基于太赫兹技术的多相流检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相流广泛地存在于自然界和工业生产过程中。随着科学技术的发展,多相流动现象在化工、石油、动力、原子能、环保、轻工等许多工业应用场合中变得越来越重要,深入研究多相流动过程对于工业生产和人类的生活都具有极其重要的意义。但是,由于多相流流动特性复杂,多相流参数检测的难度相当大,现有的多相流检测技术大都还局限于实验室研究阶段,远未能满足科学研究和实际工业应用要求。因此,多相流参数检测技术已经成为多相流研究和发展的制约性因素。
     太赫兹波通常是指频率在0.1-10THz(1THz=1012Hz)范围内的电磁波,与其它波段的电磁波相比,太赫兹波段是电磁波谱中最后一个有待全面研究的重要频段。太赫兹波具有安全性好,穿透力强,光谱灵敏度高等诸多特点。但是由于太赫兹波段的辐射源和检测手段在技术上实现非常困难,所以太赫兹波段的相关研究曾一度处于停滞不前的状态。然而,随着半导体技术和超快激光技术的飞速发展,太赫兹技术在20世纪90年代后期开始得到了蓬勃的发展。
     太赫兹技术作为一种新兴检测手段,它在基础研究、天文观测、安全检查、生物医学、环境检测,乃至现代通信技术等领域都展现出巨大的应用潜力。然而,太赫兹技术在多相流领域的检测研究还处在探索的阶段,相关的研究和文献报道极其有限。
     本文尝试将太赫兹技术应用于多相流的检测中,探索太赫兹技术应用于多相流领域的可行性与潜在应用前景。重点研究了将太赫兹技术应用于气固两相流固相浓度的检测和燃烧温度场和浓度场重建这两方面内容。论文的主要工作和创新点如下:
     1)提出了基于太赫兹时域光谱技术的气固两相流固相浓度测量新方法。该方法克服了光学测量方法在高颗粒浓度的气固两相流体(>1%)中不再适用的困难,能够实现高颗粒浓度条件下气固两相流固相浓度的测量。研究结果表明,基于太赫兹时域光谱系统的固相浓度测量方法无论是衰减模式还是时间延迟模式都能够有效地实现高浓度颗粒条件下气固两相流固相浓度的测量。同时,基于时间延迟模式的气固两相流固相浓度测量方法精度更高,线性度更好。
     2)应用ISA、EFA和QCA理论模型对高颗粒浓度条件下稠密相气固两相流中的电磁波的传播和散射规律进行了理论分析,并与实验测量结果进行了对比。研究结果表明,在三种模型中QCA模型的理论预测结果与实验测量结果最为相符,QCA模型是一种比较适合于稠密相气固两相流测量结果分析的模型。
     3)本文研究了颗粒的粒径和颗粒的相对介电常数对气固两相流固相浓度的测量产生的影响。研究结果表明,在稠密相气固两相流中颗粒粒径对基于衰减模式或基于时间延迟模式的测量方法不产生明显的影响。但是颗粒的相对介电常数会对基于衰减模式和基于时间延迟模式的测量方法产生明显的影响。当颗粒材料的相对介电常数的虚部较大时,基于衰减模式的测量方法的误差也会相对较大;当颗粒材料的相对介电常数的实部较大时,基于时间延迟模式的测量方法的误差相对较小。
     4)针对太赫兹光谱对极性气体分子的变化极为敏感的特点,提出了基于太赫兹时域光谱技术的分子振动-转动光谱的双光谱火焰温度测量新方法。该方法不依赖于火焰燃烧组分并且不干扰燃烧的流场。同时,根据HITRAN分子数据库提供的光谱数据,建立太赫兹波段双谱线测温法中双谱线的选择准则。
     5)基于双谱线测温方法提出了一种基于太赫兹时域光谱技术的燃烧温度场重建新方法。选取了三对太赫兹波段的水分子谱线,利用ART算法对温度场进行了重建。同时,本文分析了温度场重建过程中,谱线强度比值和谱线强度比值的相对灵敏度变化对温度场重建产生的影响。根据灵敏度变化的范围,给出了不同谱线对的有效测温区间。提出了选用大转动量子数和大能级差的分子谱线对来提高测温精度的方法。研究结果表明,基于太赫兹时域光谱技术的温度场重建结果与实际燃烧情况一致,是一种可行的温度场重建方法。
     6)对太赫兹光谱技术应用于燃烧温度场和浓度场的重建进行了研究。提出了一种基于太赫兹时域光谱技术的燃烧温度场和浓度场同时重建的新方法。研究结果表明,本文所提出的基于太赫兹时域光谱技术的温度场和浓度场同时重建的方法是有效的,太赫兹时域光谱技术可以为燃烧温度场和浓度场的重建提供一种新方法,其在火焰燃烧诊断领域有较好的应用前景。
Multiphase flow phenomenon exists widely in nature and industrial processes. With the development of science and technology, understanding the phenomenon of multiphase flow becomes more and more important in chemical engineering, petroleum, power generation, nuclear energy, environment monitoring, metallurgy and so on. Therefore, fully understanding multiphase flow process is vital to the operation of industry and human lives. Meanwhile, due to the inherent complexity of multiphase flow system, it is difficult to measure the parameters of multiphase flow. Until very recently, most of the multiphase flow measurement techniques are still in labs, the urgent need of multiphase flow measurement from industries can hardly be satisfied. As a result, multiphase flow measurement techniques has already been an restriction for the further developing of multiphase flow research.
