基于MEMS技术的微自适应光学系统的建模及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着自适应光学技术的发展及应用的推广,传统的大型自适应光学系统已不能较好地满足航空、航天、机载激光武器、卫星遥感等领域的要求。微型化、集成化已成为自适应光学系统的发展方向,同时也是现代医学高分辨率成像、激光通讯等领域的一项迫切需求。而MEMS技术的出现与发展使自适应光学系统的微型化、集成化甚至单片集成(SOC)成为可能。基于MEMS技术的微自适应光学系统成为各国的研究重点。因此,开展微自适应光学系统建模及其关键技术研究具有重要的研究意义和应用前景。
     本文针对基于MEMS技术的微型自适应光学系统的波前扰动理论、波前传感技术、波前重构理论以及微变形镜波前校正进行了建模与仿真,并对MEMS微变形镜的设计等一系列关键技术进行了研究,论文主要研究内容包括:
     1.研究了柯尔莫哥洛夫大气湍流统计模型,以及在小扰动近似下柯尔莫哥洛夫湍流大气对波前相位的扰动大小,得出了湍流层影响的线性叠加特性。
     2.研究与比较了三种波前传感技术以及两种波前重构理论,确定了Shack-Hartmann波前传感技术和基于Zemike多项式的模式法重构理论适合用于微自适应光学系统的波前传感与波前重构,建立了微自适应光学系统理论模型,并实现了微自适应光学系统波前传感、波前重构以及波前校正的仿真,分析了仿真结果。
     3.针对基于MEMS技术的分立式微变形镜波长校正范围较窄的问题,设计了两种新型可变刚度的弹性梁,分析了其对分立式微变形镜的波长校正范围的影响。
     4.采用表面加工工艺对四种形式的分立式微变形镜进行了工艺和版图设计。
     本文的仿真与研究结果表明,应用分立式微变形镜可以明显校正畸变波前,显著提高Strehl比;应用两种新型的弹性梁均可显著提高分立式微变形镜的波长校正范围。
With the rapid development and the wide application of adaptive optics technology, the traditional large adaptive optics system can no longer meet the need in the fields such as aviation and aerospace, laser weapons, medical high-resolution imaging and laser communication systems. Some adaptive optics systems with low cost, low volume and high performance are expected. The advent of MEMS technology offers the possibility of making that kind of adaptive optic system. With the MEMS technology, the functions of wavefront sensing, reconstruction and correction can even be preformed on a single chip. So, the micro-mechanical adaptive optic system is being more and more promising. In this thesis, the model of a micro-mechanical adaptive optic system was established and some simulations were made. In addition, several key technologies about the micromirror design were explored.Firstly, the Kolmogorov statistical model of the atmospheric turbulence and the wavefront distortion by effects of turbulence were studied. The conclusion was drawn that the wavefront distortion effected by several turbulences could multiply linearly.Secondly, three kinds of wavefront sensing technologies and two kinds of wavefront reconstruction theories were studied and compared, then the Shack-Hartmann wavefront sensing technology and the Zernike-based modal wavefront reconstruction method were selected for the modeling of the micro-mechanical adaptive optics system. After that, the wavefront sensing, reconstruction and correction of the system were simulated and the results were analyzed.Thirdly, two kinds of flexure beams with changeable elastic stiffness were designed and their applications in extending the valid stroke of the micromirror with the electrostatic parallel-plate actuators were analyzed.Finally, the corresponding microfabrication process and layout of four kinds of segmented deformable micromirrors were designed.The results of the simulation and research indicate that the segmented deformable micromirror can effectively correct the distorted wavefront and can increase the Strehl ratio obviously. And by using any kind of these two springs, the valid stroke of the micromirror can be extended definitely.
引文
[1] 胡家升.光学工程导论[M].大连:大连理工大学出版社.2002.
    [2] 姜文汉.自适应光学与能动光学[J].物理.1997.2.
    [3] P. K. Tyson. Principles of Adaptive Optics [M]. California: Academic Press. 1991.
    [4] Babcock. The possibility of compensating astronomical seeing [M]. Publications of the Astronomical Society of the Pacific. 1953.
    [5] 周仁忠.自适应光学[M].北京:国防工业出版社,1996.
    [6] 周仁忠,阎吉祥.自适应光学理论[M].北京:北京理工大学出版社,1996.
    [7] http://www.ls.eso.org/lasilla/Telescopes/360cat/.
    [8] Claire Max. Adaptive Optics and its Applications [R]. UC Santa Cruz, 2002.
    [9] http://www.noao.edu/gateway/keck/.
    [10] 姜文汉,光电技术研究所的自适应光学技术[J].光电工程.1995,22.
    [11] Ling Ning, et al. Small tabletop adaptive optical systems for human retinal imaging [C]. Proc. SPIE 2002, Vol. 4825.
