磁共振功能成像在慢性肾病中的临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     前瞻性采集校正技术在肾脏弥散加权成像中的临床应用研究
     目的:探讨采用导航触发前瞻性采集校正技术的弥散加权成像(PACE-DWI)在肾脏ADC值测量中的可重复性,且就图像信噪比(SNR)及对比噪声比(CNR)和常规摒气DWI进行比较。
     方法:对15例健康志愿者进行了重复DWI检查(两次检查间隔时间为5—42天),每次DWI扫描均采用摒气单次激发的自旋回波平面回波(SS-SE-EPI)序列和采用PACE技术的SE-EPI序列,选用5个不同的弥散梯度因子(b值)为100、300、500、800及1000 s/mm~2。PACE-DWI在肾实质ADC值测量中的重复性研究,采用配对t检验、Bland-Altman plot及一致性相关分析;两种成像序列间SNR及CNR的比较采用Mann-Whitney U检验;不同b值组问SNR及CNR的比较采用Kruskal-Wallis H检验;摒气DWI和PACE-DWI所测得ADC值的比较,采用Wilcoxon配对符号秩检验;不同b值组间ADC值的比较采用Friedman检验。
     结果:各b值条件下,采用PACE-DWI重复测得的双肾实质ADC值间均无统计学差异(P>0.05)。且除b=100 s/mm~2条件外,PACE-DWI重复测得的肾实质ADC值的平均差为-4.4×10~(-5) mm~2/s~6.3×10~(-5)mm~2/s,一致性限(平均差±1.96 SD)为±28.1×10~(-5)mm~2/s~±36.4×10~(-5)mm~2/s,重复测得的肾实质ADC值间具有很高的一致性(ρ_c=0.892,P=0.000)。相同b值条件下,PACE-DWI图像的SNR及CNR明显高于摒气序列,均存在统计学差异(P<0.05);但无论摒气DWI还是PACE-DWI,随着b值的增高,DWI图像的SNR及CNR均呈下降趋势,且在各b值组间存在显著的统计学差异(P<0.01)。另外,相同b值条件下,PACE-DWI所测得的ADC值均高于摒气序列,且除b=100 s/mm~2条件下的右肾实质ADC值外,两者间均存在统计学差异(P<0.05);但无论摒气DWI还是PACE-DWI,肾实质ADC值随b值的增加均呈下降趋势,且各b值组间的ADC值均存在显著的统计学差异(P<0.01)。
     结论:PACE-DWI在肾脏ADC值的测量中具有较好的可重复性,且SNR和CNR均显著高于常规摒气DWI,适用于临床研究。但是,PACE-DWI与摒气DWI所测得的ADC值间存在差异。
     第二部分
     弥散加权成像在慢性肾病功能评估中的临床应用研究
     目的:探讨弥散加权成像(DWI)在慢性肾病(CKD)临床分期及分肾功能评估中的价值及肾体积对肾功能的影响,比较采用导航触发前瞻性采集校正技术的弥散加权成像(PACE-DWI)在分肾功能评估中是否存在优势。
     方法:对83例CKD病例及12例健康志愿者进行了DWI检查,分别采用摒气SS-SE-EPI序列及采用PACE技术的SE-EPI序列,弥散梯度因子(b值)分别为300 s/mm~2及800 s/mm~2。其中54例同时进行了同位素肾图检查,采用Gates法计算肾小球滤过率(GFR)。采用单因素方差分析来比较双肾ADC均值在不同肾功能临床分期间,及分肾ADC值、分肾体积及分肾ADC值体积乘积在不同分肾功能组间是否存在差异;采用控制年龄因素的偏相关分析及受试者工作曲线(ROC)来分析分肾ADC值、肾脏体积及分肾ADC值体积乘积在分肾功能评估中的价值,及在预测分肾功能降低及轻度降低中的诊断价值。
     结果:所测得的双肾ADC均值在各临床分期组间均存在显著的统计学差异(P<0.01),随CKD肾功能临床分期的增加呈下降趋势,且在b=800 s/mm~2时,第1、2期与第3-5期间均存在统计学差异(P<0.05)。分肾ADC值与分肾GFR间存在轻度正相关性,以PACE-DWI在b=800 s/mm~2时,两者的正相关性最高(r=0.471,P=0.000)。PACE-DWI所测得的分肾ADC值随分肾功能下降呈减小的趋势,在三组间存在显著的统计学差异(P<0.01),且以b=800 s/mm~2条件下,在预测分肾功能轻度降低中的诊断效能最大(AUC=0.780,P=0.000)。另外,分肾体积与分肾GFR间存在低度正相关性(r=0.470,P=0.000)。分肾ADC值体积乘积与分肾GFR之间为中度正相关性(r=0.521-0.550,P=0.000),且在不同分肾功能组间均存在显著的统计学差异(P<0.01),在预测分肾功能轻度降低中的诊断效能进一步提高(AUC=0.824-0.841,P=0.000)。
     结论:DWI在CKD临床分期和分肾功能评估中具有一定的价值,尤其是采用PACE技术和高b值的DWI在分肾功能的评估中具有优势,且在诊断分肾功能轻度降低中存在一定的价值。另外,体积作为肾功能的影响因素不容忽视,同时结合ADC值和肾体积测量可以提高对分肾功能评估的准确性。
     第三部分
     弥散加权成像评价慢性肾病病理损害的临床-病理对照研究
     目的:探讨弥散加权成像(DWI)在慢性肾病(CKD)病理损害评估中的临床应用价值,及采用导航触发前瞻性采集校正技术的弥散加权成像(PACE-DWI)是否存在优势。
