大肠杆菌产1,3丙二醇工业化菌株的构建及调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,3-丙二醇英文缩写为1,3-PDO。是无色、无味的粘稠液体。可溶于水、醇、醚等多种有机溶剂。主要用于增塑剂、洗涤剂、防腐剂、乳化剂的合成,也用于食品、化妆品和制药等行业。其最主要的用途是合成苯二甲酸丙二醇酯(PTT)。PTT较PET(聚对苯二甲酸乙二酯)、PBT(聚对苯二甲酸丁二酯)具有更优良的性能,兼具PET的高性能和PBT的易加工性,具有广阔的应用前景,是目前合成纤维新品种开发的热点。目前用化学方法合成1,3—PD成本较高,设备投资大,技术难度高,产品分离纯化困难,特别是催化剂的制备较难,且产生CO等污染环境的废气。与化学合成方法相比,微生物生产1,3—PD具有生产成本低、转化率高、产物分离简单、无环境污染等优点。其纤维比普通纤维长15%,而且是生物可降解纤维。本实验室之前的研究证明由葡萄糖一步法合成1,3-PD是可行的,现在利用代谢调控和微生物发酵优化的方法构建可用于工业生产的基因工程菌。
     已发现在酿酒酵母(Saccharamces cerevisiae)中存在甘油合成途径。当环境渗透压升高时,S.cerevisiae将启动高渗甘油应答途径(the high osmolarity glycerolresponse pathway,HOG途径),通过合成并在胞内累积甘油以便维持细胞内外渗透压的平衡。3-磷酸甘油脱氢酶(GPD1)和3-磷酸甘油磷酸化酶(GPP2)是甘油合成途径中的关键酶。目前发现能以甘油为底物发酵生产1,3-丙二醇的自然菌株如克雷伯肺炎杆菌(Klebsiella pneumoniae)、丁酸梭状芽孢杆菌(Clostridiumbutyricum)、弗氏柠檬酸菌(Citrobacter freundii)、乳酸杆菌等(Lactobacilli),其中以克雷伯肺炎杆菌和丁酸梭菌有较高的甘油耐受率和1,3-丙二醇得率。由于肺炎杆菌中1,3-丙二醇合成途径已研究的较为明白,且其生化特性与大肠杆菌(E.coli)非常接近,这就为菌种的基因改良和利用基因工程技术构建新的菌种提供了便利,故选择肺炎杆菌中1,3-丙二醇合成酶的基因作为在大肠杆菌中异源表达合成1,3-丙二醇酶的基因。克雷伯氏肺炎杆菌是兼性厌氧菌,在以甘油为底物和厌氧环境下启动1,3-PD合成系统dha途径。合成1,3-丙二醇有两个关键酶,甘油脱水酶和1,3-丙二醇氧化还原酶,近来自大肠杆菌中发现1,3-丙二醇氧化还原酶的同工酶,由基因yqhD编码。
     本研究从酿酒酵母中克隆GPD1和GPP2基因,构建由单个启动子控制两个基因表达的多顺反子质粒;从肺炎杆菌中克隆dhaB和dhaT基因(或者yqhD基因),构建由同一启动子控制多个基因表达的重组质粒,然后将这两个重组质粒共转化导入大肠杆菌,成功实现了大肠杆菌由葡萄糖直接发酵生产1,3-丙二醇的策略。在此基础上,我们从代谢调控和微生物发酵优化的角度,分别在质粒改造,同工酶,菌种优化,代谢途径改造等几个方面对构建的基因工程菌进行了优化,最终我们构建了一种不需要昂贵的诱导剂而产量却更高的微生物发酵体系,这使1,3-丙二醇的微生物发酵工业生产向前迈进了一大步。本实验的结果对于其他同类型的微生物发酵体系也有一定的指导意义和现实价值
1,3-Propanediol(l,3-PDO) is a three-carbon diol. An emerging large-volume application of 1,3-PD is as a monomer in the synthesis of polyesters for use in carpet and textile fibers and so on.
