强震下液化场地土-桥梁桩相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
震害调查结果表明,地震地基液化大变形引起的桥梁地基和基础的破坏是桥梁震害的主要形式。地震作用下,地基和基础的破坏属于土-桩-结构相互作用范畴,因此开展强震下液化场地土-桥梁桩相互作用研究势在必行。鉴于上述,本论文针对强震下液化场地土-桥梁桩相互作用进行了研究,主要研究工作和取得的成果如下:
     1、进行了地震作用下液化场地土-桥梁桩相互作用的振动台试验研究。输入地震动为:压缩0.15g El Centro波、0.15g El Centro波和0.50g El Centro波。通过试验研究了频率和振幅对土和桩动力反应的影响。在时域和频域范围内分析了土和桩在地震荷载下的超孔压反应、加速度反应、弯矩反应,揭示了不同频率和振幅下液化场地土和桩的动力反应规律。
     2、建立了液化场地土-桥梁桩在地震荷载下的三维动力有限元分析模型。该模型考虑了水-土动力耦合作用、土和桩的非线性、土和桩之间的相互作用的影响。从土的动力响应和桩的动力响应两个角度,通过与液化场地土-桥梁桩振动台试验结果的对比分析,证明吻合情况良好。引入均方根误差定量评价所建立模型的可靠性与误差,结果表明该有限元模型具有较好的精度和可靠性。
     3、基于上述建立的有限元模型,对强震下液化场地土-桥梁桩地震相互作用进行了细致分析。系统研究了液化场地土和桩的动力反应,包括强震下土的超孔压反应、剪应力-剪应变反应、加速度反应、位移反应及桩的加速度位移反应、弯矩曲率剪力反应。明晰了砂土的相对密度、桩径、上部结构配重及振幅对液化场地土-桥梁桩地震相互作用的影响规律。
     4、在参数分析基础之上,基于液化场地桩的弯曲和屈曲失效理论,判断了不同的砂土相对密度、桩径、上部结构配重、振幅下桩基的失效模式,探讨了强震下液化场地振动台模型中桩的动力失效机理。进一步分析了上覆非液化层对桩基内力和变形的影响,据此给出了液化场地桩基的减震建议。
Prvious seismic hazards verified that pile and ground failure are the main forms ofbridge damage caused by soil liquefaction. Earthquake induced liquefaction and lateralspreading is a major cause of failure of civil structures during seismic events. Collapseand severe damages to pile-supported structures and soil strata belong to the category ofsoil-pile-structure interaction. Therefore, it is very necessary to investigate soil-bridgepile interaction under strong earthquake. In view of the above, the main research workand achievements are as follows:
     1. A series of scaled shaking table model tests were performed to study thebehavior of a single pile in a soil profile comprised of a nonliquefied clay layer over aloose saturated sand layer over a nonliuqefied clay layer. The input earthquake motionsare compressed0.15g El Centro wave,0.15g El Centro wave and0.15g El Centro wave.Detailed instrumentation and data processing procedures enabled fundamentalmeasurements of the soil-pile interaction behavior in the shaking table tests. Themeasurements include the first available time histories of excess pore water pressures,accelerations of the soil and accelerations and dynamic strains of the pile under realisticearthquake shaking motions. Additionally, the bending moment of the pile is obtainedbased on the bending theory of the column. These shake table tests are performed toreveal the soil and pile response in liquefiable ground under different shakingfrequencies and amplitudes.
     2. A three-dimensional dynamic finite element model was established forstructures supported on pile foundations in a three-layer liquefiable soil. The modelincludes the dynamic couple response of soil and water, the nonlinear responses of soiland pile, and the soil-pile interaction. Results of the shake table testing on a sing pile inliquefiable soil are used to demonstrate the capability of the model for the reliableanalysis of piles under earthquake loading. The root mean square error is introduced toquantatitively evaluate the accuracy of the model. The proposed coupled soil-brige pilemodel was shown to be an effective tool to investigate the interaction response of a pilefoundation in a liquefiable site.