     Terahertz radiation is loosely defined by the frequency range of 0.1 to lOTHz (lTHz=1012Hz). Comparing with other region of the electromagnetic spectrum, the terahertz (THz) region of the electromagnetic spectrum has proven to be one of the most elusive. Terahertz radiation has attracted a lot of attention with its extremely safety radiation, non-absorbing in dry dielectric substances feature and high spectrum sensitivity. However, with the difficulties in the generation and detection of terahertz radiation, this region has been unexplored for a long time. From the late of 90s, the revolution in semiconductor industry and ultrafast laser technique welcome a prosperous era for the development of terahertz technique.
     As a rapid developing technique, terahertz technique have shown great potentials in fundamental science study, astronomy, safety insurance, medical biology, environment monitoring, telecommunication and so on. However, applications of terahertz technique in multiphase flow measurement are still in preliminary state, very limited research appears in scientific or engineering literature.
     The overall objectives of this thesis are exploring the possibility and practicability of terahertz technique to the measurement of multiphase flow. Three main applications have been under study:(1) Using terahertz time domain spectroscopy(THz-TDS) technique to investigate solids volume fraction in gas solids two phase flow measurement; (2) Using THz-TDS technique to reconstruct temperature distribution of combustion process; (3) Using THz-TDS technique to reconstruction of combustion temperature distribution and H2O concentration distribution. The main work of the dissertation includes:
     1) A new solids volume fraction measurement method of gas solids two phase flow based on THz-TDS technique have been proposed. This method overcomes the shortage of optical method which have limited optic depth in high concentration of particles(>1%). While this method can implement measurement of solids volume fraction of gas solids two phase flow in high concentration of particles. Static experiment have shown that both attenuation mode and time delay mode could implement the measurement of solids volume fraction with high concentration of particles. Meanwhile, experimental results show that he measurement of solids volume fraction with time delay mode is more accurate and with better linearity.
     2) Theoretical models of ISA, EFA and QCA have been investigated and compared with experimental results in dense gas solids two phase flow. Experimental results show that within three models, QCA is the best model to predict the propagation and scattering of terahertz wave in the gas solids flow, and this model is suitable for the analysis of gas solids flow with high concentration of particles.
     3) The effect of particle size and particle permittivity on the measurement of solids volume fraction have been investigated. Experimental results show that in high concentration of particles, particle size effect is not significant on both attenuation measurement mode and time delay measurement mode. But the permittivity of particles will affect both two measurement modes. If the imaginary part of the permittivity of particle is relatively large, the error of attenuation measurement mode will increase. On the contrary, if the real part of the permittivity of particle is larger, the error of time delay measurement model is smaller.
     4) With high spectra sensitivity of gas molecular, a new temperature measurement method based on THz-TDS have been proposed. This new method use two vibration and rotation spectra lines to obtain the temperature of gas molecular in combustion process. The method will not depend on component of combustion and not affect the combustion flow field. Base on the molecular spectra data from HITRAN database, the criterion of spectra line selection is setup.
     5) Based on two spectra line temperature measurement, a new temperature distribution reconstruction method is established using THz-TDS technique. Applying ART reconstruction algorithm, three pairs of H2O spectra line are used to reconstruct the temperature field. The spectra line relative sensitivity and strength sensitivity are analyzed and the effective temperature sensing range is provided. Theoretical and experimental results demonstrate the proposed method of choosing large rotational quantum number and large differential molecular energy have been proved. The experimental results show that the proposed method based on THz-TDS is applicable for the temperature distribution reconstruction.