     方法:83例拟行右肾穿刺的CKD病例及12例健康志愿者进行了DWI检查,分别采用摒气SS-SE-EPI序列和采用PACE技术的SE-EPI序列进行,选取b值为300s/mm~2及800 s/mm~2。由两位病理科医生共同对肾穿刺标本进行病理损害评分,做为评价慢性肾病病理损害的标准。最后共71例CKD病例及12例健康志愿者纳入分析。采用Pearson相关分析、单因素方差分析及ROC曲线分析ADC值在评估CKD病理损害程度及在预测中重度病理损害程度中的价值,并探讨是否PACE-DWI存在优势;采用两个独立样本的t检验和单因素方差分析来比较不同CKD病理类型及不同IgA肾病Lee氏分级间的ADC值是否存在差异;采用多重线性回归模型初步分析影响ADC值的独立因素。
     结果:随CKD病理损害程度的加重,右肾ADC值呈现下降的趋势,与病理积分间存在显著的负相关性,以PACE-DWI在b=800 s/mm~2时,两者的负相关性最大(r=-0.632,P=0.000),且在预测中重度病理损害中的诊断效能最大(AUC=0.806,P=0.000)。PACE-DWI在b=800 s/mm~2时,原发性肾小球肾炎四种病理类型间的ADC值存在统计学差异(F=4.164,P=0.016),LSD两两分析的结果表明,硬化性肾小球肾炎的ADC值显著低于膜性肾病及局灶性节段性肾炎(P<0.05)。IgA肾病不同Lee氏分级组间ADC值亦存在显著的统计学差异(P<0.01),LSD两两比较的结果表明,4级病例的ADC值显著低于2级及3级病例组(P<0.01)。多重线性回归分析的结果表明,只有病理损害积分与ADC值间存在显著的线性回归关系(P<0.05),而右肾GFR及年龄与ADC值间均不存在线性回归关系。
     结论:DWI能够在一定程度上反映CKD的病理损害程度,且采用PACE技术和高b值的DWI在病理损害评估中具有优势,有望成为一种无创性评价CKD病理损害程度、指导治疗和随访的手段。但DWI在CKD病理类型诊断方面的价值受限,有待于进一步研究。
     第四部分
     3.OT血氧水平依赖性磁共振成像在慢性肾病中的初步临床应用研究
     目的:探讨3.0T血氧水平依赖性磁共振成像(BOLD-MRI)最大TE时间的选择是否对肾脏R_2~*值的测量存在影响,以及初步探讨其在CKD肾脏氧合状态评估中的价值。
     方法:在GE 3.0T Signa HDx磁共振扫描仪上,对13例健康志愿者及61例拟行肾穿刺检查的CKD患者进行了BOLD-MRI,采用多梯度重聚回波序列,分别采用6个回波链及12个回波链,TE时间分别为2.8-22.4 ms及2.8-45.9 ms。最后13例健康志愿者及44例CKD病例纳入分析,其中共39例CKD病例进行了肾实质病理损害评分,20例同时进行了同位素GFR检查。由两位放射科医师共同对图像进行分析,通过直方图分析的方法,在R_2~*图像上分别测得采用不同最大TE时间条件下双肾皮髓质的R_2~*值,并采用采用Wilcoxon配对符号秩检验比较两者间是否存在差异。对于CKD患者,只测量6个回波链条件下双肾皮髓质的R_2~*值。正常肾脏皮髓质R_2~*值的比较,采用Wilcoxon配对符号秩检验;采用6个回波链和12个回波链的3.0T BOLD-MRI在测量双肾皮髓质R_2~*间是否存在差异的比较,采用配对t检验、Bland-Altman plot及一致性相关分析;正常对照组与CKD两组间双肾皮质、髓质R_2~*均值的比较,采用Mann-Whitney U检验;不同肾功能临床分期间的双肾皮质、髓质R_2~*均值的比较,采用单因素方差分析;分肾R_2~*与分肾GFR的相关性分析及与病理损害积分问的相关性分析,采用spearman相关性分析。
     结果:在R_2~*彩图上,正常肾脏的皮髓质分界相对清楚,呈现从皮质到髓质色彩逐渐由蓝色到绿色、黄色、红色的过渡变化。肾脏髓质的R_2~*值明显高于皮质,两者间存在显著的统计学差异(P<0.01)。6个回波链(最大TE:22.4 msec)和12个回波链(最大TE:45.9 msec)条件下,所测得的左右肾皮髓质的R_2~*值间均不存在显著性差异(P>0.05)。并且,不同回波链条件下重复测得的双肾皮质及髓质R_2~*的平均差为-0.3 sec~(-1),一致性限(平均差±1.96 SD)为-1.9~1.4 sec~(-1),重复测得的双肾皮质及髓质R_2~*值具有很高的一致性(pc=0.983,P=0.000)。CKD组的双肾皮质、髓质R_2~*均值明显高于正常对照组,两者间存在显著的统计学差异(P<0.01)。随肾功能临床分期的增加,双肾髓质R_2~*均值呈逐渐增大的趋势,且各组间存在统计学差异(P<0.05)。LSD两两比较的结果表明,正常对照组与2-4期间均存在统计学差异(P<0.05)。另外,分肾髓质R_2~*值与分肾功能GFR间存在显著的负相关性(r=-0.415,P=0.008),与病理损害积分间存在显著的正相关(r=0.450,P=-0.004)。
     结论:在3.0T BOLD-MRI检查中,采用6个回波链(最大TE 22.4 msec)就能够满足肾脏R_2~*值的测量,且能够反映CKD中存在的缺氧状态,有望为肾脏氧合状态的评估提供一种无创性的手段。
PartⅠ
     The clinical application of diffusion-weighted imaging with navigator-triggered prospective acquisition correction in kidney:initial experience