     A variety of chemical routes to 1,3-PDO is known . It is currently manufactured by synthetic processes beginning with petroleum derivatives such as acrolein or ethylene oxide. The chemical methods are expensive and generate waste streams containing environmental pollutants. Although 1,3-PDO is presently mainly produced by these chemical ways, there is a worldwide interest in producing this chemical by a biotechnological route. Metabolic engineering, the modification, design and construction of biochemical pathways, is an emerging discipline of potential importance to chemicals.
     We have known that Saccharamces cerevisiae can produce glycerol by converting glucose through the fructose-1,6-bisphosphate pathway. When osmotic pressure rises, S.cerevisiae can start up the high osmolarity glycerol response pathway(HOG pathway), which synthesizes and accumulates glycerol to maintain the balance of osmotic pressure between the cell membrane. And the Klebsiella pneumoniae can convert glycerol to 1,3-PDO.
     In Klebsiella pneumoniae, Citrobacter freundii,and Clostridium pasteurianum, the genes encoding the three structural subunits of glycerol dehydratase(dhaB1-3) and located adjacent to a gene encoding a specific 1,3-propanediol oxidoreductase(dhaT). Although the genetic organization differs somewhat among these microorganismd. these genes are clustered in a group which also comprises dhaB4 and orf2b(genes encoding a dehydratase reactivation factors for glycerol dehydratase). The specific 1,3-propanediol oxidoreductase (dhaT) of these microorganism are known to belong to the family of type III alcohol dehydrogenases. The gene (yqhD) in E.coli encodes a hypothetical oxidoreductase and contains two alcohol dehydrogenase signatures also found in the Citrobacter freundii and Klebsiella pneumoniae 1,3-propanediol dehydrogenase encoded by the dhaT gene. It's an isozyme of the 1,3-propanediol oxidoreductase (dhaT).
     In this paper, metabolic pathway from glucose to 1,3-proapanediol was successfully constructed in recombinant Escherichia coli by expression of gpd1 and gpp2 genes from Saccharomyces cerevisiae EBY100 and dhaB and dhaT genes from Klebsiella pneumoniae, respectively. HPLC analysis confirmed that the conversion of glucose to 1,3-propanediol by this recombinant biocatalyst. we analysed the impacts of different type of plasmids in E.coli recombined strains and metablic flows on the titer of glycerol and 1,3-propanediol.
引文
[1]诸葛健,方慧英。发酵法发酵生产甘油的进展。食品与发酵工业。1994年。
    [2]DU Li-Qin,Wei Yu-Tuo,CHEN Fa-Zhong,Co-expression of gpd1 and hor2from Saccharomyces cerevisiae in Escherichia coli.Chinese Journal of Biotechnology.2005 21
    [3]Zheng-Xiang Wang,Jian Zhuge,Huiying Fang et al.Glycerol production by microbial ferrnentation:A review.Biotechnology Advances,2001,19:201-223.
    [4]Nair V,Payne MS,Trimbur DE et al.Method for the production of glycerol by recombinant organisms.WO 9928480,1999-6-10
    [5]王正祥,诸葛健。产甘油假丝酵母胞浆3-磷酸甘油脱氢酶编码基因的克隆。微生物学报。1999年8月。
    [6]Rose D M Broach R J.Cloning genes by complementation in yeast.Academic Press,Inc.,1991,195-229.
    [7]Altschul SF,GishW,Miller W,Myers EW,Lipman DJ(1990)Basic local alignment search tool.J.Mol.Biol.215:403-410.
    [8]Schwede T,Kopp J,Guex N,Peitsch MC(2003)SWISS-MODEL:an automated protein homology-modeling server.Nucl.Acids Res.31:3381-3385.
    [9]劭敬伟,刘长江。1,3-丙二醇发酵研究进展。沈阳农业大学学报,2001,32(1):57-60.
    [10]K.Menzel,A.-RZeng,and W.-D.Deckwer.High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by klebsiella pneumoniae.Enzyme and Microbial Technology1997,20:82-86.