     6) A preliminary study on the temperature field reconstruction and chemical component concentration reconstruction are carried out based on THz-TDS technique. Experimental results show that based on THz-TDS the simultaneous reconstructing the temperature distribution and concentration distribution are possible. And application of terahertz technique in combustion temperature reconstruction and concentration reconstruction have a foreseen future.
引文
[1]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007.
    [2]李海青,等.两相流参数检测及应用[M].杭州:浙江大学出版社,1991.
    [3]陈学俊.迅速发展中的一门新兴交叉学科[J].西安交通大学学报,1996,(04):12-20.
    [4]林宗虎.变幻流动的科学—多相流体力学[M].北京:清华大学出版社,2000.
    [5]李海青,乔贺堂.多相流测试技术现状及趋势[M].北京:石油工业出版社,1996.
    [6]林宗虎,王栋,王树众,林益.近期多相流基础理论研究综述[J].西安交通大学学报,2001,(09):881-885.
    [7]刘大有.关于二相流、多相流、多流体模型和非牛顿流等概念的探讨[J].力学进展,1994,(01):66—74.
    [8]林宗虎,王栋,王树众,林益.多相流的近期工程应用趋向[J].西安交通大学学报,2001,(09):886—890.
    [9]胡志华,钱焕群,张亚勃,赵彦春,周芳德.多相流参数的测量技术[J].计量技术,2001,(08):12-14.
    [10]洪毅,毕晓星.多相流量计的研究及应用[J].中国海上油气工程,2003,(04):16—20.
    [11]CROWE C T. Multiphase Flow Handbook [M]. Boca Raton:Taylor & Francis Group, 2006.
    [12]杨钢,王玉涛,陆增喜,王师.多传感器数据融合技术在多相流参数测量中的应用[J].仪表技术与传感器,2005,(11):51-53.
    [13]MENG F Y, ZHANG N, WANG W. Virtual experimentation of beam hardening effect in X-ray CT measurement of multiphase flow [J]. Powder Technol,2009,194(1-2):153-157.
    [14]李海青,黄志尧.特种检测技术及应用[M].杭州:浙江大学出版社,2000.
    [15]张修刚,王栋,林宗虎.近期多相流过程层析成像技术的发展[J].热能动力工程,2004,(03):221-226+321.
    [16]MWAMBELA A J, JOHANSEN G A. Multiphase flow component volume fraction measurement:experimental evaluation of entropic thresholding methods using an electrical capacitance tomography system [J]. Meas Sci Technol,2001,12(8):1092-1101.
    [17]WU C N, CHENG Y, DING Y L, WEI F, JIN Y. A novel X-ray computed tomography method for fast measurement of multiphase flow [J]. Chem Eng Sci,2007, 62(16):4325-4335.
    [18]石惠娴,王勤辉,骆仲泱,岑可法.PIV应用于气固多相流动的研究现状[J].动力工程,2002,(01):1589-1593.
    [19]DEHAECK S, VAN BEECK J. Designing a maximum precision interferometric particle imaging set-up [J]. Experiments in Fluids,2007,42(5):767-781.
    [20]DEHAECK S, VAN BEECK J. Multifrequency interferometric particle imaging for gas bubble sizing [J]. Experiments in Fluids,2008,45(5):823-831.
    [21]LAW A W K, WANG H W. Measurement of mixing processes with combined digital particle image velocimetry and planar laser induced fluorescence [J]. Exp Therm Fluid Sci, 2000,22(3-4):213-229.
    [22]WOODALL C M, PETERS J E, BUCKIUS R O. Dense Spray Corrections For Diffraction-Based Particle-Size Distribution Measurements [J]. Atomization and Sprays, 1995,5(1):75-87.
    [23]SEEGER A, AFFELD K, GOUBERGRITS L, KERTZSCHER U, WELLNHOFER E, DELFOS R. X-Ray-Based Flow Visualization And Measurement-Application In Multiphase Flows [J]. Visualization and Imaging in Transport Phenomena,2002, 972:247-253.
    [24]WYLIE S R, SHAW A, AL-SHAMMA'A A I. RF Sensor For Multiphase Flow Measurement Through An Oil Pipeline [J]. Meas Sci Technol,2006,17(8):2141-2149.