     Objective:To evaluate the Reproducibility of renal apparent diffusion coefficient (ADC) measured by diffusion-weighted imaging with navigator-triggered prospective acquisition correction(PACE-DWI),and to compare the signal to noise ratio(SNR) and contrast to noise ratio(CNR) of DWI images with conventional DWI with breathholding.
     Materials and methods:Fifteen healthy volunteers accepted a repetitive DWI examination within a interval of 5 to 42 days.Two DWI sequences were performed on every subject at b values of 100,300,500,800 and 1000 s/mm~2,including a single-shot spin-echo echo-planar sequence within a single breath-hold and a spin-echo echo-planar sequence with PACE.The repetitive measured ADCs by PACE-DWI were compared using the matched-pairs T test,the Bland-Altman plot and Concordance correlation coefficient.The differences of SNR and CNR between DWI with breathholding and PACE-DWI was analyzed using the Mann-Whitney U test.The Kruskal-Wallis H test was used to compare the difference of SNR and CNR among DWI with different b values.The influence of different DWI sequences on ADC measurement was analyzed by the Wilcoxon matched-pairs signed-ranks test. The Friedman test was used to analyze the influence of b value on ADC measurement.
     Results:There was no significant statistical difference between the ADCs of renal parenchyma repetitive measured by PACE-DWI(P>0.05).The absolute differences of repetitive measured ADCs of renal parenchyma and the limits of agreement by PACE-DWI were -4.4×10~(-5) mm~2/s to -6.3×10~(-5) mm~2/s and±28.1×10~(-5) to±36.4×10~(-5) mm~2/s except when b=100 s/mm~2.In addition,there was a high concordance between repetitive measured ADCs of renal parenchyma by PACE-DWI(ρ_c=0.892,P=0.000). Higher SNR and CNR were obtained by PACE-DWI than those by conventional DWI group at the same b Value,and the differences were statistically significant(P<0.05). The SNR and CNR of DWI images decreased as the b Value increased in both conventional DWI and PACE-DWI,and there was significant statistical difference among the same group with five b Values(P<0.01).However,higher ADCs were obtained by PACE-DWI than those by conventional DWI at the same b Value,and the differences were statistically significant except the ADCs of right renal parenchyma with b value of 100 s/mm~2(P<0.05).The measured ADCs of renal parenchyma decreased as the b Value increased in both conventional DWI and PACE-DWI,and there was significant statistical differences among the same group with five b Values (P<0.01).