     3. A verified model was used for a parametric study. The parametric study was carried out by varying the relative density of the liquefying soil layer, the pile diameter,the superstructure mass and the shaking amplitude. The excess pore water pressure andexcess pore water pressure ratio, the stress and strain, the acceleration, the displacementand the bending moment responses, the distribution of sectional forces and thedeformation at different times were investigated. The effects of the soil relative density,the pile diameter, the superstructure mass and the shaking amplitude are clarified on thesoil and pile responses in a three-layer liquefiable site.
     4. Based on the above parametric studies, the pile failure modes in a liquefible soilwere obtained for different soil densities, pile diameters, superstructure masses, anddifferent amplitudes. Then, the potential failure mechanism for a pile in a three-layerliquefiable site was postulated under strong earthquake based on the pile bendingmechanism. Furthermore, the effects of overlying clayey layer on the pile internal forcesand deformations are evaluated. Finally, Earthquake relief measurements for pile inliquefiable site were subsequently provided.
引文
[1]凌贤长,郭明珠,王臣.液化场地桩基桥梁地震灾害响应大型振动台模型试验研究[J].岩土力学.2006,26(1):123~129.
    [2] Abdoun T.,Dobry R. Evaluation of pile foundation response to lateralspreading[J]. Soil Dynamics andEarthquake Engineering,2002,22:1051-1058.
    [3] Finn W. D. L., Fujita N. Piles in liquefiable soils:seismic analysis and designissues[J]. Soil Dynamicsand Earthquake Engineering,2002,22:731-742.
    [4] Finn W.D.L. A study of piles during earthquakes:Issues of design andanalysis[M]. Bulletin of earthquake engineering,2005,3:141-234.
    [5] Barbara J. C. Nonlinear behavior and modeling of piles in partially liquefied andlayered soil conditions[D]. University of California at san diego,2011.
    [6]陈国兴,张克绪,谢君斐.桩基抗震性能与震害机制解析[J].岩土工程师,1993,5(4):8-12.
    [7] Meymand P.J. Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Superstructure Interaction in Soft Clay[D], Univ. of California Berkeley,1998.
    [8]韦晓.桩-土-结构动力相互作用振动台试验与理论研究[D].上海:同济大学博士学位论文,1999.
    [9] Garini E. Single response to liquefaction-induced lateral spreading[M]. Stateuniversity of new york at buffalo,2005.
    [10] Hamada M. Large ground deformation and their effects on lifelines:1983Nihokai-Chubu earthquake[M]. In: Hamada M, O’Rourke T, editors. Casestudies of lique faction and lifeline performance during past earthquake,(I):Japanese case studies,1992.4(1):4-85.
    [11] Mori S, Namuta A, Miwa S. Feature of liquefaction damage during the1993Hokkaido Nanseioki earthquake[C]. Proceedings of the29th annual conference ofJapanese Society of soil mechanics and foundation engineering,1994:1005-08.
    [12] Tachikawa H, Fujii S, Onishi K, Suzuki Y, Isemoto N, Shirahama M.Investigationand analysis of pile foundation located on Kobe Port Island[C].Proceedings ofthe33rd Japan national conference on geotechnology engineering,1998,1:811-2.
    [13] Shamoto Y., Sato M., Futaki M. et al. Site investigation of post liquefactionlateral displacement of pile foundation in reclaimed land[J]. Tsuchi to Kiso,1996;44(3):25-7.
    [14] Onishi K., Namba S., Sento N., et al. Investigation of failure and deformationmodes of piles throughout over all length[J]. Tsuchi to Kiso,1996,45:24-6.
    [15] Hamada M. Large ground deformations and their effects on lifelines:1964Niigataearthquake. Case Studies of liquefaction and lifelines performance duringpastearthquake[R]. Technical Report NCEER-92-0001, Volume-1, Japanese casestudies,National Centre for Earthquake Engineering Research, Buffalo, NY,1992.