    [11]Papanikolaou S,Ruiz-Sanchez P,Pariset B,High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain.J Biotechnol.2000,77:191-208.
    [12]Anja Knietsch,Susanne Bowien,Gregg Whited,Identification and Characterization of Coenzyme B12-Dependent Glycerol Dehydratase- and Diol Dehydratase-Encoding Genes from Metagenomic DNA Libraries Derived from Enrichment Cultures Appl Environ Microbiol.2003 69(6):3048-3060.
    [13]TAKAMASA TOBIMATSU,HIDEKI KAJIURA,MICHIO YUNOKI et al.Identification and Expression of the Genes Encoding a Reactivating Factor for Adenosycobalamin-Dependent Glycerol Dehydratase.
    [14] M Veiga da Cunha and M A Foster , Sugar-glycerol cofermentations in lactobacilli: the fate of lactate. J Bacteriol. 1992 174(3): 1013-1019
    [15] D.C.Cameron, N.E.Altaras, M.L.Hoffman et al. Metabolic Engineering of Propanediol Pathways. Biotechnol. Prog.1998,14,116-125
    [16] Short Protocals In Molecular Biology.Frederick M.Ausubel et al.
    [17] Charles E Nakamura, Gregory M Whited Metabolic engineering for the microbial production of 1,3-propanediol.Curr Opin Biotechnol. 2003 14(5):454-9.
    [18] I-THE TONG, HANS H.LIAO, AND DOUGLAS C.CAMERON.1,3-Propanediol Production by Escherichia coli Expressing Genes from the Klebsiella pneumoniae dha Regulon. Applied And Environmental Microbiology. 1991,p.3541-3546.
    [19] Sambrook , J , Fritsch E F , Maniatis T. Molecular cloning a laboratory manual,2nd Cold Spring Harbor Laboratory Press ,1989.
    [20] Streekstra H ,Teixeira de Mattos M2J ,Neijssel O2M , et al. Over flow metabolism during anaerobic growth of Klebsiella aerogenes NCTC418 on glycerol and dihydroxyacetone in chemostat culture. Arch. Microbiol. 1987 ,147:268-275
    [21] Barbirato F ,Camarasca2Claret C ,Bories A ,et al. Description of the glycerol fermentation by a new 1 , 3 -propanediol producing microorganism:Enterobacter agglomerans. Appl. Microbiol. Biotechnol. 1995 , 43 :786 - 796
    [22] Homann T , Tag C , Biebl H , et al. Fermentation of glycerol to 1 ,3-propanediol by Klebsiella and Citrobacter strains . Appl Bimcrobiol Biotechnol. 1990,33:121-126.
    [23] Cameron D C ,Altaras N E ,Hoffman M L ,et al. Metabolic engineering of propanediol pathways . Biotechnol Progress , 1998 , 14 :116 -125.
    [24] Tobimatsu T , Azuma M , Matsubara H , et al. Cloning , sequencing , and high level expression of the genes encoding adenosylcobalamin12 dependent glycerol dehydrase of Klebsiella pneumoniae J Biol Chem , 1996 , 271(37) :22352 - 22357
    [25] Taraya T , Ushio KFukui S , Hogenkamp H. Studies on the mechanism of the adenosylcobalamin12 dependent diol dehydratase reaction by the use of analogs of the coenzyme. J . Biol. Chem. 1977 , 252 :963 - 970
    [26] Raynaud C , Sarcabal P , Meynial2salles I , Croux C , and Soucaille P. Molecular characterization of the 1 , 3-propanediol (1,3-PD) operon of Clost ridium butyricum. PNAS . 2003 , 100 : 5010 -5015.
    [27] Douglas CC, James AK (1994) Conversion of glycerol from soydiesel production to 1,3-propanediol. Final Report National Biodiesel Development Board. Madison, USA: UW-Madison.
    [28] Fabien B, Anne L, Thierry C, Suzett A, Bories A .Sensitivity to pH, product inhibition and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter aggloverans CNCM 1210. Arch. Microbiol. 168: 160-163.
