,确定了俄罗斯的亚洲部分以及蒙古国的草地螟也是我国草地螟大发生的主要虫源。
     4)运用地理统计学方法对我国草地螟大发生成虫和越冬幼虫的空间分布格局进行了结构分析,首次明确了我国草地螟具有聚集分布的特点,且成虫的聚集程度高于越冬幼虫,而二者的聚集方向均为西南至东北方向。
The beet webworm, Loxostege sticticalis Linneaus (Lepidoptera: Pyralidae) is one of the most destructive pests of crops and fodder plants in northern China. It survived maily in a long belt zone between 36°N-53°N and the population dynamic offen changed dramatically due to the two important life history strategies obtained by L. sticticalis: migration and diapause, adapted to the dry and cold climate in this area. Thus, understanding of the spatiotemporal dynamics was of great importance in improving the forcasting and control of beet webworm outbreaks. As the spatiotemporal dynamic were poorly understood, systematic studies were conducted to the population dynamics of beet webworm in China during 1953-2008, spatial distribution of outbreak population and affecting factors, and outbreak source relationship between China, Russian and Mongolia, using population ecology and geostatistic methods and geographic information system. The major progresses obtained were summarized as follows:
     Beet webworm outbreak in China was characterized with periodicity, and the outbreaks were classified as periodic eruption, while the outbreak characters were colosely related to spatial scale investigated. Basing autocorrelation and phase trajectory analysis of larvae population in national, Inner Mongolia, farming area in Inner Mongolia, Kangbao county of Hebei province, and farming area in Kangbao county of Hebei province, and adult population in Kangbao county of Hebei province, results showed that beet webworm outbreaks at national and Inner Mongolia scale were characterized with periodicity during 1953-2008, and outbreaks were classified as periodic eruption, including three outbreak periods 1953-1959, 1978-1984, 1996-2008. Beet webworm population dynamic at county level became more complicated, larvae population in farming area of Kangbao county of Hebei province were characterized with periodicity and classified as periodic eruption, while no significant autocorrelation were found in larvae population and adult population at Kangbao county of Hebei province. These results indicated that spatialtemporal population dynamic of beet webworm were closely related to spatial scales investigated, thus, discussion on spatialtemporal population dynamic of beet webworm and its monitoring and forecasting application should carried out at macro scale. Spatial population dynamics of beet webworm in China were greatly affected by environmental temperature and relative humidity, and overwintering population at northern China was one of the major sources of beet webworm outbreak at northeastern China.
     Environmental temperature and relative humidity could greatly affect the spatial distribution of adult population and consequent larvae population, serious outbreak of larvae happened in areas with temperature ranged 19°C-25°C and relative humidity higher than 44% during adult outbreak. The first and second generation larval population can overwintered as diapause larvae in northern China, while only the second generation larvae can overwintered as diapause larvae in northeastern China, and this was mainly because of environment variation, especially the temperature during 1 July to 20 July, serious outbreak period of the first generation larvae. Overwintering generation adults would migrate into northeastern areas and cause consequent serious outbreaks, when unfavorable environmental conditions and favorable southwest air flow happened.
     Beet weebworm outbreaks in China, Asia part of Russia and Mongolia were highly synchronized and wind direction by migration hight of beet webworm in the neighbouring areas favored the adults of overwintering and 1st generation migrated from eastern Siberia of Russia and eastern Mongolia into northern and northeastern China, and 1st generation adult population migrated from eastern Siberia of Russia and eastern Mongolia were responsible for the serious outbreaks of 2nd generation larvae in China in 2008. Phase analysis showed that the synchornized outbreak years between China and Mongolia, China and Far East, China and western and eastern Siberia of Russia were 4, 1, 3 and 5 years from 1978 to 1984, and 2, 4, 8 and 11 years from 1996 to 2008 by phase analysis, while synchronized nonoutbreak years between China and Mongolia, China and Far East, China and western and eastern Siberia of Russia were 9, 11, 9 and 8 years, indicating that migration taken by adult L. sticticalis were the possible cause for the synchronized outbreaks in these areas. Furthermore, the analysis of wind system by the height where the migration of adult L. sticticalis usually occur showed that possibility of northwestern wind in Haila’er (China), Chita (Russia) and Choybalsan (Mongolia) was high, which favored the adults migrate successfully from these areas to northern and northeastern China during its reproductive seasons. Finally, the larvae of the second generation infested an area of 11 million hectares at extremely high density in Northern China, although the crop damaged by the first generation larvae with low density was only 700 thousand hectares in 2008. Results of wind field and trajectory analysis showed that the source of the first-generation adults, which caused severe outbreak of second generation larvae, was tracked back to eastern Siberia of Russia, eastern Mongolia, and the boundary regions of China-Russia and China-Mongolia. All these results suggested that the outbreak source of L. sticticalis in northern China were closely related to outbreak populations in Siberia of Russia and Mongolia, via long distance windborne migration of L. sticticalis with the help of frequent northwestern wind. The results firstly reported here will greatly improve the mornitoring, forcasting and control of beet webworm population.
     Adult population and overwintering larvae populations of beet webworm in China belonged to the aggregated distribution, and evident spatial anisotropy were detected. Geostatistical analysis was applied to adult population and overwintering larvae population, results showed that they were charaterized with aggregated distribution and spatial anisotropy were detected. The rages of the semivariograms were 153.18-407.37 kilometers and 137.64-293.04 kilometers respectively, and the direction of major range were 63.2°, 65.5°respectively, and the nugget coefficient were 0.11, 0.45, showing that the aggregated intensity and maximum correlated range of adult population were higher than that of overwintering larvae population. Kriging prediction map also showed that the spatial distribution of overwintering larvae was similar to former reports, but the density in secondary overwintering area grew markedly. These results indicated that beet webworm populations were spatially aggregated and the main aggregation directions were southwest to northeast, and the aggregation range of adults were higher than larvae, mainly due to higher migration mobality.
     The major innovative discoveries in this disertation were as follows:
     1) Longterm population dynamic patterns of beet webworm in China were analyzed with autocorrelation and phase trajectory, results showed that population dynamic pattern were characterized with periodicity during the past 55 years, and the population dynamic pattern were found to be closely related to the spatial scale investigated. The autocorrelation level increased as the spatial scale expanded.
     2) As the outbreak level of beet webworm in China were proved to be closely related to the environmental temperature and relative humidity in this study, the spatial population dynamic pattern of beet webworm population in northern and northeastern China were firstly studied. Results showed that the overwintering generation adults in northern China can migrate into northeastern China with the help of favorable air flow, thus the overwintering population in northern China served as an important source area to beet webworm outbreaks in northeastern China.
     3) Basing on phase analysis, wind direction condition analysis and outbreak souce analysis of 1st generation adusts and 2nd generation larvae of beet webworm in China in 2008, outbreak population at Asian part of Russia and Mongolia were proved to be one of the major source areas responsible for beet webworm outbreak in China.
     4) Basing on geostatistical analysis of beet webowrm adults and overwintering larvae populations, the spatial distribution pattern of beet webowrm population in China was firstly proved to be aggregation, and the aggregation intensity of adults were higher than that of overwintering larvae, both their main aggregation directions were southwest to northeast.
引文
1.柏灵,李晓月,王克.稳定有界的Logistic方程的最优捕获策略.生物数学学报, 2004,19, 17~25.
    2.布仁巴雅尔,邵玉斌,石家兴,鲁光球,勒相成,张海年.呼盟草地螟系统测报及短期预报法.内蒙古农业科技, 1986, 4, 34-35
    3.蔡晓明.昆虫的迁飞.昆虫知识, 1980, 4,188-191
    4.曹卫菊,罗礼智,徐建祥.我国草地螟的迁飞规律及途径.昆虫知识,2006, 43, 279-283
    5.陈海霞,罗礼智,李桂亭.双斑截尾寄蝇对草地螟寄生的主要生物学特征及饲养技术.植物保护,2007, 3, 122-124
    6.陈海霞,罗礼智.双斑截尾寄蝇对寄主种类及草地螟幼虫龄期和寄生部位的选择性.昆虫学报,2007, 50, 1129-1134
    7.陈绘画,项云飞.鞭角华扁叶蜂滞育幼虫空间密度估计的研究.中国森林病虫,2005, 6, 21-23
    8.陈瑞鹿,暴祥致,王素云,孙雅杰,李立群,刘继荣,等.公主岭昆虫雷达的装置和初步应用.中国农业科学,1985, 3, 93
    9.陈瑞鹿,暴祥致,王素云.草地螟迁飞活动的雷达观测.植物保护学报,1992, 19, 171-174
    10.陈瑞鹿,王素云,暴祥致,孙雅杰.草地螟滞育的研究:光照周期、温度与发育及滞育的关系.植物保护学报,1987, 14, 253-258
    11.陈若箎,丁锦华,谈涵秋,胡国文.(编著).迁飞昆虫学.北京:农业出版社,1989.