    [16] Tokimatsu K. and Asaka Y. Effects of liquefaction-induced ground displacementson pile performance in the1995Hyogoken-Nanbu earthquake[J]. Soils andfoundations, Special inssue,1998:163-177.
    [17] Tokimatsu K., Suzuki H., Suzuki Y. Back-calculated p-y relation of liquefiedsoils from large shaking table tests.[C] Fourth international conference on recentadvances in geotechnical earthquake engineering and soil dynamics, number2080,San Deigo, California,2001,3:26-31
    [18] Tokimatsu K., Suzuki H. Pore water pressure response around pile and its effectson p-y behavior during soil liquefaction[J]. Soils and foundations,2004,44(6):101-110.
    [19] Tokimatsu K., Suzuki, H., and Sato, M. Effects of inertial and kinematicinteraction on seismic behavior of pile with embedded foundation[D]. SoilDynamics and earthquake engineering,2005,25:753-762.
    [20] Ishihara K., Terzaghi O.: Geotechnical aspects of the1995Kobe earthquake.Proceedings of ICSMFE, Hamburg,1997:2047-2073.
    [21] Finn W.D.L, Thavaraj, T. Deep Foundations in Liquefiable Soils: CaseHistories,Centrifuge Tests and Methods of Analysis[C]. Proceedings of the4thInternational Conference on Recent Advances in GeotechnicalEarthquakeEngineering and Soil Dynamics and Symposium in Honour ofProfessor W.D.LiamFinn, San Diego, California,2001,3:26-31.
    [22] Bhattacharya S., Bolton M.D., Madabhushi S.P.G. A reconsideration of the safetyof the piled bridge foundations in liquefiable soils[J]. Soils and Foundations,2005,45(4):13–26.
    [23] Tamura, K., Azuno, T., Hamada, T. Seismic Design of Bridge Foundationsagainst Lique faction-induced ground flow[C],12th World Congress onEarthquakeEngineering, Auckland, New Zealand,2000.
    [24] Haldar S., Babu G.L.S. Failure mechanisms of pile foundations in lquefiable soil:Parametric study[J]. International Journal of Geomechanics,2010,10:74-84.
    [25] Goh S., O’Rourke TD. Limits tate model forsoil–pile interaction during lateralspread[C]. Proceeding softheseventh US–Japan work shop on earthquakeResistant design of life line facilities and counter measures against soil liquefaction, Seattle,1999:237-60.
    [26] Bhattacharya S. Pileinst ability during earthquake lique faction.[D]. University ofCambridge, UK,2003.
    [27] Bhattacharya S.,Madabhushi SPG,Bolton MD. Analternative mechanism of pilefailure in lique fiable deposits during earthquakes[J]. Geotechnique,2004,54(3):203-13.
    [28] Knappett J.A., Madabhushi SPG. Modelling of lique faction-induced instability inpile groups[D]. Boulanger RW,Tokimatsu K,editors. Seismic performance andsimulation of pile foundation sinlique fied and laterally spreading ground(geotechnical special publication (GSP) no.145). Reston,VA,USA:AmericanSociety of Civil Engineers,2005:225-67.
    [29] KimuraY.,Tokimatsu K. Buckling stress of steel pile with vertical load in liquefied soil[D]. Journal of Structural and Construction Engineering,2005:73-8.
    [30] Shanker K, Basudhar P. K., Patra N.R. Buckling of pile sunder lique fied soilconditions[J]. Geotechnical and Geological Engineering,2007,25(3):303-13.
    [31] Bhattacharya S., Blakeborough A., Dash S.R. Learning from collapse of piles inlique fiable soils[J]. Civil Engineering, Proceeding sof Institution of CivilEngineers,2008,161(SpecialIssue2):54-60.