    [25]FERGUSON B, ZHANG X C. Materials for terahertz science and technology [J]. Nat. Mater,2002, 1(1):26-33.
    [26]MITTLEMAN D. Sensing with Terahertz Radiation [M]. Berlin:Springer,2003.
    [27]BEARD M C, TURNER G M, SCHMUTTENMAER C A. Terahertz Spectroscopy [J]. Journal of Physical Chemistry B,2002,106(29):7146-7159.
    [28]TONOUCHI M. Cutting-edge terahertz technology [J]. Nat Photonics,2007, 1(2):97-105.
    [29]WOOLARD D L, BROWN E R, PEPPER M, KEMP M. Terahertz frequency sensing and imaging:A time of reckoning future applications? [J]. Proc IEEE,2005, 93(10):1722-1743.
    [30]FREEBODY M. Terahertz Laser Tuning Comes Down To The Wire [J]. Photonics Spectra, 2010,44(2):21-22.
    [31]MATYUSHOV D V. Terahertz response of dipolar impurities in polar liquids:On anomalous dielectric absorption of protein solutions [J]. Phys Rev E,2010,81(2).
    [32]AUSTON D H, SMITH P R. Generation And Detection Of Millimeter Waves By Picosecond Photoconductivity [J]. Applied Physics Letters,1983,43(7):631-633.
    [33]AUSTON D H, CHEUNG K P, SMITH P R. Picosecond Photoconducting Hertzian Dipoles [J]. Applied Physics Letters,1984,45(3):284-286.
    [34]SMITH P R, AUSTON D H, NUSS M C. Subpicosecond Photoconducting Dipole Antennas [J]. IEEE Journal of Quantum Electronics,1988,24(2):255-260.
    [35]GRISCHKOWSKY D, KEIDING S, VANEXTER M, FATTINGER C. Far-Infrared Time-Domain Spectroscopy With Terahertz Beams Of Dielectrics And Semiconductors [J]. J Opt Soc Am B-Opt Phys,1990,7(10):2006-2015.
    [36]JEPSEN P U, JACOBSEN R H, KEIDING S R. Generation and detection of terahertz pulses from biased semiconductor antennas [J]. J Opt Soc Am B-Opt Phys,1996, 13(11):2424-2436.
    [37]ZHANG X C, HU B B, DARROW J T, AUSTON D H. Generation Of Femtosecond Electromagnetic Pulses From Semiconductor Surfaces [J]. Applied Physics Letters,1990, 56(11):1011-1013.
    [38]HU B B, ZHANG X C, AUSTON D H, SMITH P R. Free-Space Radiation From Electrooptic Crystals [J]. Applied Physics Letters,1990,56(6):506-508.
    [39]XU L, ZHANG X C, AUSTON D H. Terahertz Beam Generation By Femtosecond Optical Pulses In Electrooptic Materials [J]. Applied Physics Letters,1992,61(15):1784-1786.
    [40]WU Q, ZHANG X C. Free-space electro-optics sampling of mid-infrared pulses [J]. APPLIED PHYSICS LETTERS,1997,71(10):1285-1286.
    [41]BUGAY A N, SAZONOV S V. The generation of terahertz radiation via optical rectification in the self-induced transparency regime [J]. Phys Lett A,2010, 374(8):1093-1096.
    [42]CARRIG T J, RODRIGUEZ G, CLEMENT T S. Generation of terahertz radiation using electro-optic crystal mosaics [J]. Applied Physics Letters,1995,66(1):10-12.
    [43]MCINTOSH K A, BROWN E R, NICHOLS K B, MCMAHON 0 B, DINATALE W F, LYSZCZARZ T M. Terahertz photomixing with diode lasers in low-temperature-grown GaAs [J]. Applied Physics Letters,1995,67(26):3844-3846.
    [44]MATSUURA S, TANI M, SAKAI K. Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas [J]. Applied Physics Letters,1997, 70(5):559-561.
    [45]MAI K, KAWASE K, SHIKATA J, MINAMIDE H, ITO H. Injection-seeded terahertz-wave parametric oscillator [J]. Applied Physics Letters,2001,78(8):1026-1028.
    [46]KAWASE K, SHIKATA J, MINAMIDE H, MAI K, ITO H. Arrayed silicon prism coupler for a terahertz-wave parametric oscillator [J]. Appl Optics,2001,40(9):1423-1426.