    [29] GishW, States DJ (1993) Identification of protein coding regions by database similarity search. Nat. Genet. 3: 266-272.
    [30] Menzel K, Zeng AP, Deckwer WD. 1997. Enzymatic evidence of involvement of pyruvate dehydrogenase in anaerobic glycerol metabolism by Klebsiella pneumoniae. J Biotechnol 56:135-142.
    [31] Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, Zhang W, Yang X. Pootoolal J, Chua G,Lopez A, et al. (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118:31-44
    [32] Siegele DA, Hu JC (1997) Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A 94:8168-8172
    [33] Hopper and Cooper, 1972 D.J. Hopper and R.A. Cooper, The purification and properties of Escherichia coli methylglyoxal synthase, Biochem. J. 128 (1972),pp. 321-329.
    [34] Fischer D, Teich A, Neubauer P, Hengge-Aronis R (1998) The general stress sigma factor sigmaS of Escherichia coli is induced during diauxic shift from glucose to lactose. J Bacteriol 180:6203-6206
    [35] Hengge-Aronis R (1999) Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 2:148-152
    [36] Jorgensen F, Bally M, Chapon-Herve V, Michel G, Lazdunski A, Williams P.Stewart GS (1999) RpoS-dependent stress tolerance in Pseudomonas aeruginosa. Microbiology 145 (Pt 4):835-844
    [37] Muffler A, Barth M, Marschall C, Hengge-Aronis R (1997) Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli. J Bacteriol 179:445.452
    [38] Zhou Y, Gottesman S (1998) Regulation of proteolysis of the stationary-phase sigma factor RpoS. J Bacteriol 180:1154-1158
    [39] Signer E R ,Weil J . Recombination in bacteriophageλ. I. Mutantsdeficient in general recombination [J]. Mol Biol ,1968 ,34 : 261—271.
    [40] Anthony R Poteete ,Antta C Fenton , Kenan C Murph. Roles of RuvC and RecG in Phage A, Red2Mediated Recombination [J]. Journal of Bacteriology .1999,181 (17) :5402~5408.
    [41] Poteete A R ,Volkert M R. Activation of recF2dependent recombi2 nation in Escherichia coli by bacteriophage λ and P222encoded functions[J] .Bacteriol.1988,170:4379-4381.
    [42] Murphy K C. Use of bacteriophageλ recombination functions to promote gene replacement in Escherichia coli [J] .Bacteriol ,1998 , 180 : 2063-2071.
    [43] Poteete A R ,Fenton A C. Efficient double2strand break2stimulate2 drecombination promoted by the general recombination systems of phagesλand P22 [J]. Genetics ,1993 ,134 :1013~1021.
    [44] Potetee A R. What makes the bacteriophageλRed system useful for genetic engineering :molecular mechanism and biological function [J] . FEMS Microbiology Letters ,2001 ,201 (1) :9~14.
    [45] Yu D ,Ellis H M ,Lee E C Jenkins N A ,Copeland N G,Court DL. An efficient recombination system for chromosome engineering in Escherichia coli [J] .Proc Natl Acad Sci USA ,2000 ,97 (11): 5978-5983.
    [46] Guzman L M ,Belin D ,Carson M J ,Beckwith J . Tight regulation , modulation , and high21evel expression by vectors containing the arabinose PBAD promoter[J]. J Bacteriol ,1995 ,177 (14) :4121-4130.
    [47] MacKenzie and Baugh, 1980 R.E. MacKenzie and C.M. Baugh,Tetrahydropteroylpolyglutamate derivatives as substrates of two multifunctional proteins with folate-dependent enzyme activities, Biochem. Biophys. Acta 611 (1980), pp. 187-195.
    [48] Membrillo-Hernandez, 2000 J. Membrillo-Hernandez, P. Echave, E. Cabiscol, J. Tamarit, J. Ros and E.C.C. Lin, Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase, Issue Series Title: J. Biol. Chem. 275 (2000), pp. 33869-33875.