    [32] Bhattacharya S., Dash S.R., Adhikari S. On the mechanic soffailure of pile-supported structures in lique fiable deposits during earthquakes[J]. Journal ofCurrent Science,2008,94(5).
    [33] Bhattacharya S., Adhikari S., Alexander N.A. As implified method forunifiedbuckling and dynamic analysis of pile supported structures in seismically liquefiable soils[J]. Soil Dynamics and Earthquake Engineering,2009,29:1220-35.
    [34] Bhattacharya S., Madabhushi S.P.G. Acritical review of the methods for piledesign in seismically liquefiable soils. Bulletin of Earthquake Engineering,2008,6:407-46.
    [35] Dash S. R., Bhattacharya S. Bending-bulkling interaction as a failure mechanismof piles in liquefiable soils[J]. Soil Dynamics and Earthquake Engineering,2010,30:32-39.
    [36] Ramos R., Abdoun, T.H., Dobry, R. Effects of lateral stiffness of superstructureon bending moments of pile foundation due to liquefaction induced lateralspreading[C]. Proceedings of the12th world conference on earthquakeengineering,Auckland, New zealand,2000.
    [37] Tamura S., Suzuki Y., Tsuchiya T. Dynamic response and failure mechanisms ofa pile foundation during soil liquefaction by shaking table test with a large scalelaminar shear box[C].12th World Congress on Earthquake Engineering,Auckland, New Zealand,2000.
    [38] Hushmand B., Scott R.F., Crouse C.B. Centrifuge liquefaction tests in a laminarbox[J]. Geotechnique,1988,38:253-62.
    [39] Liu, L., Dobry, R. Effect of liquefaction on lateral response of piles by centrifugemodel tests[J]. National Center for Earthquake Engineering Research (NCEER)Bulletin,1995,9(1):7–11.
    [40] Wilson D.W. Soil pile superstructure interaction in liquefying sand andsoftclay[D]. University of California at Davis,1998.
    [41] Wilson D.w., Boulanger, R., Kutter, B.(2000). Observed seismic lateralresistanceof liquefying sand[J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering,126(10),898-906.
    [42] Brandenberg, S. Behavior of pile foundations in liquefied and laterally spreadingground[D]. University of California, Davis,2005.
    [43] Imamura S., Hagiwara T., Tsukamoto Y., Ishihara K. Response of pile groupsagainst seismically induced lateral flow in centrifuge model tests. Soils andFoundations,2004,44(3):39-55.
    [44] Brandenberg, S., Boulanger, R., Kutter, B. et al. Behavior of pile foundations inlaterally spreading ground during centrifuge tests[J]. ASCE Journal ofGeotechnical and Geo Engineering,2005,131(11):1378-1391.
    [45] Abdoun T., Dobry R. Evaluation of pile foundation response to lateralspreading[J]. Soil dynamics and earthquake engineering,2002,22:1051-1058.
    [46] Su D., Li X.S. Effect of shaking intensity on seismic response of single pilefoundation in liquefiable soil[C]. Ground modification and seismic mitigation(GSP152)ASCE,2006.
    [47] Matsui T., Oda K. Foundation damage of structures[J]. Spec Issue Soils Found,1996:189-200.
    [48] Tokimatsu K., Mizuno H., Kakurai M. Building damage associated withgeotechnical problems[J]. Spec Issue Soils Found,1996:219-34.
    [49] Horikoshi K., Tateishi A., Ohtsu H. Detailed investigation of piles damaged byHyogoken Nambu earthquake[C]. Proceedings of the12th world congress onearthquake engineering2000, Paper no.2477(in CD-ROM).
    [50] Luo X., Murono Y.. Seismic analysis of pile foundations damaged in the January17,1995South-Hyogo earthquake by using the seismic deformation method[C].Proceedings of the fourth international conference on recent advances ingeotechnical earthquake engineering and soil dynamics.2001, Paper no.6.18.
    [51] He L. Liquefaction-induced lateral spreading and its effects on pilefoundations[D]. University of California, San Diego,2005.