    [47]PODOBEDOV V B, PLUSQUELLIC D F, FRASER G T. THz laser study of self-pressure and temperature broadening and shifts of water vapor lines for pressures up to 1.4kPa [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2004,87(3-4):377-385.
    [48]CARR G L, MARTIN M C, MCKINNEY W R, JORDAN K, NEIL G R, WILLIAMS G P. High-power terahertz radiation from relativistic electrons [J]. Nature,2002, 420(6912):153-156.
    [49]MADEY J M J. Stimulated Emission Of Bremsstrahlung In A Periodic Magnetic Field [J]. J Appl Phys,1971,42(5):1906-1913.
    [50]DEACON D A G, ELIAS L R, MADEY J M J, RAMIAN G J, SCHWETTMAN H A, SMITH T I.1st Operation Of A Free-Electron Laser [J]. Phys Rev Lett,1977, 38(16):892-894.
    [51]WILLIAMS B S, KUMAR S, HU Q, RENO J L. High-power terahertz quantum-cascade lasers [J]. Electronics Letters,2006,42(2):89-91.
    [52]WILLIAMS B S. Terahertz quantum-cascade lasers [J]. Nat Photonics,2007, 1(9):517-525.
    [53]KOHLER R, TREDICUCCI A, BELTRAM F, BEERE H E, LINFIELD E H, DAVIES A G, RITCHIE D A, IOTTI R C, ROSSI F. Terahertz semiconductor-heterostructure laser [J]. Nature,2002,417(6885):156-159.
    [54]NUSS M C, AUSTON D H, CAPASSO F. Direct Subpicosecond Measurement Of Carrier Mobility Of Photoexcited Electrons In Gallium-Arsenide [J]. Phys Rev Lett,1987, 58(22):2355-2358.
    [55]WU Q, ZHANG X C. Free-Space Electrooptic Sampling Of Terahertz Beams [J]. Applied Physics Letters,1995,67(24):3523-3525.
    [56]WU Q, ZHANG X C. Ultrafast electro-optic field sensors [J]. Applied Physics Letters, 1996,68(12):1604-1606.
    [57]GALLOT G, GRISCHKOWSKY D. Electro-optic detection of terahertz radiation [J]. J Opt Soc Am B-Opt Phys,1999,16(8):1204-1212.
    [58]HORIUCHI N. Terahertz Technology Endless Applications [J]. Nat Photonics,2010, 4(3):140-140.
    [59]BRUCHERSEIFER M, NAGEL M, BOLIVAR P H, KURZ H, BOSSERHOFF A, BUTTNER R. Label-free probing of the binding state of DNA by time-domain terahertz sensing [J]. Applied Physics Letters,2000,77(24):4049-4051.
    [60]MARKELZ A G, ROITBERG A, HEILWEIL E J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz [J]. Chemical Physics Letters,2000,320(1-2):42-48.
    [61]SIEGEL P H. Terahertz technology in biology and medicine [J]. IEEE Transactions on Microwave Theory and Techniques,2004,52(10):2438-2447.
    [62]WOODWARD R M, COLE B E, WALLACE V P, PYE R J, ARNONE D D, LINFFIELD E H, PEPPER M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue [J]. Physics in Medicine and Biology,2002,47(21):3853-3863.
    [63]JACOBSEN R H, MITTLEMAN D M, NUSS M C. Chemical recognition of gases and gas mixtures with terahertz waves [J]. Opt Lett,1996,21(24):2011-2013.
    [64]MITTLEMAN D M, JACOBSEN R H, NEELAMANI R, BARANIUK R G, NUSS M C. Gas sensing using terahertz time-domain spectroscopy [J]. Appl Phys B-Lasers Opt,1998, 67(3):379-390.
    [65]SHEN Y C, LO T, TADAY P F, COLE B E, TRIBE W R, KEMP M C. Detection and identification of explosives using terahertz pulsed spectroscopic imaging [J]. Applied Physics Letters,2005,86(24).
    [66]TSANG L, KONG J A, T.SHIN R. Theory of Microwave Remote Sensing [M]. New York: JOHN WILEY&SONS,1985.
    [67]YAN Y. Mass flow measurement of bulk solids in pneumatic pipelines [J]. Meas Sci Technol,1996,7(12):1687-1706.
    [68]FAN L-S, ZHU C. Principles of gas-solid flows [M]. Cambridge:CAMBRIDGE UNIVERSITY PRESS,1998.
    [69]JOHNSSON H, JOHNSSON F. Measurements of local solids volume-fraction in fluidized bed boilers [J]. Powder Technol,2001,115(1):13-26.