    12.陈婉如,郭玉彦.稻纵卷叶螟迁飞现象的观察.海南大学学报自然科学版,1996, 14, 37-42
    13.陈晓,陈继光,薛玉,郝丽萍,张友,赵奎军.东北地区草地螟1999年大发生的虫源分析.昆虫学报,2004, 47, 599-606
    14.陈晓,翟保平,宫瑞杰,尹明浩,张友,赵奎军.东北地区草地螟(Loxostege sticticalis)越冬代成虫虫源地轨迹分析.生态学报,2008, 28, 1521-1535
    15.程登发,吴孔明,田喆,文丽萍,沈佐锐.扫描昆虫雷达实时数据采集、分析系统.植物保护,2004, 2, 41-46
    16.程极益,包云轩,樊多琦,王海扣,程遐年.褐飞虱迁飞轨迹研究.南京农业大学学报,1995, 3, 60-67
    17.程极益.褐飞虱迁飞的雷达观测与轨迹研究.环境遥感,1994, 9, 51-56
    18.程遐年, & Riley, J. R.褐飞虱在中国东部秋季回迁的雷达观察.南京农业大学学报,1994,3, 24-32
    19.程遐年,吴进才,马飞.褐飞虱研究与防治.北京:中国农业科学出版社,2003.
    20.程遐年.中国迁飞昆虫的研究进展.昆虫知识,1992, 29, 146-149
    21.崔万里,孙江明,魏倩,杜俊岭,赵晓丽.草地螟发育起点与有效积温的测定报告.病虫测报,增刊第一号,1987, 14-19
    22.邓望喜.我国飞机捕捉褐飞虱及白背飞虱的研究.病虫测报参考资料,1981, 1, 1-6
    23.丁岩钦. (主编).昆虫数学生态学.北京:科学出版社,1994.
    24.杜俊岭,赵晓丽,魏倩,崔万里,孙江明.草地螟幼虫含量和为害损失率的测定.病虫测报,增刊第一号,1987, 19-26
    25.樊多琦.天气系统和天气过程.见包云轩(主编),气象学.北京:中国农业出版社,2007: 146-171
    26.封传红,翟保平,张孝羲,汤金仪.我国北方稻区1991年稻飞虱大发生虫源形成.生态学报,2002, 22, 1302-1314
    27.高书晶,庞保平,史丽,伊卫东.小菜蛾幼虫空间格局的地统计学分析.昆虫知识,2004,41, 324-327
    28.高月波,陈晓,陈钟荣,包云轩,杨荣明,刘天龙,等.稻纵卷叶螟(Cnaphalocrocis medinalis)迁飞的多普勒雷达观测及动态.生态学报,2008, 28, 5238-5247
    29.耿济国,张建新,张孝羲.海捕回迁稻纵卷叶螟轨迹分析.南京农业大学学报,1990, 3, 48-53
    30.顾成玉,梁艳春,张广芝.草地螟种群数量变动及预测预报技术的研究.中国植保导刊,增刊第一号,1987a, 26-31
    31.顾成玉,梁艳春,张广芝.草地螟发生为害特点与防治策略的探讨.中国植保导刊,增刊第一号,1987b, 32-34
    32.关瑞峰,姚文辉,王茂明,孔丽萍,潘初昕,徐金汉.水稻迁飞性害虫卵巢解剖及虫源性质分析.福建农业科学,2008, 3, 30-32
    33.郭慧书.草地螟草原生态的研究(摘要).中国植保导刊,增刊第一号,1987, 121-122
    34.哈森,郭军,刘茂荣.鄂尔多斯草地螟的危害特点及应对策略.植物保护,2004, 1, 61-64
    35.韩兰芝,翟保平,戴率善,张孝羲,刘培磊.江苏丰县甜菜夜蛾田间种群虫源性质分析.生态学报,2004, 24, 1388-1398
    36.韩志泉.昆虫的迁飞.生物学通报,1985, 10, 20-22
    37.候景儒.地质统计学及其在中国矿业领域中的应用.中国矿业,1993, 1,34-40
    38.呼伦贝尔盟草地螟研究协作组.草地螟发生规律及预测预报和防治的研究.病虫测报,增刊第一号,1987, 70-82
    39.胡伯海,赵中华,李春广.中国植物保护五十年发展概况.见陈斗生,胡伯海(主编).中国植物保护五十年.北京:中国农业出版社,2003: 3-37
    40.胡国文.高山捕虫网在研究稻飞迁飞规律和预测中的作用.昆虫知识,1981, 6, 241-247
    41.华红霞,邓望喜,李儒海.长江中游稻区夏季飞机航捕迁入褐飞虱的轨迹分析.昆虫知识,2002, 45, 68-74
    42.华红霞,邓望喜,张宏宇,郑华.长江中游稻区夏季飞机航捕迁入白背飞虱的轨迹分析.华中农业大学学报,2003, 22, 325-330
    43.黄少虹,江幸福,罗礼智.光周期和温度对草地螟滞育诱导的影响.昆虫学报,2009, 52, 274-280
    44.黄绍哲,江幸福,雷朝亮,罗礼智.草地螟周期性大发生与太阳黑子活动的相关性.生态学报, 2008, 28, 4823-4829
    45.黄寿山,胡慧建,梁广文.二化螟越冬幼虫空间分布图式的地理统计学分析.生态学报, 1999, 2, 250-253
    46.吉林省草地螟科研协作组.吉林省草地螟发生规律及防治技术研究报告.中国植保导刊,增刊第一号,1987, 34-52
    47.季荣,李典谟,谢宝瑜,李哲,原惠.基于沿海蝗区飞蝗卵块分布格局的土壤空间异质性.生态学报,2007, 27, 1020-1026
    48.季荣,谢宝瑜,李哲,李典谟,孟冬丽.基于GIS和GS的东亚飞蝗卵块空间格局的研究.昆虫学报, 2006, 49, 410-415
    49.江广恒,淡涵秋,沈婉贞,程遐年,陈若箎.褐飞虱远距离向北迁飞的气象条件.昆虫学报,1981, 24, 251-261
    50.江广恒,淡涵秋,沈婉贞,程遐年,陈若箎.褐飞虱远距离向南迁飞的气象条件.昆虫学报,1982, 25, 147-155
    51.江幸福,罗礼智.粘虫迁出与迁入种群的行为和生理特性比较.昆虫学报,2005, 48, 61-67
    52.江幸福,罗礼智.昆虫迁飞的调控基础及展望.生态学报,2008, 28, 2835-2842
    53.康爱国,樊荣贤,张玉慧,李强,张凤英,杨立军,等.草地螟第三个暴发周期的发生特点、成因及防治对策.昆虫知识,2003, 40, 75-79
    54.康爱国,杨海珍,李强,樊荣贤,张玉慧,沈成,等.草地螟越冬代虫量与第一代草地螟发生关系的研究.昆虫知识, 2004,41, 70-72
    55.康爱国,张莉萍,沈成,李强,张玉慧,赵志英.草地螟寄生蝇与寄主间的关系及控害作用.昆虫知识,2006, 43, 28-31
    56.李朝绪,罗礼智,潘贤丽.草地螟的滞育和非滞育幼虫抗寒能力的研究.植物保护,2006, 2, 41-44
    57.李光博,王恒祥,胡文绣.黏虫季节性迁飞为害假说及标记回收试验.植物保护学报,1964, 2, 101-109
    58.李哈滨,伍业刚.景观生态学的数量研究方法.见刘建国(编).当代生态学博论.北京:中国科学技术出版社,1992: 209-230
    59.李红,罗礼智,胡毅,康爱国.伞裙追寄蝇和双斑截尾寄蝇对草地螟的寄生特性.昆虫学报,2008, 51, 1089-1093
    60.李红,罗礼智.草地螟的寄生蝇种类、寄生方式及其对寄主种群的调控作用.昆虫学报,2007, 50, 840-849
    61.李青,李国柱.我国稻纵卷叶螟迁飞规律研究进展.中国农业科学,1981, 5, 1-8
    62.李天生,周国法.昆虫种群距离聚集度指标的研究.生态学报, 1991, 11, 345-348
    63.李天生.不等期年龄组种群多维时间序列的一阶自回归矩阵模型的探讨.林业科学(昆虫专辑),1983, 30-36
    64.李友常,夏乃斌,屠泉洪,骆有庆,温俊宝.杨桃光肩星天牛种群空间格局的地统计学研究.生态学报,1997, 17, 393-401
    65.李哲,季荣,谢宝瑜,李典谟.论昆虫空间生态学研究.昆虫知识,2004, 40, 1-6