    [52] Yao S., Kobayashi K., Yoshida N., et al. Interactive behavior ofsoil–pilesuperstructuresystem in transient state to liquefaction by means oflargeshake table tests[J]. Soil Dyn Earthquake Eng,2004,24:397-409.
    [53] Suzuki H., Tokimatsu K., Sato M., et al. Factor affecting horizontal subgradereaction of piles during soil liquefaction and lateral spreading[J]. Geotechnical SPNo.145, ASCE,2005:1-9.
    [54] Dungca J.R., Kuwano J., Takahashi A., et al. Shaking table tests on the lateralresponse of a pile buried in liquefied sand[J]. Soil Dyn Earthquake Eng,2006,26:287-95.
    [55] Chau K.T., Shen C.Y. Guo X. Nonlinear seismic soil–pile–structure interactions:Shaking table tests and FEM analyses[J]. Soil dynamics and earthquakeengineering,2009,29:300-310.
    [56] Tamura S., Tokimatsu K. Seismic earth pressure acting on embeddedfootingbased on large-scale shaking table tests[J]. Geotechnical SP No.145,ASCE,2005.
    [57] Chang B.J., Hutchinson T.C. Tracking the dynamic characteristics of a nonlinearsoil-pile system in multi-layered liquefiable soils[J]. Soil dynamics andearthquake engineering,2013,49:89-95.
    [58] Gohl W., Finn W. Seismic Response of Single Piles in Shake Table Studies[C].Proceedings of the5th Canadian Conference Earthquake Engineering, Ottawa,1987:435-443.
    [59] Nomura S., Shamoto Y., Tokimatsu K. Soil-Pile-Structure Interaction DuringLiquefaction[C]. The2nd International Conference on Recent Advances inGeotechnical Engineering and Soil Dynamics, Saint Louis Missouri,1991,1(1):743-750.
    [60] Sasaki Y., Tokida K., Matsumoto H., et al. Shake Table Tests on Lateral GroundFlow Induced by Soil Liquefaction [C]. The3rd Japan-U.S. Workshop onEarthquake Resistant Design of Lifeline Facilities and Countermeasures for SoilLiquefaction, San Francisco,1991:371-385.
    [61] Tokida K., Matsumoto H., Iwasaki H. Experimental Study of Drag Acting ofPiles in Ground Flowing by Liquefaction [A]. Proceedings of the FourthJapan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities andCountermeasures for Soil Liquefaction[C]. National Center for EarthquakeEngineering Research, SUNY, Buffalo, N.Y.,1992,1:511-523.
    [62] Alba P. D., Ballestero T.P. Residual Strength after Liquefaction: ArheologicalApproach[C]. Proceedings of the11th International Conference on Soil Dynamicsand Earthquake Engineering,2004,2:513-520.
    [63] Cubrinovski M., Kokusho T., Ishihara K. Interpretation from Large-Scale ShakeTable Tests on Piles Undergoing Lateral Spreading in Liquefied Soils[C]. SoilDynamics and Earthquake Engineering,2006,26(3):275-286.
    [64] Han J., Kim S.R., Hwang J.I., et al. Evaluation of the dynamic characteristics ofsoil-pile system in liquefiable ground by shaking table tests[C].4th Internationalconference on earthquake geotechnical engineering.
    [65]凌贤长,唐亮,于恩庆.液化场地地震振动孔隙水压力增长数值模拟的大型振动台试验及其数值模拟[J].岩石力学与工程学报,2006,25(2):3998-4003.
    [66]唐亮,凌贤长,徐鹏举.液化场地桥梁群桩-独柱墩结构地震反应振动台试验研究[J].土木工程学报,2009,42(11):102-108.
    [67]唐亮,凌贤长,徐鹏举,等.液化场地桥梁群桩基地震响应振动台试验研究.岩土工程学报[J],2010,32(5):672-680.