    [12] 李新阳,姜文汉.两个自适应光学系统串连校正的控制性能分析[J].光学学报.2001,9.
    [13] 钟建业.国外TMD系统采用的若干高新技术[J].中国航天.1999,12.
    [14] N. Clark, P. Furth. Design and performance evaluation of a silicon eye using micro-mirrors [R], The 43rd Midwest Symposium on Circuits and Systems, Lansing, MI, August 2000.
    [15] William D. Cowan. Foundry Mircofabrication of Adaptive Optics [D]. Ph. D. thesis, Air Force Institute of Technology, 1998.
    [16] Claire Max. Wavefront Correction Deformable Mirrors Lecture 7 [R]. UC Santa Cruz, 2002.
    [17] Peter Krulevitch, Paul Bierden. MOEMS spatial light modulator development at the Center for Adaptive Optics [C]. Proc. SPIE 2002, Vol. 4825.
    [18] Adisom Tuantranont, Victor M. Bright. Segmented Silicon-Micromachined Microelectromechanical Deformable Mirrors for Adaptive Optics [J]. IEEE JOURNAL. 2002, 8.
    
    [19] Claire Max. Atmospheric Turbulence and its Effects on Image Formation [R]. UC Santa Cruz, 2004.
    [20] Francois Roddier. Adaptive Optics in Astronomy [M]. British: Cambridge University Press, 1999.
    [21] Claire Max. Propagation of light through atmospheric turbulence[R]. UC Santa Cruz, 2004.
    [22] John Hardy. Adaptive Optics for Astronomical Telescopes [M]. London: Oxford Press, 1998.
    [23] Brian Bauman. Optical Aberrations [R]. The Center for Adaptive Optics. 2004.
    [24] http://cvu.strath.ac.uk/courseware/msc/jbaggot/aberration/aberration.html.
    [25] Geunyoung Yoon. Aberration Theory [R]. Department of Ophthalmology Center for Visual Science University of Rochester. 2004.
    [26] Robert K. Tyson. Principles of Adaptive Optics (2nd edition) [M]. California: Academic Press, 1998.
    [27] http://img.thefreedictionary.com/wiki/7/75/Lens-coma.png.
    [28] www.ave.nikon.co.jp/bi_e/encyclo/ad.htm.
    [29] http://www.ave.nikon.co.jp/bi_e/encyclo/image/distorl_i.gif.
    [30] 候静,姜文汉,凌宁.像差与斯特列尔比的极限曲线[J].光学学报.2001,9.
    [31] 李博.自适应光学探测及信号处理方法研究[D].北京:北京理工大学博士论文.2003.
    [32] Claire Max. Wavefront Sensing [R]. UC Santa Cruz, 2004.
    [33] 章磊,刘立人等.星间激光通讯中的波前传感技术[J].激光与光电子学进展.2004,4.
    [34] 徐德衍.剪切干涉仪及其应用[M].北京:机械工业出版社,1987.
    [35] 格恩瑟.利本伯(美).光学干涉图的处理与判读[M].北京:机械工业出版社,1986.
    [36] 田爱玲.相移横向剪切干涉图的二维图像实时采集及处理[D].西安:西安工业学院硕士论文.2001.
    [37] 何丽萍,王英俭,范承玉.利用剪切干涉测量激光大气传输相位畸变[J].量子电子学报.2001,18.
    [38] F. Roddier. Curvature sensing and compensation: a new concept in adaptive optics [J]. Applied Optics. 1998, 27.
    
    [39] N. Roddier. Algorithms for wavefront reconstruction out of curvature sensing data [C]. Active and Adaptive Optical Systems. Proc. SPIE, 199l, Vol. 1542.
    [40] Spiricon, Inc. Hartmann Wavefront Analyzer Tutorial [M]. 2600 North Main St. Logan, Utah, USA. 2000.
    [41] http://www.ctio.noao.edu/~atokovin/tutorial/part3/shwfs.gif.
    [42] http://www.ctio.noao.edu/~atokovin/tutorial/part3/wfs.html#SEC3.2.
    [43] Sandrine THOMAS. Centroid measurements in a Shack-Hartmann Wavefront Sensor [R]. UC Santa Cruz, 2003.
    [44] 许晓军,陆启生.剪切干涉仪与哈特曼波前传感器的波前复原比较[J].强激光与粒子束.2000,3.
    [45] David Russell Luke. Analysis of Optical Wavefront Reconstruction and Deconvolution in Adaptive optics [D]. Ph. D. thesis, Department of Electrical Engineering, University of Washington, 2001.
    [46] Fang Shi, Douglas MacMartin, Mitchell Troy. Local Wavefront Reconstruction: Simulations, Experiments and Predictions [Z]. California Institute of Technology. 2002.