    66.李志强,梁广文,岑伊静.柑橘全爪螨种群空间格局的地学统计学分析.环境昆虫学报,2008, 3, 202-206
    67.辽宁省农作物病虫测报站.辽宁省草地螟发生规律及防治研究总结.中国植保导刊,增刊第一号,1987, 53-59
    68.刘光涛,郭向东,张金,刘彦霞,何德田.草地螟的生物学习性及其发生与环境条件的关系.病虫测报,增刊第一号,1987, 59-64
    69.娄国强,吕文彦,余昊,王登元,王运兵.基于GS和GIS的春尺蠖种群分布动态研究.昆虫学报,2006, 49, 613-61
    70.罗礼智,黄绍哲,江幸福,张蕾.我国2008年草地螟大发生特征及成因分析.植物保护, 2009, 1, 27-33
    71.罗礼智,姜玉英,黄绍哲,杨宝胜. 2009年1代草地螟将为我国发生最重的世代.植物保护,2009, 3, 96-101
    72.罗礼智,李光博,曹雅忠.草地螟第三次猖獗为害周期已经来临.植物保护, 1996, 5, 50-51
    73.罗礼智,李光博.草地螟不同蛾龄成虫飞行能力和行为的研究.青年生态学者论丛, 1992, 2:303-308
    74.罗礼智,李光博.草地螟的有效积温及其世代区的划分.昆虫学报, 1993a, 36, 332-339
    75.罗礼智,李光博.温度对草地螟成虫产卵与寿命的影响.昆虫学报, 1993b, 36, 459-463
    76.罗礼智,屈西锋.我国草地螟2004年危害特点及2005年一代危害趋势分析.植物保护,2005, 3, 69-71
    77.罗礼智.温度对草地螟(Loxostege sticticalis L.)的影响及其迁飞特征的研究.硕士学位论文,中国农业科学院研究生院, 1985.
    78.罗礼智.昆虫迁飞行为的发生与调控.科学, 1998, 50, 33-35
    79.罗礼智. (主编).李光博文选.北京:中国农业科学出版社, 2007:
    80.罗礼智.我国2004年一代草地螟将暴发成灾.植物保护, 2004, 3, 86-88
    81.罗亮,马德英,邢海业,王同仁,张建锐.棉蚜与瓢虫空间格局及种群时序动态耦合关系的地统计学分析.新疆农业大学学报, 2008, 1, 36-42
    82.马宁远,王惠卿,张伟,依萨克.司马义,罗亮,马德英.基于地统计学的新疆棉田烟粉虱(Bemisia tabaci (Gennadius))危害动态与时空分布.生态学报, 2008, 28, 2654-2662
    83.马世骏,丁岩钦,李典模.东亚飞蝗中长期数量预测的研究.昆虫学报, 1965, 14, 319-338
    84.马世骏.论害虫大量发生及其预测(一).昆虫学报,1955, 5, 351-371
    85.马世骏.对“猖獗周期性和害虫发生数量的平衡现象问题”一文的商榷.昆虫学报,1962, 11, 415-418
    86.孟正平,陈玉宝,刘一凌.草地螟生殖力及卵孵化与湿度的关系.中国植保导刊,增刊第一号,1987, 115-120
    87.孟正平.草地螟雌蛾卵巢解剖技术.中国植保导刊,2007, 12, 28-29
    88.内蒙自治区植保站.内蒙古自治区草地螟发生调查总结(摘要).中国植保导刊,增刊第一号,1987, 115-120
    89.潘蕾,翟保平. 2002年我国华北三代粘虫大发生的虫源分析.生态学报,2009, 29, 6248-6256
    90.庞雄飞,卢一遴,王野岸.种群矩阵模型在昆虫生态学研究上的应用问题.华南农学院学报,1980, 1(3),27-37
    91.庞雄飞.猖獗周期性和害虫发生数量的平衡现象问题—对马世骏“论害虫大量发生及其预测(一)”的意见.昆虫学报,1962, 11, 207-213
    92.秦宗林,李光灿..模拟昆虫种群消长动态的矩阵模型.粮食储藏, 1995, 5-6, 105-114.
    93.屈西峰,邵振润,王建强.我国北方农牧区草地螟暴发周期特点及原因剖析.昆虫知识,1999, 36, 11-14
    94.屈西锋,邵振润.对我国北方近几年草地螟越冬虫源的初步分析.植保技术与推广,1999, 6, 5-7
    95.全国白背飞虱科研协作组.白背飞虱的迁飞规律.病虫测报参考资料, 1981, 3, 41-48
    96.全国草地螟科研协作组.草地螟发生及测报和防治的研究.病虫测报,增刊第一号,1987, 1-9
    97.石根生,李典谟.不同松林马尾松毛虫蛹及其寄生天敌群子的空间格局分析.生态学报,1997, 17, 386-392
    98.孙雅杰,陈瑞鹿,高月波,卢宗志.草地螟成虫活动与幼虫发育的观察.吉林农业科学,2005, 3, 15-17
    99.孙雅杰,陈瑞鹿,王素云,暴祥致.草地螟雌蛾生殖系统发育的形态变化.昆虫学报,1991, 34, 248-250
    100.孙雅杰,陈瑞鹿.草地螟迁飞、发生区与生活史的研究.华北农学报,1995, 4:86-91
    101.孙雅杰,高月波.草地螟的迁飞与春季发生种群虫源的探讨.见中国昆虫学会(编),当代昆虫学研究——中国昆虫学会成立60周年纪念大会暨学术讨论会论文集,北京:中国农业科学出版社,2004: 230-232
    102.唐启义,胡国文,冯明光,胡阳. Logistic方程参数估计中的错误与修正.生物数学学报, 1996, 11, 135-138
    103.田绍义,高世金.草地螟滞育性的研究.中国植保导刊,增刊第一号,1987, 105-110.
    104.田绍义.草地螟及其防治研究.河北农学报,1963, 3, 15-22
    105.王茯泉.地统计分析在ArcGIS和IDRISI中实现特点的讨论.计算机工程与应用, 2006, 15, 210-215
    106.王瑞,翟保平,胡高,陈晓,沈慧梅.基于地统计学方法的稻田灰飞虱与蜘蛛时空动态分析.昆虫学报, 2009, 1: 65-73
    107.王正军,程家安,史舟.早稻二化螟一代卵块的区域性空间分布格局及动态.浙江大学学报(农业与生命科学版),2000, 26, 465-473
    108.王正军,李典谟,商晗武,程家安.地质统计学理论与方法及其在昆虫生态学中的应用.昆虫知识,2002, 39, 405-412
    109.王正军,李典谟,谢宝瑜.基于GIS和GS的棉铃虫卵空间分布与动态分析.昆虫学报, 2004, 47, 33-40
    110.王政权.地统计学及在生态学中的应用.北京:科学出版社,1999:
    111.魏倩,崔万里,杜俊岭,孙明江,赵晓丽,顾成玉,等.黑龙江省草地螟(Loxostege sticticalis)发生规律、预测预报及综合防治研究.病虫测报,增刊第一号, 1987, 98-107
    112.魏倩,赵晓丽,杜俊岭,崔万里,孙明江.草地螟成虫生殖力与温湿度关系的研究.病虫测报,增刊第一号,1987, 9-13
    113.邬祥光.对“害虫猖獗周期性”问题讨论的几点意见.昆虫知识,1964, 1, 41-46
    114.吴孔明,程登发,徐广,翟保平,郭予元.华北地区昆虫秋季迁飞的雷达观测.生态学报,2001, 11, 1833-1838
    115.武清彪,李卫伟,张崎,陈阔. 2003年山西省二代草地螟发生与消长原因分析及防治对策.山西农业科学,2004, 3, 58-60
    116.向昌盛,袁哲明.地统计方法在昆虫学研究中的应用.中国农学通报,2009, 17,191-194
    117.徐汝梅,成新跃,编著.昆虫种群生态学—基础与前沿.北京:科学出版社,2005:
    118.徐汝梅,李兆华,李祖荫.温室白粉虱(Trialeurodes vaporariorum Westw.)成虫的抽样技术研究.北京师范大学学报. 1981, 4, 95-102.