    [68]唐亮,凌贤长,徐鹏举.承台型式对液化场地桥梁桩-柱墩地震响应影响振动台试验研究[J].地震工程与工程振动,2010,30(1):155-160.
    [69]袁晓铭,李雨润,孙锐.地面横向往返运动下可液化土层中桩基响应机理[J].土木工程学报,2008,41(9):102-109.
    [70]李雨润,袁晓铭,梁艳.桩-液化土相互作用p-y曲线修正计算方法研究[J].岩土工程学报,2009,31(4):595-599.
    [71]王凯,钱德玲.液化场地的桩-土-上部结构振动台模型试验的研究[J].合肥工业大学学报,2011,34(11):1687-1691.
    [72] Cheng Z.H., Jeremic B. Numerical modeling and simulation of pile inliquefiablesoil[J]. Soil Dyn Earthquake Eng,2009;29:1404-16.
    [73] Reese, L.C., Cox W.R., Koop F.D. Analysis of laterally loaded piles in sand[C],Proc.,6th Offshore Technology Conf., Houston, Texas, Paper No.2080,1974:473-483.
    [74] Kagawa T. Lateral pile response in liquefying sand[C]. Proceedings of the10thworld conference on earthquake engineering, Madrid, Spain,1992, Paper No.1761.
    [75] Yao S., Nogami T. Lateral cyclic response of piles in viscoelasticWinklersubgrade[J]. J EngMech,1994;120(4):758-75.
    [76] Fuji S., Cubrinovski M., Tokimatsu K., et al. Analyses of damaged andundamaged pile foundations in liquefied soils during the1995KobeEarthquake[C]. Proceedings of the1998conference on geotechnicalearthquake engineering and soil dynamics III, Seattle, Wash.,1998,(2):1187-98.
    [77] Miwa S., Ikeda T., Sato T. Damage process of pile foundation in liquefiedgroundduring strong ground motion[J]. Soil Dyn Earthquake Eng,2005,26:325-36.
    [78] Liyanapathirana D.S., Poulos H.G. Analysis of pile behaviour in liquefyingslopingground[J]. J Comput Geotech,2009,37:115-124.
    [79] Chang D.W., Lin B.S., Cheng S.H. Dynamic pile behaviors affecting byliquefaction from EQWEAP analysis[C].4th International conference onearthquake geotechnical engineering. Thessaloniki Greece,2007:1336.
    [80] Yashida. N., Hamada M. Damage to foundtiaon piles and deformation pattern ofground due to liquefaction-induced permanent ground deformations[R], ReportNo. Nceer-91-001,1991. Nceer,147-161.
    [81] O,Rourke, T.D., Meyersohn W.D., Shiba Y., et al. Evaluation of pile response toliquefaction resistant design of life facilities and countermeasures against soilliquefaction[R], Technical Report NCEER-94-0026, Nceer, Buffalo, New York,1994:457-478.
    [82] Meyersohn W.D. Pile response to liquefaction-induced lateral spread[D]. CornellUniversity, Ithaca, New York,1994.
    [83] Chaudhuri D. Liquefaction and lateral soil movement effects on piles[D]. CornellUniversity, New York,1998.
    [84] Ishihara K., Cubrinovski M. Soil-pile interaction in liquefied deposits undergoinglateral spreading[C]. Proceedings of XI Danube-Europe Conference, KeynoteLecture, Croatia,1998:29-44.
    [85] Lam I.P., M. Kapuskar and D. Chaudhuri. Modeling of pile footings and drilledshafts for seismic design[R]. Technical report MCEER-98-0018,1998.
    [86] Goh, S.H. Soil-pile interaction during liquefaction-induced lateral spreading[D].Cornell University, Ithaca,2001.
    [87] Ashford S.A., Rollins K.M. The treasure island liquefaction test final report[R].San Diego: University of California, Dept. of Structural Engineering,2002:509.