     Conclusion:PACE-DWI has a good reproducibility in the measurement of ADCs of renal parenchyma and will benefit clinical researchs due to its higher SNR and CNR than conventional DWI with breathholding.However,there is still some differences between ADCs measured by PACE-DWI and conventional DWI.
     PartⅡ
     Clinical study of diffusion-weighted imaging in renal function assessment of chronic kidney disease
     Objective:To investigate the value of DWI in the evaluation of clinical staging and split renal function of(chronic kidney disease) CKD,and to discuss whether or not DWI with navigator-triggered prospective acquisition correction(PACE-DWI) is superior to conventional DWI with breathholding.In addition,the influence of renal volume on renal function is discussed.
     Materials and Methods:Eighty-three CKD patients and 12 healthy volunteers underwent DWI examination using both a single-shot spin-echo echo-planar sequence within a single breath-hold and a spin-echo echo-planar sequence with PACE at b values of 300 and 800 s/mm~2.Among them,54 patients received radionuclide renography examination,and the glomerular filtration rate(GFR) is calculated based on the Gates Method.One-way analysis of variance(ANOVA) was used to compare the average apparent diffusion coefficient(ADC) of both kidney among different clinical stages,the ADCs of split kidney,the volume of split kidney and the split volume-corrected renal ADCs among the three groups with different split renal function.The partial correlation test with the control of age and receiver operationg characteristics analysis(ROC) were used to assess the performance of split renal ADCs,split renal volume and split volume-corrected renal ADCs in the evaluation of split renal function and predicting the reduction or mild reduction of split renal function.
     Results:The average ADCs of both kidneys decreased as the clinical stage of CKD progressed.There was a statistically significant difference among the five clinical stages(P<0.01),and between stage one to two and stage three to five at b value of 800 s/mm~2(P<0.05).There was a weak positive correlation between the split ADCs and split GFR.The best correlation was observed for PACE-DWI with b value 800 s/mm~2(r=0.471,P=0.000).The split renal ADCs measured by PACE-DWI were significant different among these three groups with different GFR(P<0.01) and was also a significant predictor of mild split renal function reduction for PACE-DWI with b value 800s/mm~2,with an area under the curve of 0.780(P=0.000).There was a weak positive correlation between split renal volume and renal GFR(r=0.470, P=0.000).However,there was a moderate positive correlation between the split volume-corrected renal ADC and renal GFR(r=0.521 to 0.550,P=0.000).The split volume-corrected renal ADCs were significant different among these three groups with different GFR(P<0.01) and the diagnosis potency predicting mild split renal function reduction was improved too(AUC=0.824 to 0.841,P=0.000).
     Conclusion:Renal ADC measured by DWI can be used in the assessment of clinical stage and split renal function of CKD.PACE-DWI with b value 800s/mm~2 is the best in assessing split renal function,and has potential value in predicting mild reduction of split renal function.In addition,renal volume can not be ignored in the evaluation of renal function,and the ADC measurement combined with renal volume measurement would be a clinical feasible modality in the evalution of renal function.
     PartⅢ
     Comparative study of diffusion-weighted imaging in assessing pathological lesion of chronic kidney disease with pathology
     Objective:To investigate the value of apparent diffusion coefficient(ADC) measured by DWI in assessing the pathological injures of chronic renal disease(CKD),and to discuss whether or not DWI with navigator-triggered prospective acquisition correction(PACE-DWI) is superior to conventional DWI with breathholding.