    119.薛贤清,陈瑞鹿.应用雷达监测马尾松毛虫踪迹的探讨.林业科技通讯,1987, 6, 28-32
    120.杨金远,陈顺立,吴晖,杨君,沈友爱,罗振洋,等.长鞘卷叶甲种群空间分布格局的生物地理统计学分析.华东昆虫学报, 2005, 4, 325-330
    121.杨素钦,马桂椿.草地螟迁飞路径的探讨.病虫测报,增刊第一号, 1987, 122-128
    122.杨素钦,杨逸兰.北方冬麦区麦长管蚜远距离迁飞与气流运动的关系初探.病虫测报,1981, 2, 11-16
    123.油松毛虫课题组. Leslie矩阵模型在油松毛虫种群动态分析中的应用研究.林业科学,1991, 27,470-474
    124.于鑫,陆永跃,梁广文,曾玲,林进添.桔小实蝇雄成虫空间分布的地理统计学分析.华南农业大学学报,2006, 2, 28-31
    125.袁哲明,徐惠清,贺智勇,李方一,付威.二化螟种群空间格局的地统计学分析.湖南农业大学学报(自然科学版),2002, 2, 154-157
    126.岳宗岱,袁艺.吉林省草地螟虫源和发生条件的初步分析.吉林农业科学,1983, 3,78-81
    127.翟保平,张孝羲.稻纵卷叶螟标记蛾迁飞轨迹的数值模拟.西南农业大学学报,1998, 20, 528-535
    128.翟保平.追踪天使——雷达昆虫学30年.昆虫学报,1999, 42, 315
    129.翟连荣.空间分析技术在害虫种群管理中的应用.昆虫知识,1997, 5,314-318.
    130.张蓉,冷允法,朱猛蒙,王芳.基于地统计学和GIS的苜蓿斑蚜种群空间结构分析和分布模拟.应用生态学报,2007, 18, 2580-2585
    131.张润杰,周强,古德祥.褐飞虱田间种群空间结构分析和空间分布模拟.西南农业大学学报,1998, 20, 450-455
    132.张树坤,刘梅风,李齐仁,李吉庆.山西省草地螟发生规律、预测预报及其综合治理的研究.病虫测报,增刊第一号, 1987, 82-97
    133.张文庆,古德祥,蒲蛰龙.昆虫种群动态模拟方法的一点改进——三化螟种群动态模拟模型的研究.生态学报,1994, 3:281~289.
    134.张孝羲,周立阳,程极益.江淮稻区稻纵卷叶螟轨迹分析参数的推算.南京农业大学学报,1994, 1, 32-38
    135.张跃进.农作物有害生物测报技术手册.北京:中国农业出版社,2006:
    136.张云慧,陈林,程登发,姜玉英,吕英.草地螟2007年越冬代成虫迁飞行为研究与虫源分析.昆虫学报,2008, 51,720-727
    137.张云慧,陈林,程登发,张跃进,姜玉英,蒋金炜.旋幽夜蛾迁飞的雷达观测和虫源分析.昆虫学报,2007, 50, 494-500
    138.张真,李典谟.马尾松毛虫暴发机制分析.林业科学,2008, 1,140-150
    139.中国人民共和国农业部. NY/T 1675-2008.农区草地螟预测预报技术规范.北京:中国标准出版社,2008.10.01
    140.周国法,徐汝梅. (主编).生物地理统计学.北京:科学出版社,1998:
    141.周立阳,张孝羲,程极益.江淮稻区稻纵卷叶螟的轨迹分析.南京农业大学学报,1995, 2, 53-58
    142.周立阳.昆虫种群动态的空间分析方法探讨.昆虫知识,1999, 36, 178-180
    143.周立阳.害虫预测预报的生态学基础和应用技术研究进展.生态学报,2001, 21, 1013-1019
    144.周强,张润杰,古德祥,邹寿发,徐起峰.大尺度下褐飞虱种群空间结构初步分析.应用生态学报,2001, 12,249-252
    145.周强,张润杰,古德祥.地质统计学在昆虫种群空间结构研究中的应用概述.动物学研究, 1998, 6, 482-488
    146.周强,张润杰,古德祥.白背飞虱在稻田内空间结构的分析.昆虫学报,2003, 46: 171-177
    147.朱明华,龚泽明.白背飞虱迁入虫源与发生程度的关系探讨.昆虫知识, 1983, 4, 154-157
    148.宗世祥,骆有庆,许志春,温俊宝,贾峰勇.沙棘木蠹蛾卵和幼虫空间分布的地统计学分析.生态学报,2005, 25, 831-836
    149.邹运鼎,毕守东,周夏芝,李磊,高彩球,丁程成.桃一点叶蝉及草间小黑蛛空间格局的地学统计学研究.应用生态学报,2002, 13, 1645-1648
    150. Alfaro, R. I., Brown, R. G., Mitchell, K. J., Polsson, K. R., & MacDonald, R. N. SWAT: A decision support system for spruce weevil management. In: B.C. Victoria, T.L. Shore, & D.A.Maclean (Eds.), Decision Support Systems for Forest Pest Management– Proceedings of a workshop of the Entomological Societies of Canada and British Columbia, Oct. 17, 1995, FRDA Report, No. 260. 1996: 31-41
    151. Auer, C. Erste Ergebnisse einfacher stochastischer Modelluntersuchungenūber die Ursachen der Populationsbewegung des grauen Larchenwicklers Zeiraphera diniana, Gn. (= Z. griseana Hb.) im Oberengadin, 1949/66. Zeitschrift für angewandte Entomologie, 1968, 62, 202–235.
    152. Baltensweiler, W. The cyclic dynamics of grey larch tortrix Zeiraphera griseana Hubner. In T. R. E. Southwood (Eds.), Insect abundance, Oxford: Blackwell.1968: 88-98
    153. Barbosa, P., & Schultz, J. C. (Eds.). Insect outbreaks. Academic Press, New York.1987.
    154. Beerwinkle, K. R., Witz, J. A., & Schleider, P. G.. An antomated, vertical looking, X-band radar system for continuously monitoring aerial insect activity. Trans. Amer. Soc. Agric. Engineers, 1993, 36, 965-970
    155. Beletski, E. N., Litun, P. P., & Zagovora, A. V. The cyclical nature of mass multiplication of pests. Zash Rast, 1983, 6, 20-21
    156. Beletskii, E. N. Population-dynamic cyclicity as a theoretical basis for forecasting mass occurrences of insects. Zash Rast, 1986, 12, 16-18
    157. Beliaeff, D. & Cochard, M. L. Applying geostatistics to identifyication of spatial patterns of fecalcontamination in a mussel farming area (Harve de la Vanlee, France). Water Res., 1995, 29, 1541-1548
    158. Belov, V. K., & Balaev, E. B. Resist losses from the meadow moth. Zashchita Rastenii, 1976, 4, 15-17
    159. Belov, V. K., Shurovenkov, Yu. B, & Taran, N. A. Details of the development of the meadow moth in the RSFSR. Zashchita Rastenii, 1979, 5, 44-46
    160. Berezhkov, R. P. L. sticticalis in the Forest Zone of western Siberia. Biol. Tomsk., 1936, 2, 98-131
    161. Berger, L. P. Forcasting abundance of the meadow moth. Zash Rast, 1985, 1, 51-53
    162. Berryman, A. A. Development of sampling techniques and life tables for the fur engraver Scolytus ventralis. Canadian Entomologist, 1968, 100, 1138-1147
    163. Berryman, A. A. On the dynamics of blackheaded bduworm populations. Can. Entomol., 1986, 118, 775-779
    164. Berryman, A. A. The theory and Classification of Outbreaks. In P. Barbosa & J. C. Schultz (Eds.), Insect outbreaks. London: Academic Press,1987: 3-30
    165. Carey, J. R. Insect biodemography. Annual Review of Entomology, 2001, 46, 79-100
    166.Сarpenter, J. R. Insect outbreak in Europe. J Anim. Ecol., 1940, 9, 108-147
    167. Chapman, A. R., Reynolds, D. R., Smith, A. D., Smith, E. T., & Woiwod, I. P.. An aerial netting study of insects migrating at high altitude over England. Bulletin of Entomological Research. 2004, 94: 123-136
    168. Chapman, J. W., Reynolds, D. R., Smith, A. D., Riley, J. R., Pedgley, D. E., & Woiwod, I. P.. High-altitude migration of the diamondback moth Plutella xylostella to the U.K.: a study using radar aerial netting, and ground trapping. Ecological Entomology. 2002, 27: 641-650.