    [88] Zienkiewicz O. C., Taylor R.L., P.Nithiarasu. The Finite Element Method forFluid Dynamics, Sixth Edition[M]. Oxford, Boston: Elsevier Butterworth-Heinemann,2005:4-27.
    [89] Elgamal A., Yang Z.H., Parra E. Computational modeling of cyclic mobility andpost-liquefaction site response[J]. Soil dynamics and earthquake engineering.22(2202)259-271.
    [90] Fujii Y., Isemoto N., Satou K., et al. Investigation and analysis of a pilefoundation damaged by liquefaction during the1995Hyogoken-Nambuearthquake[J]. Soils and foundations,1998,9:179-192.
    [91] Tazoh T., Ohtsuki A., Fuchimoto M., et al. Analysis of the damage to the pilefoundation of a highway bridge caused by soil liquefactiono and its lateral spreaddue to the1995Great Hanshin earthquake[C]. Proceedings of the12th WorldConference on Earthquake Engineering, Auckland, New Zealand, Paper No.1978.2000.
    [92] Lam I., Arduino P., Peter M.H. Opensees Soil-pile Interaction study under lateralspread load[C].2009International foundation congress and equipment expo,ASCE.
    [93] Finn W.D.L., Fujita N. Pile in liquefiable soils: seismic analysis and designissues[J]. Soil Dyn Earthquake Eng,2002,22:731-42.
    [94] Klar A., Baker R., Frydman S. Seismic soil–pile interaction in liquefiable soil[J].Soil Dyn Earthquake Eng2004,24:551-64.
    [95] Oka F., Lu C.W., Uzuoka R., et al. Numerical study of structure-soil-group pilefoundations using an effective stress based liquefaction analysis method[C].13thWorld conference on earthquake engineering. Canada: Vancouver,2004:3338.
    [96] Uzuoka R., Sento N., Kazama M. Three-dimensional numerical simulation ofearthquake damage to group-piles in a liquefied ground[J]. Soil Dyn EarthquakeEng,2007,27:395-413.
    [97] Cheng Z.H., Jeremic B. Numerical modeling and simulation of pile in liquefiablesoil[J]. Soil Dyn Earthquake Eng,2009,29:1404-16.
    [98] Comodromos E.M., Papadopoulou M.C., Rentzepris I.K. Pile foundation analysisand design using experimental data and3-D numerical analysis [J]. ComputGeotech,2009,36:819-36.
    [99] Lu C.W., Oka F., Zhang F. Analysis of soil-pile-structure interaction in atwo-layer ground during earthquakes considering liquefaction [J]. InternationalJournal for numerical and analytical methods in geomechanics,2008,32:863-895.
    [100] Fukutake K., Ohtsuki A., Yoshimi Y. A new soil cement block system forprotecting piles in liquefiable ground[C]. In proceedings of the1stinternationalconference on earthquake geotechnical engineering, Tokyo, Ishihara K(editor).Balkema: Rotterdam,1995:605-610.
    [101] Taguchi Y., Tateishi A., Oka F., et al. Numerical simulation of soil-foundationinteraction behavior during subsoil liquefaction[C]. Proceedings of the6thInternational Symposium on Numerical Models in Geomechanics, Montreal,Pietruszczak S, Pande G (eds). Balkema: Rotterdam,1997:561-566.
    [102] Zhang F., Kimura M., Lu C.W.3-D dynamic finite element analysis ongroup-pile foundation based on an axial-force dependent model for RC[C]. Inproceedings of Numerical methods in geotechnical engineering, Paris, Mestat P(ed). Balkema: Rotterdarm,2002:1009-1016.
    [103] Rahmani A., Pak A.. Dynamic behavior of pile foundations under cyclic loadingin lquefiable soils[J]. Computers and Geotechnics.2012,40:114-126.
    [104]黄雨,八塢厚,张峰.液化场地桩-土-结构动力相互作用的有限元分析[J].岩土工程学报,2005,27(6):646-651.