    [47] Fang Shia, Douglas G. MacMartinb, Mitchell Troya. Sparse Matrix Wavefront Reconstruction Simulations and Experiments [C]. Proc. SPIE. 2003, Vol. 4839.
    [48] Marcel Dekker, Robert K. Tyson. Adaptive Optics Engineering Handbook [M]. California: Academic Press, 2000.
    [49] 向汝建.光束波前校正与信标研究[D].绵阳:中国工程物理研究院硕士论文.2000.
    [50] 张加如.自适应光学波前校正优化方法研究[D].绵阳:中国工程物理研究院硕士论文.2002.
    [51] Virendra N. Mahajan. Zernike Circle Polynomials and Optical Aberrations of Systems with Circular Pupils [R]. Engineering & Laboratory Notes. 1994.
    [52] L. N. Thibos. HANDBOOK OF VISUAL OPTICS: Draft Chapter on Standards for Reporting Aberrations of the Eye[Z]. Indiana University. 1999.
    [53] 胡朝晖,姜文汉.受大气湍流影响的光学波前模拟[J].光电工程,1995,2
    [54] 乔大勇.基于MEMS技术的自适应光学微变形镜的设计与分析[D].西安:西北工业大学硕士论文.2003.
    [55] F. Wildi, G. Brusa, M. Loyd-Hart, L. Close, A. Richard. First light of the 6.5-m MMT adaptive optics system [C]. Proc. SPIE, 2003, Vol. 5169.
    
    [56] Goran B. Scharmer, Peter Dettori, Mats G. Lofdahl, et al. Adaptive optics system for the new Swedish solar telescope [C]. Proc. SPIE, 2003, Vol. 4853.
    [57] Richard M. Myers, Andrew J. Longmore, Christopher, et al. The NAOMI Adaptive Optics System for the 4.2m William Herschel Telescope [C]. Proc. SPIE, 2003, Vol. 4839.
    [58] S. Esposito, A. Tozzi, D. Ferruzzi, M. Carbillet, et al. First Light Adaptive Optics System for Large Binocular Telescope [C]. Proc. SPIE, 2003, Vol. 4839.
    [59] Laird A. Thompson, Scott W. Teare, Christopher R. Neyman, et al. UnISIS Adaptive optics system at the Mt. Wilson 2.5m telescope [C]. Proc. SPIE, 2003, Vol. 4839.
    [60] Claire Max. Wavefront correction; Deformable Mirrors [R]. UC Santa Cruz, 2004.
    [61] 凌宁,官春林.变形镜的发展[J].光电工程.1995,1.
    [62] 姜春晖.自适应光学系统对活体人眼视网膜的初步观察[D].成都:中国科学院光电技术研究所博士论文.2002.
    [63] David Sprayberry, Paola Amico, Randy Campbell. Keck Telescope and Facility Instrument Guide [Z]. 2002.
    [64] Pearson J E. Applied Optics and Optical Engineering [M]. NewYork: Academic Press. 1997.
    [65] Adisorn T, Victor M B. Segmented Silicon-Micromachined Microelectromechanical Deformable Mirrors for Adaptive Optics [J]. J. Selected topics in quantum electronics. 2002, 8.
    [66] 钱劲等.微电子机械系统中的残余应力问题[J].机械强度.2001,23.
    [67] William D. Cowan. Foundry Mircofabrication of Deformable Mirror for Adaptive Optics [D]. Ph. D. thesis, Air Force Institute of Technology, 1998.
    [68] Sayanu Pamidighantam, Robert Puers, Kris Baert, Harrie A C Tilmans. Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions [J]. Journal of micromechanics and microengineering. 2002, 12.
    [69] W. C-K. Tang. Electrostatic Comb Drive for Resonant Sensors and Actuator Applications [D]. Ph. D. thesis, Department of Electrical Engineering and Computer Science, University of California, Berkeley, 1990.
    
    [70] Legtenberg. R., Gilbert. J., Stephen D. D., Elwenspoek. M, Fluitman. J. Electrostatic Curved Electrode Actuators [R]. Proc. MEMS 1995.
    [71] Edward K C, Robert W D. Electrostatic Micromechanical Actuator with Extended Range of Travel [J]. J. Microelectromech. Syst., 2000, 9.
    [72] David. Koester, Ramaswamy, Mahadevan, Busbee Hardy, K. W. Markus. MUMPs Design Handbook [M]. Cronos Integrated Microsystems A JDS Uniphase Company, 2001.
    [73] Harris J. Hall. Control and Characterization of Line-addressable micromirror arrays [D]. M.S. Thesis, Air Force Institute of Technology, 2001.
    [74] John Comtois, Adrian Michalicek, et al. Surface-micromachined polysilicon MOEMS for adaptive optics [J]. Sensors and Actuators. 1999, 78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700