    169. Chapman, J. W., Smith, A. D., Woiwod, I. P., Reynolds, D. R., & Riley, J. R. Development of vertical-looking radar technology for monitoring insect migration. Computers and Electronics in Agriculture. 2002, 35, 95-100
    170. Chen, R. L., Bao, X. Z., Drake, V. A., Farrow, R. A., Wang, S. Y., Sun, Y. J., et al. Radar observations of the spring migration into northeastern China of the oriental armyworm moth, Mythimna separata, and other insects. Ecol. Entomol, 1989, 14, 149-162.
    171. Chen, R. L., Sun, Y. J., Wang, S. Y., Zhai, B. P. & Bao, X. Z. Migration of the oriental armyworm Mythimna separatea in East Asia in relation to weather and climate.Ⅰ. Northeastern China. In V. A. Drake and A. G. Gatehouse (Eds.), Insect migration: Tracking resources through space and time. United Kingdom, Cambridge: Cambridge University Press, 1995: 93-104
    172. Cheng, D. F., Wu, K. M., Tian, Z., Wen, L. P., & Shen, Z. R. Acquisition and analysis of migration data from the digitised display of a scanning entomological radar. Computers and Electronics in Agriculture, 2002, 35, 63-75
    173. Cliff, A. D. & Ord, J. K. Spatial autocorrelation. London, Poin Press.1973:
    174. Cliff, A. D. & Ord, J. K. Spatial Processes: Models and Applications. London, Poin Press., 1981.
    175. David, M. Geostatistical ore reserve estimation. Elsevier, Amsterdam, 1977.
    176. Dingle, H. Function of migration in the seasonal synchronization of insects. Ent. Exp. Appl. 1982, 31: 36-48.
    177. Drake, V. A. & Farrow, R. A. The‘aerial plankton’and atmospheric convergence. Trends Ecol. Evol., 1989, 4, 381-385
    178. Drake, V. A. Radar observations of moths migrating in a nocturnal low-level jet. Ecological Entomology, 1985, 10, 259-265
    179. Drake, V. A. Methods for studying adult movement in Heliothis. In Zalucki, M. P. (Eds.) Heliothis: Research methods and prospects. New York: Springer-Verlag. 1990: 109-121
    180. Drake, V. A., & Gatehouse, A. G.. Insect Migration: tracking resources through space and time. Cambridge University Press, Cambrige, Great Britain. 1995.
    181. Drake, V. A., Gregg, P. C. & Harman, I. T., Wang, H. K., Deveson, E. D., Hunter, D. M., et al. Characterizing insect migration systems in inland Australia with novel and traditional methodologies. In Woiwod, I. P., Reynolds, D. R. & Thomas, C. D. (Eds.), Insect movement: mechanisms and consequences. Proceedings of the Royal Entomology Society’s 20th Symposium. Wallingford, UK: CABI Publishing. 2001: 207-233
    182. Drake, V. A., Harman, I. T., & Wang, H. K. Insect monitoring radar: stationary-beam operating mode. Comput. Electron. Agric. 2002, 35, 111–137.
    183. Drake, V. A., Wang, H. K., & Harman, I. T. Insect monitoring radar: Remote and Network Operation. Comput. Electron. Agric. 2002, 35, 77–94.
    184. Draxler, R., Stunder, B., Rolph, G., & Taylor, A (Eds.). HYSPLIT4 User’s Guide, Version 4.8. Air Resources Laboratory, National Oceanic and Atmospheric Administration, Washington, DC, USA. 2008.
    185. Easterling, M. R., Ellner, S. P., & Dixon, P. M. Size-specific sensitivity: Applying a new structured population model. Ecology. 2000, 81, 694-708
    186. Endakov, E. On the fields of the Altai. Zashchita Rastenii, 1979, 4: 6-7.
    187. Esper, J., Büntgen, U., Frank, D. C., Nievergelt, D., & Liebhold A. 1200 years of regular outbreaks in alpine insects. Proceedings of the Royal Society B. 2007, 274, 671-679
    188. Farrow, R. A. Offshore migration and the collapse of outbreaks of the Australian Plague Locust (Chortoicetes Terminifera Walk.) in South-East Australia. Aus. J. Zool. 1975, 23: 569-595.
    189. Feng, H. Q., Wu, K. M., Cheng, D. F., & Guo, Y. Y. Radar observations of theautumn migration of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China. Bull. Entomol. Res. 2003, 93, 115–124.
    190. Feng H. Q., Wu, K. M., Cheng, D. F., & Guo, Y.Y. Spring migration and Summer Dispersal of Loxostege sticticalis (Lepidoptera:Pyralidae) and other insects observed with radar in northern China. Popul. Ecol. 2004a, 33: 1253-1265.
    191. Feng, H. Q., Wu, K. M., Cheng, D. F., & Guo, Y. Y. Northward migration of Helicoverpa armigera (Lepidoptera: Noctuidae) and other moths in early summer observed with radar in northern China. J. Econ. Entomol. 2004b, 97, 1874–1883.
    192. Feng, H. Q., Wu, K. M., Ni Y. X., Cheng, D. F., & Guo, Y. Y. High-altitude windborne tranport of Helicoverpa armigera (Lepidoptera: Noctuidae) in mid-summer in northern China. Journal of Insect Behavior, 2005, 18, 335-349
    193. Filatova, T. P. The Sugar webworm Loxostege sticticalis L. in Karaganda District. Plant Protection, 1935, 4, 111-122.
    194. Gamma Design Software. GS+: Geostatistics for the Environmental Sciences. Gamma Design Software, Plainwell, Michigan USA. 2004.
    195. Gatehouse, A. G. Insect migration: Variability and success in a capricious environment. Res. Popul. Ecol., 1994, 36, 165-171
    196. Gatehouse, A. G. Behaviour and ecological genetics of windborne migration by insects. Annu. Rev. Entomol. 1997, 42: 475– 502.
    197. Ge, S. K., Carruthers, R. I., Ma, Z. F., Zhang, G. X., & Li, D. M. Spatial heterogeneity and population risk analysis of cotton bollworm, Helicoverpa armigera, in China. Insect Science, 2005, 12, 255-262.
    198. Geary, R. C. The contiguity ratio and statistical maping. Incorporated Statistician, 1954, 5, 115-145
    199. Goryshin, N. I. Saulich, A. K., Volkovich, T. A., & Abdel-Hamid, M. A. The role of temperature and photoperiod in the regulateon of the development and diapause of the meadow moth (Loxostege sticticalis). Zoologicheshii Zhurnal, 1980, 59, 533-545.
    200. Greenbank, D. O., Schaefer, G. W., & Rainey, R. C. Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispels: new understanding from canopy observations, radar, and aircraft. Memoirs of the Entomological Society of Canada, 1980, 110, 49
    201. Gregg, P. C., Fitt, G. P., Zalucki, M. P., & Murray, D. A. H. Insect migration in an arid continent. Ⅱ. Helicoverpa spp. in eastern Australia. In V. A. Drake and A. G. Gatehouse (Eds.), Insect migration: Tracking resources through space and time. United Kingdom, Cambridge: Cambridge University Press, 1995: 151-172
    202. Gribko, L. S., Liebhold, A. M., & Hohn, M. E. Model to predict gypsy moth (Lepidoptera: Lymantriidae) defoliateon using Kriging and logistic regression. Environmental Entomology, 1995, 24, 530-537
    203. Harcourt, D. G.. The development and use of life tables in the study of natural insect populations. Annual Review of Entomology, 1967, 12, 175-196
    204. Harrison, S., Hastings, A., & Strong, D. R. Spatial and temporal dynamics of insect outbreaks in a complex multitrophic system: tussock moths, ghost moths, and their natural enmies on bush lupines. Ann. Zool. Fennici, 2005, 42, 409-419.