    [105]刘晓,唐晓微,栾茂田.地基液化导致沉箱码头失效及地基加固方法的非线性数值分析[J].防灾减灾工程学报,2009,29(5):518-522.
    [106]张建民,王刚.考虑地基液化后大变形的桩-土动力相互作用分析[J].清华大学学报(自然科学版),2004,44(3):429-432.
    [107]凌贤长,唐亮,高霞.液化场地桩基桥梁加速度反应振动台试验与数值模拟[J].哈尔滨工业大学报,2008,40(10):1546-1551.
    [108]童立元,王斌,刘义怀.地震地基液化大变形对桥梁桩基危害性三维数值分析[J].交通运输工程学报,2007,7(3):91-94.
    [109]邵琪,唐小微.群桩场地液化土单一流速横向流动数值分析[J].山西建筑,2009,35(26):2-4.
    [110]汪明武, I.Tobitat.倾斜液化场地桩基地震响应离心机试验研究[J].岩石力学与工程学报,2009,28(10):2012-2016.
    [111]杨骁,邱波.液化土侧向扩流对具有轴向力单桩的变形影响[J].力学季刊,2010,31(1):131-136.
    [112]伍小平,孙利民,胡世德等.振动台试验用层状剪切变形土箱的研制[J].同济大学学报,2002,30(7):781-785.
    [113] Fiegel G.L., Kutter B.L. A Mechanism of Liquefaction for Layered Soils[J].Journal of Geotechnical Engineering,1994,120(4):737-755.
    [114] Dobry R., Ladd R.S., Yokel F.Y., et al. Prediction of pore water pressure buildupand liquefaction of sands during earthquakes by the cyclic strain methods[M].National Bureau of Standards, US Department of Commerce, Washington, DCBuilding Science Series,1988:138.
    [115] Elgamal, A. Zeghal W. Analysis of Wildlife Site liquefaction during the1987Superstition Hills earthquake[C]. Proc.4th U.S.-Japan Workshop on EarthquakeResistant Des. of Lifeline Fac. and Countermeasures against Soil Liquefaction(Rep. No. NCEER-92-O019), M. Hamada and T. O'Rourke, eds., National Centerfor Earthquake Engineering Research, SUNY at Buffalo, Buffalo.N.Y,1992:87-96.
    [116] Youd T. L., Jamieson H., Steidl R.L. Nigbor. Lessons learned and need forinstrumented liquefaction sites[J]. Soil Dynamics and Earthquake Engineering,2004,24:639-646.
    [117] Biot M. A., Willis D. G.. The Elastic Coefficiects of the Theory ofConsolidation[J]. Journal of Applied Mechanics,1957,1(24):594-601.
    [118] Zienkiewicz O. C., Chan A. H. C., Pastor M., et al. Static and Dynamic Behaviorof Soils: A Rational Approach to Quantitative Solutions: I. Fully SaturatedProblems[C]. Proceedings of the Royal Society London, Series A, Mathematicaland Physical Sciences,1990,429:285-309.
    [119] Zienkiewicz O. C., Taylor R. L. Nithiarasu. The Finite Element Method for FluidDynamics. Sixth Edition[M]. Oxford, Boston: Elsevier Butterworth-Heinemann,2005:4-27.
    [120] Prevost J. H., A Simple Plasticity Theory for Frictional Cohesionless Soils. SoilDynamics and Earthquake Engineering.1985,4(1):9~17
    [121] Yang Z., Elgamal A., Parra E. A Computational Model for Cyclic Mobility andAssociated Shear Deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(12):1119-1127.
    [122] Yang Z., Elgamal A. Influence of Permeability on Liquefaction-Induced ShearDeformation[J]. Journal of Engineering Mechanics,2002,128(7):720-729.
    [123]迟明杰,赵成刚,李小军.砂土剪胀机理的研究[J].土木工程学报.2009,42(3):99~104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700