    [70]BENYAHIA S. A time-averaged model for gas-solids flow in a one-dimensional vertical channel [J]. Chem Eng Sci,2008,63(9):2536-2547.
    [71]SAMUELSBERG A, HJERTAGER B H. Computational modeling of gas/particle flow in a riser [J]. Aiche J,1996,42(6):1536-1546.
    [72]KMIEC A, LUDWIG W. A model of the two-phase gas-solids flow in fluidizing apparatus with the draft tube. II. Model solution [J]. Inz Chemiczna Proces,1998,19(3):575-589.
    [73]TRIESCH O, BOHNET M. Measurement and CFD prediction of velocity and concentration profiles in a decelerated gas-solids flow [J]. Powder Technol,2001, 115(2):101-113.
    [74]GAJEWSKI J B. Non-contact electrostatic flow probes for measuring the flow rate and charge in the two-phase gas-solids flows [J]. Chem Eng Sci,2006,61(7):2262-2270.
    [75]THEISEN K H, GEYER I. Microwave technology:An ubiquitous in line measurement instrument for density, total solids, concentration, especially brix in todays sugar factory [J]. International Sugar Journal,2007,109(1301):310-319.
    [76]YANG W Q, PENG L H. Image reconstruction algorithms for electrical capacitance tomography [J]. Meas Sci Technol,2003,14(1):R1-R13.
    [77]YANG W Q, LIU S. Role of tomography in gas/solids flow measurement [J]. Flow Meas Instrum,2000, 11(3):237-244.
    [78]YAN Y. Optical techniques for multiphase flow measurement [J]. Flow Meas Instrum, 2005,16(5):275-275.
    [79]NEFEDOV A P, PETROV 0 F, VAULINA 0 S. Analysis of particle sizes, concentration, and refractive index in measurement of light transmittance in the forward-scattering-angle range [J]. Appl Optics,1997,36(6):1357-1366.
    [80]MAGNUSSON A, RUNDQVIST R, ALMSTEDT A E, JOHNSSON F. Dual fibre optical probe measurements of solids volume fraction in a circulating fluidized bed [J]. Powder Technol,2005,151(1-3):19-26.
    [81]陆慧林,刘文铁,赵广播,GIDASPOW D.管内稠密气固两相流数值模拟计算:颗粒动力学方法[J].化工学报,2000,(01):31-38.
    [82]由长福,祁海鹰,徐旭常.稠密气固两相流中单颗粒所受气动力的数值模拟[J].工程热物理学报,2002,(01):103-106.
    [83]刘向军,赵燕,徐旭常,宋绍峰.稠密气固两相流中颗粒团运动的DEM模型研究[J].工程热物理学报,2006,(03):519—522.
    [84]LIN Q, WEI F, JIN Y. Transient density signal analysis and two-phase micro-structure flow in gas-solids fluidization [J]. Chem Eng Sci,2001,56(6):2179-2189.
    [85]SENAPATI P K, MISHRA B K, PARIDA A. Modeling of viscosity for power plant ash slurry at higher concentrations:Effect of solids volume fraction, particle size and hydrodynamic interactions [J]. Powder Technol,2010,197(1-2):1-8.
    [86]HONG J, TOMITA Y. MEASUREMENT OF DISTRIBUTION OF SOLIDS CONCENTRATION ON HIGH-DENSITY GAS-SOLIDS FLOW USING AN OPTICAL-FIBER PROBE SYSTEM [J]. Powder Technol,1995,83(1):85-91.
    [87]REUGE N, CADORET L, COUFORT-SAUDEJAUD C, PANNALA S, SYAMLAL M, CAUSSAT B. Multifluid Eulerian modeling of dense gas-solids fluidized bed hydrodynamics:Influence of the dissipation parameters [J]. Chem Eng Sci,2008, 63(22):5540-5551.
    [88]ZHU H, ZHU J. Gas-solids flow structures in a novel circulating-turbulent fluidized bed [J]. Aiche J,2008,54(5):1213-1223.
    [89]ZHU H Y, ZHU J, LI G Z, LI F Y. Detailed measurements of flow structure inside a dense gas-solids fluidized bed [J]. Powder Technol,2008,180(3):339-349.
    [90]NASRELDIN H A, MACTAGGART R S, MASLIYAH J H. Local solids concentration measurement in a slurry mixing tank [J]. Chem Eng Sci,1996,51 (8):1209-1220.