    205. Hirai, K. Migration of the oriental armyworm Mythimna separatea in East Asia in relation to weather and climate.Ⅲ. Japan.. In V. A. Drake and A. G. Gatehouse (Eds.), Insect migration: Tracking resources through space and time. United Kingdom, Cambridge: Cambridge University Press, 1995: 117-129
    206. Hohn, M. E., Liebhold, A. M., & Gribko, L. S. Geostatistical model for forecasting spatialdynamics of defoliation caused by Gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol., 1993, 22, 1066-1075
    207. Holland, R. A., Wikelski, M., & Wilcove, D. S. How and why do insects migrate? Science, 2006, 313, 794-796
    208. Hondru, N., Burlacu, F., & Margarit, G. Contributions to the ecological, morphological and biometrical study of Loxostege sticticalis L. (Lepidoptera, Pyralidae). Anal Insi cerc pent prot plan, Bucuresti, 1977, 12: 173-185.
    209. Institute of Global Environment and Society. GrADS User’s Guide, version 2.0.a3. Institute of Global Environment and Society, Calverton, MD, USA. 2008.
    210. Isaaks, E. H. & Srivastava, R. M. An introduction to applied geostatistics. New York: Oxford University Press, 1989.
    211. Jiang, X. F., Cao, W. J., Zhang, L. & Luo, L. Z. Beet webworm (Loxostege sticticalis Linnaeus) (Lepidoptera: Pyralidae) migration in China: evidence from genetic markers. Environ. Entomol. 2010, 39: 232-242
    212. Johnson, S. J. Insect migration in North America: synoptic-scale transport in a highly seasonal environment. In V. A. Drake and A. G. Gatehouse (Eds.), Insect migration: Tracking resources through space and time. United Kingdom, Cambridge: Cambridge University Press. 1995: 31-66
    213. Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas N. (Eds.). Using ArcGIS geostatistics analyst. ESRI Inc. 2001.
    214. Jones, G. D., & Jones, S. D. The uses of pollen and its implication for entomology. Neotrop. Enomol. 2001, 30: 341-350.
    215. Joumel, A. G., and Huijbregts, Ch. J. Mining geostatistics. London: Academic Press, 1978.
    216. Kareiva, P. Space: The frontier for ecological theory. Ecology, 1994, 75, 1
    217. Kemp, W. P., Kalaris, T. M., & Quimby, W. F. Rangeland grasshopper (Orthoptera : Acrididae) spatial variability: macroscale population assessment. Journal of Economical Entomology, 1989, 82, 1270-1276
    218. Kim, K. S., Jones, G. D., Westbrook, J. K., & Sappington, T. W. Multidisciplinary fingerprints: Forensic reconstruction of an insect reinvasion. J. R. Soc. Interface, 2009, 7, 677-686.
    219. Kisimoto, R., & Sogawa, K. Migration of the brown planthopper Nilaparvata lugens and the white-backed planthopper Sogatella furcifera in East Asia: the role of weather and climate. In V. A. Drake and A. G. Gatehouse (Eds.), Insect migration: Tracking resources through space and time. United Kingdom, Cambridge: Cambridge University Press, 1995: 67-91
    220. Knor, I. B. The problem of outbreaks of the meadow moth in Siberia. Trudy Vsesoyuznogo Entomologicheskogo Obshchestva. 1986, 68: 162-165.
    221. Knor, I. B., & Ryabko, B. Y. Relation between outbreaks of the meadow moth in Siberia and solar activity. Izvestiya Sibirskogo Otdeleniya Akademiya Nauk SSSR, B. 1981, 1: 113-116.
    222. Knor, I. B., Bashev, A. N., Alekseev, A. A. & Kirov, E. I. Effect of population density on the dynamics of the meadow moth Loxostege sticticalis L. (Lepidoptera, Pyralidae).Entomologicheskoe obozrenie. 1993, 72: 268-274.
    223. Kong, H. L., Luo, L. Z., Jiang, X. F., Zhang, L. Effects of larval density on flight potential of the beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Environ Entomol. In press
    224. Lee, J. H., & Uhm, K. B. Migration of the oriental armyworm Mythimna separatea in East Asia in relation to weather and climate.Ⅱ. Korea. In V. A. Drake and A. G. Gatehouse (Eds.), Insect migration: Tracking resources through space and time. United Kingdom, Cambridge: Cambridge University Press, 1995: 105-116
    225. Lefkovitch, L. P. The study of population growth in organisms grouped by stages. Biomatrics, 1965, 21, 1-18
    226. Leskinen, M., Markkula, I., Koistinen, J., Pylkko, P., Ooperi, S., Siljamo, P., et al. Pest insect immigration warning by an atmospheric dispersion model, weather radars and traps. Journal of Appplied Entomology. In press
    227. Leslie, P. H. On the use of matrices in certain population mathematics, Biometrica, 1945, 33(3), 183-212
    228. Lewis, E. G. On the generation and growth of a population. Proceedings of the Indian Statistical Conference 1941. 1942, 6: 93-96
    229. Liebhold, A. M. & Elkinton, J. S. Characterizing spatial patterns of gypsy moth regional defoliation. Forest Science, 1989, 35, 557-568
    230. Liebhold, A. M. Zhang, X., Hohn, M. E., Elkinton, J. S., Ticehurst, M. Benzon, G. L., et al. Geostatistical analysis of gypsy moth (Lepidoptera: Lymantriidae) egg mass populations. Environmental Entomology, 1991, 20, 1407-1417
    231. Liebhold, A. M., Rossi, R. E., & Kemp, W. P. Geostatistics and geographic information systems in applied insect ecology. Annual Review of Entomology, 1993, 38, 303-327.
    232. Lingren, P. D. & Wolf, W. W. Nocturnal activity of the tobacco budworm and other insects. In : Hatfield, J. L. & Thomason, I. J. (Eds.), Biometeorology in Integrated Pest Management (pp. 211-228). New York: Academic Press. 1982: 211-228
    233. Lingren, P. D., Bryant, V. M., Raulston, J. R. Pendleton, M., Westbrook, J., Jones, G. D. Adult feeding host range and migratory activities of corn earworm, cabbage looper, and celery looper (Lepidoptera: Noctuidae) moths as evidenced by attached pollen. Journal of Economic Entomology, 1993, 86, 1429-1439
    234. Lingren, P. D., Raulston, J. R., Popham, T. W., Wolf, W. W., Lingren, P. S., Esquivel, J. F. Flight behavior of corn earworm (Lepidoptera: Noctuidae) moths under low wind speed conditions. Population Ecology, 1995, 24, 851-860
    235. Makarova, L. A., & Doronina, G. M. Phenoclimatic laws of the development of the meadow moth. Zashchita Rastenii, 1981, 8, 40-41
    236. Mamonov, B. A. Observations on Loxostege sticticalis and the results of tests of the action of insecticides on cultivated oil plants. Bull. N. Caucas. Agric. Expt. Sta., 1930, 314, 66
    237. Matheron, G. Principles of geostatistics. Economic Geology, 1963, 58, 1246-1266
    238. Mayers, J. H. Synchrony in outbreaks of forest Lepidoptera: a possible example of the Moran effect. Ecology, 1998, 79(3): 1111-1117
    239. McDonald, G. Insect migration in an arid continent.Ⅰ. The common armyworm Mythimna convecta in eastern Australia. In V. A. Drake and A. G. Gatehouse (Eds.), Insect migration: Tracking resources through space and time. United Kingdom, Cambridge: Cambridge University Press, 1995: 131-150
    240. Mel'Nichenko, A. N. The distribution of Loxostege sticticalis L. in the western region of USSR and local breeding grounds of the pest. Bulletin of Plant Protection, 1934, 8, 5-72
    241. Mel'Nichenko, A. N. Regularities of mass flying of the adults of Loxostege sticticalis L. and the problem of the prognosis of their flight migrations. Bulletin of Plant Protection. 1936, 17: 56.
    242. Mendelsohn, T. C. & Shaw, K. L. Use of AFLP markers in surveys of arthropod diversity. Methods Enzymol. 2005, 395: 161-177.