    [49] Hall, 1981 B.G. Hall, Changes in the substrate specificities of an enzyme during directed evolution of new functions, Biochemistry 20 (1981), pp. 4042-4049.
    [50] Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling Electrophoresis 18: 2714-2723.
    [51] Hassiba M, Regis M (2000) Purification and characterization of 1,3-propanediol dehydrogenase of Clostridium butyricum E5. Enzyme Microb.Technol. 27: 399-405.
    [52] Madden TL, Tatusov RL, Zhang J (1996) Applications of network BLAST server. Meth. Enzymol. 266: 131-141.
    [53] Powell JB, Slaugh LH, Forschner TC (Richmond, TX), ThomasonTB, Semple TC (Friendswood, TX), Weider PR, Arhancet JP(1995a) Process for preparing 1,3-propanediol. US 5463144 (US Patent).
    [54] Witt U, Müller RJ, Widdecke H, Deckwer WD (1994) Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Makromol. Chem.Phys. 195: 793-802.
    [55] Zeng AP, Biebl H, Schlieker H, Decker WD (1993) Pathway analysis of glycerol fermentation by Klebsiella pnrumoniae: regulation of reducing equivalent balance and product formation. Enzyme Microb. Technol. 15: 770-779.
    [56] Zhang J, Madden TL (1997) PowerBLAST: a new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res. 7:649-656.
    [57]. Deckwer W-D: Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol Rev 1995,16:143-149.
    [58] Ahrens K, Menzel K, Zeng AP, Deckwer WD. 1998. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. Biotechnol Bioeng 59:544-552.
    [59] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl Acids Res 25:3389-3402.
    [60] Barbarito F, Grivel JP, Soucaille P, Bories A. 1996. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol 62:1448-1451.
    [61] Biebl H, Menzel K, Zeng AP, Deckwer WD. 1999. Microbial production of 1,3-propanediol.App Microbiol Biotechnol 52:289-297.
    [62]Daniel R,Stuertz K,Gottschalk G.1995.Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii.J Bacteriol 177:4392-4401.
    [63]Emptage M,Haynie S,Laffend L,Pucci J,Whited G.2001.Process for the biological production of 1,3-propanediol with high titer.E.I.du Pont de Nemours and Co.and Genencor International,Inc.U.S.patent WO01/12833A2.
    [64]Forage RG,Foster MA.1982.Glycerol metabolism in Klebsiella pneurnoniae:Functions of the coenzyme B12-dependent glycerol and diol dehydratase.J Bacteriol 149:413-419.
    [65]Forage RG,Lin ECC.1982.dha systems mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB418.JBacteriol 151:591-599.
    [66]Obermaier C,Boguth G,Harder A,Scheibe B,Wildgruber R,Weiss W.2000.The current state of two-dimensional electrophoresis with immobilized pH gradients.Electrophoresis 21:1037-1053.
    [67]Gutknecht R,Beutler R,Garcia-Alles LF,Baumann U,Erni B.2001.The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor.EMBO J 20:2480-2486.
    [68]Hartlep H,Hussmann W,Prayitno N,Meynial-Salles I,Zeng AR 2002.Study of two-stage processes for the microbial production of 1,3-propanediol from glucose.Appl Microbial Biotechnol 60:60-66.
    [69]Johnson EA,Burke SK,Forage RG,Lin ECC.1984.Purification and properties of dihydroxyacetone kinase from Klebsiella pneumoniae.J Bacteriol 160:55-60.
    [70]Kanehisa M,Goto S.2000.KEGG:Kyoto encyclopedia of genes and genomes.Nucl Acids Res 28:27-30.Karp PD,Riley M,Saier M,Paulsen IT,Paley SM,Pellegrini-Toole A.
    [71]2000.The EcoCyc and MetaCyc databases.Nucl Acids Res 28:56-59.Ma HW,Zeng AR 2002.Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms.Bioinformatics 19:270-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700