    [91]ZHU J X, LI G Z, QIN S Z, LI F Y, ZHANG H, YANG Y L. Direct measurements of particle velocities in gas-solids suspension flow using a novel five-fiber optical probe [J]. Powder Technol,2001,115(2):184-192.
    [92]HAGE B, WERTHER J, NARUKAWA K, MORI S. Capacitance probe measurement technique for local particle volume concentration in circulating fluidized bed combustors [J]. J Chem Eng Jpn,1996,29(4):594-602.
    [93]LOUGE M, TUCCIO M, LANDER E, CONNORS P. Capacitance measurements of the volume fraction and velocity of dielectric solids near a grounded wall [J]. Rev Sci Instrum, 1996,67(5):1869-1877.
    [94]YAN Y, BYRNE B, WOODHEAD S, COULTHARD J. Velocity-Measurement Of Pneumatically Conveyed Solids Using Electrodynamic Sensors [J]. Meas Sci Technol, 1995,6(5):515-537.
    [95]KRABICKA J, YAN Y. Finite-Element Modeling of Electrostatic Sensors for the Flow Measurement of Particles in Pneumatic Pipelines [J]. IEEE Trans Instrum Meas,2009, 58(8):2730-2736.
    [96]MATSUSAKA S, MASUDA H. Electrostatics of particles [J]. Adv Powder Technol,2003, 14(2):143-166.
    [97]ISHMARU A. Wave Propagation and Scattering in Random Media [M]. New York: Academic,1978.
    [98]TWERSKY V. Multiple Scattering Of Waves And Optical Phenomena [J]. Journal of the Optical Society of America,1962,52(2):145-169.
    [99]SALPETER E E, BETHE H A. A Relativistic Equation For Bound-State Problems [J]. Physical Review,1951,84(6):1232-1242.
    [100]CASTILLEJO L, DALITZ R H, DYSON F J. Low Scattering Equation For The Charged And Neutral Scalar Theories [J]. Physical Review,1956,101(1):453-458.
    [101]BORN M, WOLF E. Principle of optics [M].7ed. Cambridge:CAMBRIDGE UNIVERSITY PRESS,1999.
    [102]CHEN X D, ZHONG Y. Influence of multiple scattering on subwavelength imaging: transverse electric case [J]. Journal Of The Optical Society Of America A-Optics Image Science And Vision,2010,27(2):245-250.
    [103]TAKAGI S, TANAKA H. Multiple-scattering-free light scattering spectroscopy with mode selectivity [J]. Phys Rev E,2010,81(2).
    [104]FOLDY L L. THE MULTIPLE SCATTERING OF WAVES.1. General Theory Of Isotropic Scattering By Randomly Distributed Scatterers [J]. Physical Review,1945, 67(3-4):107-119.
    [105]CHENG T S, WEHRMEYER J A, PITZ R W. Simultaneous Temperature And Multispecies Measurement In A Lifted Hydrogen Diffusion Flame [J]. Combust Flame, 1992,91(3-4):323-345.
    [106]JUSTE G L, CONTAT-RODRIGO L. Temperature field reconstruction from phase-map obtained with Moire deflectometry in diffusion flame on solids [J]. Combust Sci Technol, 2007,179(7):1287-1302.
    [107]DEGERTEKIN F L, PEI J, KHURIYAKUB B T, SARASWAT K C. In-Situ Acoustic Temperature Tomography Of Semiconductor Wafers [J]. Applied Physics Letters,1994, 64(11):1338-1340.
    [108]沈国清,安连锁,姜根山.炉膛烟气温度声学测量方法的研究与进展[J].仪器仪表学报,2003,(S1):555—558.
    [109]田丰,孙小平,邓福军,邵富群,王福利.声学法电站锅炉温度场重建算法的研究与比较[J].量子电子学报,2003,(05):607—612.
    [110]万雄,高益庆,何兴道.多光谱辐射层析重建三维火焰温度场[J].光学学报,2003,(09):1099-1104.
    [111]LUO Z X, ZHOU H C. A combustion-monitoring system with 3-D temperature reconstruction based on flame-image processing technique [J]. IEEE Trans Instrum Meas, 2007,56(5):1877-1882.
    [112]MASON P, FLEISCHMANN C, ROGERS C, MCKINNON A, UNSWORTH K, SPEARPOINT M. Estimating Thermal Radiation Fields from 3D Flame Reconstruction [J]. Fire Technology,2009,45(1):1-22.