    243. Mikhal'tsov, V. P. Tachinids and the meadow moth. Zashchita Rastenii, 1980, 4, 38
    244. Morris, R. F. Predictive population equations based on key-factors. Mem. Entomol. Soc. Can, 1963, 32:16-21
    245. Morris, R. F., & Miller, C. A. The development of life tables for the spruce budworm. Canadian Journal of Zoology, 1954, 32, 283-301
    246. Oden, N. L. & Sokal, R. R. Directional autocorrelation: an extension of spatial correlagrams to two dimensions. Syst. Zool., 1986, 35, 608-617
    247. Omelyuta, V. P. & Nadvornaya, L. S. Parasites of the beet webworm Pyrausta sticticalis L. (Lepidoptera, Pyraustidae) in the Ukraine. Vestnik Zoologii, 1980, 2, 89-90
    248. Omelyuta, V. P. The beet webworm. Zashchita Rastenii, 1987, 6, 51-53
    249. Orishchenko, A. D. The meadow moth. Zashchita Rastenii. 1976, 1, 42-44
    250. Park, Y. L., & Obrycki, J. J. Spatio-temporal distributeion of corn leaf Aphids (Homoptera: Aphididae) and lady beetles (Coleoptera: Coccinellidae) in Iowa cornfields. Biological Control, 2004, 31, 210-217
    251. Pearl, R., & Parker, S. L. Experimental studies on the duration of Life. I. Introductory discussion of the duration of life in Drosophila. The American Naturalist, 1921, 55, 481-509
    252. Pepper, J. H. The effect of certain climate factors on the distribution of the beet webworm (Loxostege sticticalis L.) in North American. Ecology. 1938, 19: 565-571.
    253. Petrukha, O. I., & Tribel’, S. A. The population dynamic of Loxostege sticticalis. Zashchita Rastenii. 1975, 4: 41-43.
    254. Pielou, E. C. (Eds). Mathematical ecology. New York: John Wiley and Sons. 1977.
    255. Pollard, J. H. On the use of the direct matrix product in analysing certain stochastic population models. Biometrika, 1966, 53, (3/4)297-415
    256. Polyakov, I. Ya., & Makarova, L. A. Causes of migrations of the meadow moth. Zashchita Rastenii. 1976, 11: 43-44.
    257. Polyakov, I. Ya., Bykova, E. P., Makarova, L. A., & Druzhelyubova, T. S. Continued monitoring ofthe meadow moth. Zashchita Rastenii. 1983, 4: 34-36
    258. Poplavskii, V. V. Attention to the meadow moth. Zashchita Rastenii. 1975, 9: 30-31.
    259. Poplavskii, V. V. The serious danger presented by the meadow moth. Zashchita Rastenii. 1984, 5: 43.
    260. Popov, P. Morphological and biological features of Pyrausta sticticalis. Rastitelna Zashchita. 1976, 4: 33-38
    261. Ptrukha, O. I & Tribel’, S. A. Loxostege sticticalis in the Ukraine. Zashichita Rastenii, 1974, 4, 40-43.
    262. Reynolds, D. R. & Riley, J. R. Remote-sensing, telemetric and computer-based technologies for investigating insect movement: a survey of existing and potential techniques. Comput. Electron. Agric. 2002, 35, 271-307.
    263. Riggins, J. J., Galligan, L. D., & Stephen, F. M. Rise and fall of red oak borer (Coleoptera: Cerambycidae) in the Ozark mountains of Arkansas, USA. Florida Entomologist, 2009, 92, 426-433
    264. Riley, J. R. Radar observations of individual desert locusts (Schistocerca gregaria (Forsk.) (Orthoptera: Locustidae). Bull. Ent. Res. 1974, 64, 19–32.
    265. Riley, J. R. Collective orientation in night-flying insects. Nature, 1975, 253, 113–114.
    266. Riley, J. R. Radar as an aid to the study of insect flight. In: C. J. Amalner & D. W. Macdanolk (Eds.), A handbook on biotelemetry and radio tracking. Pergamon Press, Oxford, U.K. 1979: 131-140
    267. Riley, J. R. Radar as an aid to the study of insect flight. In: C.J. Amlaner, & D.W. Macdonald (Eds.), Handbook on Biotelemetry and Radio Tracking. New York, Oxford: Pergamon Press. 1980: 131-140
    268. Riley, J. R. Flying insects in the field. In: S.D. Wratten (Eds.), Video Techniques in Animal Ecology and Behaviour. London: Chapman and Hall, 1993: 1-15
    269. Riley, J. R., Cheng, X. N., Zhang, X. X., Reynolds, D. R., Xu, G. M., Smith, A. D., et al. The long-distance migration of Nilaparvata lugens (Stal) (Delphacidae) in China: radar observations of mass return flight in autumn. Ecol. Entornol., 1991, 16, 471-489
    270. Riley, J. R., Reynolds, D. R., & Farmery, M. J. Radar observations of Spodoptera exempta Kenya, March-April. COPR Miscellaneous Report, No. 1981, 54, 43
    271. Riley, J. R., Reynolds, D. R., & Farrow, R. A. The migration of Nilaparvata lugens (Stal) (Delphacidae) and other Hemiptera associated with rice during the dry season in the Philippines: a study using radar, visual observations, aerial netting and ground trapping. Bull. Ent. Res, 1987, 77, 145-169
    272. Riley, J. R., Reynolds, D. R., Smith, A. D. Edwards, A. S., Cheng, X. N., Zhang, X. X., et al. Observations of the autumn migration of the rice leaf roller Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and other moths in eastem China. Bulletin of Entomological Research, 1995, 85: 397-414
    273. Riley, J. R., Reynolds, D. R., Smith, A. D., Cheng, X. N., Zhang, X. X., Xu, G. M., et al. Usingradar to observe brown planthopper (BPH) migration in China. International Rice Research Newsletter, 1990, 15, 29-30
    274. Riley, J. R., Reynolds, D. R., Smith, A. D., Rosenberg, L. J., Cheng, X. N., Zhang, X. X., et al. Observations on the autumn migration of Nilaparvata lugens (Homoptera: Delphacidae) and other pests in east central China. Bull. Entomol. Res, 1994, 84, 389-402
    275. Rosenberg, I. J., & Magor, J. I., A technique for examining the long distance spread of plant virus transmitted by the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae ) and other windborne insects vectors. Plant Virus Epidemiology (pp.229-238). Oxford: Blackwell Scientific Publications. 1983.
    276. Rossi, R. E., Mulla, D. J., Journel, A. G. & Franz, A. G. Geostatistics tools for modeling and interpreting ecological dependence. Ecol. Monogr., 1992, 62, 277-214
    277. Ruesink, W.G. Modeling of pest populations in the alfalfa ecosystem with special reference to the alfalfa weevil. In R.L. Tummala, D.L. Haynes and B.A. Croft (Eds.), Modeling for Pest Management. Michigan State University Press, Ann Arbor, MI. 1976: 8-89
    278. SAS Institute. The SAS System for Windows. Release 8.02. SAS Institute, Inc., Gary, NC. 2001.
    279. Saulich, A. K., Volkovich, T. A., & Goryshin, N. I. Photoperiodic control of the development of the meadow moth (Loxostege sticticalis) under natural conditions. Zoologicheski Zhurnal, 1983, 62, 1663-1675.
    280. Schaefer, G. W. Radar studies of locust, moth and butterfly migration in the Sahara, Proc. Roy. Entomol. Soc. Lond. Ser. C, 1969, 34, 33 and 39–40.
    281. Schaefer, G. W. Radar observations of insect flight. In: R.C. Rainey, (Eds.), Insect Flight. Oxford: Blackwell, 1976: 157-197
    282. Schaefer, G. W. An airborne radar technique for the investigation and control of migrating pest insects. Phil. Trans. Roy. Soc. B, 1979, 287, 459–465.
    283. Schotzko, D. J. & O'Keeffe, L. E. Geostatistical description of the spatial distribution of Lygus hesperus (Heteroptera: Miridae) in lentils. J Econ. Entomol., 1989, 82, 1277-1288
    284. Schotzko, D. J., & Kundesen, G. R. Use of geostatistics to evaluate a spatial simulation of Russian wheat aphid (Homoptera: Aphididae) movement behaveior on preferred and nonpreferred hosta. Environmental Entomology, 1992, 21, 1271-1282
    285. Setzer, R. W. Spatio-temporal patterns of mortality in Pemphigus populitransversus and P. populicaulison cottonwoods. Oecologia, 1985, 67, 310-321
    286. Shepherd, R. F. A classification of western Canadian defoliating forest insects by outbreak spread characteristics and habitat restriction. Minn, Agric. Exp. Stn., Tech Bull, 1977, 310, 80-88
    287. Showers, W. B., Smelser, R. B., Keaster, A. J., Whitford, F., Robinson, J. F., Lopez, J. D., et al. Recapture of marked black cutworm (Lepidoptera: Noctuidae) males after long-range transport. Envir. Entomol. 1989, 3: 447-458
    288. Shurovemkov, Yu. V. The meadow moth in eastern Siberia and Far East. Zashchita Rastenii. 1984, 2: 40-41
    289. Smith, A. D., Reynolds, D. R., & Riley, J. R. The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England. Bull. Ent. Res. 2000, 90, 265–277.
    290. Smith, A. D., Riley, J. R., & Gregory, R. D. A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar. Phil. Trans. R. Soc. Lond. B, 1993, 340, 393-404
    291. Sokal, R. R. Spatial autocorrelation in biology, 1. Methodology. J. Linn. Soc, 1978a, 10, 199-228
    292. Sokal, R. R. Spatial autocorrelation in biology, 2. Some biological implications and four application of evolutionary and ecological interest. J. Linn. Soc, 1978b, 10, 229-249
    293. Sokal, R. R., Oden, N. L. & Barker, J. S. F. Spatial structure in Drosophila buzzatii populations: simple and directional spatial autocorrelation. Am. Nat., 1987, 129, 122-142
    294. Southwood, T. R. E. Habitat, the Templet for Ecological Strategies? Journal of Animal Ecology, 1977, 46, 337-365
    295. SPSS. Release 16.0.0 version for Windows. SPSS Inc. Chicago. IL. 2007.
    296. Steinberg, D. The Possibilities of the Sugar Beet Webworm's (Loxostege siicticalis L.) Propagation in the Virgin Steppes of the Kalmuik Autonomous SSR. Bull. Plant Prot., Leningrad, 1935, 13, 68
    297. Strel'Nikov, I. D. The Migrations of L. sticticalis. Bull. Sci. Leshaft. Leningrad, 1935, 19, 77-120
    298. Sun, Y. J. & Gao, Y. B. The migratory activity of meadow moth Loxostege sticticalis in northern China. Plant protection towards the 21st century (Abstracts). Proceedings of the 15th international plant protection congress. Beijing: Foreign language press, China, 2004, 304.
    299. Tribel', S. A., Kolmaz, G. V. Ecological factors and the numerical strength of the beet webworm. Zash Rast, 1981, 2, 40-41
    300. Tribel’, S. A.. Factors limiting multiplication of the beet webworm. Sakh Svek, 1979, 5, 36-37
    301. Usher, M. B. A matrix approach to the management of renewable resources, with special reference to selection forests. Journal of Applied Ecology, 1966, 3, 355-367
    302. Usher, M. B. A matrix model for forest management. Biomatrics, 1969, 25, 309-315
    303. Varley, G. C., & Gardwell, G. R. Key factors in population studies. Journal of Animal Ecology, 1960, 29, 399-401
    304. Ver Hoef, J. Sampling and geostatistics for spatial data. Ecoscience, 2002, 9, 152-161
    305. Wangersky, P. J., & Cunningham, W. J. On time lags of in equations of growth. Proceedings of the National Academy of Sciences, USA, 1956, 42, 699-702
    306. Westbrook, J. K. Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integrative and Comparative Biology. 2008, 1: 99-106
    307. Wikelski M., Moskowitz, D., Adelman, J. S., Cochran, J., Wilcove, D. S., & M. L. May. Simple rules guide dragonfly migration. Biol. Lett. 2006, 2:325-329.
    308. Williamson, M. H. Some extensions of the use of matrices in population theory. Bulletin of Mathematical Biophysics, 1959, 21, 13-17
    309. Woldewahid, G., Ven der Werf, W., Van Huis, A., & Stein A.. Spatial distribution of populations of solitarious adult desert locust (Schistocerca gregaria Forsk) on the coastal plain of Sudan.Agricultural and Forest Entomology, 2004, 6, 181-191
    310. Wolf, W. W., Pair, S. D., & Westbrook, J. Radar tracks insect rnigrations. Agricultural Research, 1982, 31, 14-15
    311. Wolf, W. W., Sparks, A. N., Pair, S. D., Westbrook, J. K., & Truesdale, F. M. Radar observations and collections of insects in the Gulf of Mexico. In: Danthanarayana, W. (Eds.), Insect Flight: Dispersal and Migration. Berlin heidelberg: Springer-Verlag. 1986: 221-234
    312. Wolf, W. W., Westbrook, J. K., Raulston, J., Pair, S. D., & Hobbs, S. E. Recent airborne radar observations of migrant pests in the United States. Phil. Trans. R. Soc. Lond. B, 1990, 328, 619-630
    313. Yan, H. & Aaron, C. A format for databasing and comparison of AFLP fingerprint profiles. BMC Bioinformatics, 2003, 4: 7
    314. Zhou, G. F. Forecasting gypsy moth defoliation with a geographic information system. Entomologia Sinica, 1995, 2, 83-94
    315. Zhu, M., Radcliffe, E. B., Ragsdale, D. W., MacRae, I. V., & Seeley, M. W. Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the US northern Great Plains. Agr. Forest Meteorol. 2006, 138: 192-202.
    316.Кнор,И.Б.ЛуговоймотылеквазиатскойчастиСССР.ЗащитаРастений, 1990, 11, 52-56
    317.Кузнецова,Т.Л.,Фролов,А.Н., &Смирнова,М.П.Луговоймотылекактивизирутся.ЗащитаИКарантинРастений, 2001, 6, 20-21
    318.Матов,Г.,Чимидцэрэн, &Б.,Кудряшов,А..ЛуговоймотылеквМНР.ЗащитаРастений, 1984, 6, 53
    319.Омелюта,В.П.,Красюкова,Я.Ф., &Скибинская,Р.Н.Прогнозированиеразвитиялуговогомотылька.ЗащитаРастений, 1982, 9, 42-44
    320.Трибель,С.А.Тактикаборьбыслуговыммотыльком.ЗащитаРастений, 1978, 7, 31-32
    321.Фролов,А.Н.,Кузнецова,Т.Л.,Малыш,Ю.М., &Смирнова,М.П.Луговоймотылек:Чтопоказаланализситуации.ЗащитаИКарантинРастений, 2005, 5, 37-40
    322.Фролов,А.Н.,Кузнецова,Т.Л.,Чумаков,М.А., &Смирнова,М.П.Омассовыхразмноженияхлуговогоикукурузногомотыльков.ЗащитаИКарантинРастений, 2000, 10, 12-16
    323.Фролов,А.Н.,Малыш,Ю.М.,Токарев,Ю.С.ОсобенностибиологииипрогнозированиядинамикичисленностилуговогомотылькаPyrausta sticticalis L. (Lepidoptera, Pyraustidae)впериоднизкойегочисленностивКраснодарскомкрае.Энтомол.Обозр. 2008, 87, 291-302
    324.ФроловА.Н.,Л.Ч.Луо,Ю.М.Малыш,Ш.Ж.Хуан,Ю.С.Токарев,Ш.Ф.Дзян. Kвопросуопериодичностимассовыхразмноженийлуговогомотылька(Pyrausta (Loxostege) stictcialis L.).ТрудыСтавропольскогоотделениярусскогоэнтомологическогообшества. 2009, 5: 242-248
    325.ЧугунинЯВ.Очаговаяцикличностьмассовыхразмножнийнепарногошелкопряда.ЗоолЖурн, 1949, 28, 431-438
    326.ЧугунинЯВ.Очаговаяцикличностьразмножениямассовыхнасекомыхимикробиологическийметодборьбысними.ТезисыДокладов2-экологическойкорференчинпопроблемемассовыхразмноженийживотныхиихпрогноз.Часть, 1951а, 1, 221-227
    327.ЧугунинЯВ.Сопряженностьмассовогопоявленияразличныхгусеницлистогрызущегокомплекса.ЗоолЖурн, 1951б. 30, 63-65
    328.Шек,Г.Х. &Телепа,Н.Г.ЛуговойМотылеквКазахстане.ЗащитаРастений, 1981, 6, 23-24
    329.Шуровемков,Ю.В. &Алехим,В.Т.ЛуговоймотылеквВосточнойСибириинаДальнемвостоке.ЗащитаРастений, 1984, 2, 40-41
    330.Щербиновский,Н.С.Пустыннаясарачащестоцерка.Изд.С/Х-нойлитературы. 1952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700