    [113]卫成业.燃煤锅炉炉膛火焰温度场和浓度场测量及燃烧诊断的研究[D];浙江大 学,2001.
    [114]UCHIYAMA H, NAKAJMA M, YUTA S. Measurement Of Flame Temperature Distribution By Ir Emission Computed-Tomography [J]. Appl Optics,1985, 24(23):4111-4116.
    [115]MILLER J H, ELREEDY S, AHVAZI B, WOLDU F, HASSANZADEH P. Tunable Diode-Laser Measurement Of Carbon-Monoxide Concentration And Temperature In A Laminar Methane Air Diffusion Flame [J]. Appl Optics,1993,32(30):6082-6089.
    [116]BARNES A J, ORVILLE W J. Vibrational spectroscopy:modern trends [M]. New York Elsevier Publishing Company,1977.
    [117]KAK A C, SLANEY M. Principles of Computerized Tomographic Imaging [M]. Philadelphia:Society for Industrial Mathematics,2001.
    [118]HSIEH J. Computed Tomography, Principles, Design, Artifacts, and Recent Advances [M].2 ed. Bellingham:SPIE Publications,2003.
    [119]SUBBARAO P M V, MUNSHI P, MURALIDHAR K. Performance evaluation of iterative tomographic algorithms applied to reconstruction of a three-dimensional temperature field [J]. Numer Heat Tranf B-Fundam,1997,31(3):347-372.
    [120]ROTHMAN L S, GORDON I E, BARBE A, BENNER D C, BERNATH P E, BIRK M, BOUDON V, BROWN L R, et al. The HITRAN 2008 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2009,110(9-10):533-572.
    [121]VANEXTER M, FATTINGER C, GRISCHKOWSKY D. Terahertz Time-Domain Spectroscopy Of Water-Vapor [J]. Opt Lett,1989,14(20):1128-1130.
    [122]TOPCHIYAN M E. Method of reconstruction of the chemical composition and combustion efficiency of hydrogen-air mixtures from incomplete experimental data [J]. Combustion Explosion and Shock Waves,2008,44(4):380-387.
    [123]ISHINO Y, OHIWA N. Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame [J]. Jsme International Journal Series B-Fluids and Thermal Engineering,2005,48(1):34-40.
    [124]WARNATZ J, MAAS U, DIBBLE R W. Combustion:Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation [M].4th ed. Berlin:Springer,2006.
    [125]CHAR J M, YEH J H. The measurement of open propane flame temperature using infrared technique [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,1996, 56(1):133-144.
    [126]SNELLING D R, THOMSON K A, SMALLWOOD G J, GULDER O L, WECKMAN E J, FRASER R A. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration [J]. Aiaa J,2002,40(9):1789-1795.
    [127]EINECKE S, SCHULZ C, SICK V. Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion [J]. Appl Phys B-Lasers Opt,2000,71(5):717-723.
    [128]ENG R S, BUTLER J F, LINDEN K J. Tunable Diode-Laser Spectroscopy-An Invited Review [J]. Optical Engineering,1980,19(6):945-960.
    [129]SACHSE G W, HILL G F, WADE L O, PERRY M G. Fast-Response, High-Precision Carbon-Monoxide Sensor Using A Tunable Diode-Laser Absorption Technique [J]. Journal of Geophysical Research-Atmospheres,1987,92(D2):2071-2081.
    [130]WERLE P, MUCKE R, SLEMR F. The Limits Of Signal Averaging In Atmospheric Trace-Gas Monitoring By Tunable Diode-Laser Absorption-Spectroscopy (TDLAS) [J]. Applied Physics B-Photophysics and Laser Chemistry,1993,57(2):131-139.
    [131]FRISH M B, WAINNER R T, LADERER M C, GREEN B D, ALLEN M G. Standoff and Miniature Chemical Vapor Detectors Based on Tunable Diode Laser Absorption Spectroscopy [J]. IEEE Sens J,2010,10(3):639-646.
    [132]ALBERT S, PETKIE D T, BETTENS R P A, BELOV S P, DE LUCIA F C. FASSST:A new gas-phase analytical tool [J]. Anal Chem,1998,70(21):719A-727A.
    [133]CHEVILLE R A, GRISCHKOWSKY D. Far-Infrared Terahertz Time-Domain Spectroscopy Of Flames [J]. Opt Lett,1995,20(15):1646-1648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700