     Materials and methods:Eighty-three patients with CKD intended for renal biopsy and 12 healthy volunteers underwent the DWI examination using both a single-shot spin-echo-planar sequence within a single breath-hold and a spin-echo echo-planar sequence with PACE at b values of 300 and 800 s/mm~2.Renal biopsy results were reviewed together by two experienced renal pathologists to score the pathological injures of CKD.Finally,71 patients and 12 healthy volunteers were enrolled into further analysis of this study.The bivariate correlation test of Pearson,One-way analysis of variance(ANOVA) and receiver operationg characteristics analysis were used to discuss the value of ADCs in assessing the degree of renal pathological lesions,as well as predicting the moderate and severe degree of renal pathological lesions.Besides,two independent-samples T test and ANOVA were used to compare the ACDs among different pathological types of CKD and different Lee's grades of IgA nephropathy.In addition,multiple linear regression analysis was used to find out the independent influential factors of ADC.
     Results:The ADCs of right renal parenchyma decreased as the aggravation of renal pathological lesions.There was a significant negative correlation between the ADCs of right renal parenchyma and its pathological scores.The largest negative correlation coefficient was obtained for PACE-DWI with b value 800 s/mm~2(r=-0.632,P=0.000). The renal ADC was also a significant predictor of moderate and severe renal pathological lesions for PACE-DWI with b value 800 s/mm~2,with an area under the curve of 0.806(P=0.000).The ADCs of right renal parenchyma among four different primary glomerulonephritis types were significant different for PACE-DWI with b value 800 s/mm~2(F=4.164,P=0.016).The ADCs of sclerotic glomerulonephritis was significant lower than those of membranous nephropathy and focal segment nephritis (P<0.05).There was a statistically significant difference among the ADCs of different Lee's grades(P<0.01).The ADC of fourth grade was significant lower than those of second grade and third grade(P<0.01).The multiple linear regression analysis showed that the significant linear regression was only observed between pathological scores and ADCs(P<0.05),not for age and GFR.
     Conclusion:DWI can be used to assess the degree of pathological injures in CKD. Moreover,PACE-DWI with high b value is superior to conventional DWI in the evaluation of pathological lesions of CKD.It provides a non-invasive modality for the evaluation of pathological lesions,guiding therapy and follow up of CKD.However, the value of DWI in differentiating pathological types of CKD is limited and need further researches.
     PartⅣ
     Clinical study of 3.0T blood oxygenation level-dependent MRI in chronic kidney disease:preliminary experience
     Objective:To investigate the advisable maximum TE for 3.0T blood oxygenation level-dependent MRI(BOLD-MRI) in renal R_2~* mearsurement and to further discuss its value in assessing renal oxygenation of chronic renal disease(CKD).
     Materials and methods:Sixty-one patients with CKD intended for renal biopsy and 13 healthy volunteers accepted the BOLD MRI examination on a GE 3.0T Signa HDx scanner.Multi gradient recalled echo with the echo train length of 6 and 12 was used for BOLD-MRI.The maximum TE were 22.4 and 45.9 ms respectively.Finally, thirteen healthy volunteers and 44 patients were enrolled into further analysis.Among them,the biopsy samples of thirty-nine patients were reviewed together by two experienced renal pathologists to score the pathological injures of CKD.In addition, twenty patients received radionuclide renography examination,and the glomerular filtration rate(GFR) is calculated based on the Gates Method.All images were reviewed by two experienced residents together.The R_2~* values of renal cortex and medulla with the different maximum TE were measured on the R_2~* images using the analysis of histogram.The Wilcoxon matched-pairs signed-ranks test was used to compare the difference of R_2~* between renal cortex and medulla in normal kidneys. The repetitive measured R_2~* by 3.0T BOLD-DWI with different maximum TE were compared using the matched-pairs T test,the Bland-Altman plot and Concordance correlation coefficient.R_2~* was measured only with the echo train length of 6 in patients with CKD.The Mann-Whitney U test was used to compare the R_2~* difference between normal group and CKD group.One-way analysis of variance(ANOVA) was used to compare the difference of R_2~* among different stages of renal function.The bivariate correlation test of Spearman was used to analyze the correlation of R_2~* and scores of pathological lesions of right kidney as well as the split R_2~* and GFR.
     Results:On the R_2~* images,renal cortex could be clearly differentiated from medulla with a color change from blue to green,yellow till red.The R_2~* of renal medulla was remarkably higher than that of renal cortex.There was a significant difference between the R_2~* of renal cortex and medulla(P<0.01)while there was no significant difference between the R_2~* of renal cortex with two maximum TE(P>0.05).Besides, the absolute differences and the limits of agreement of repetitive measured R_2~* by 3.0T BOLD-MRI with two maximum TE were -0.3 sec~(-1) and -1.9~1.4 sec~(-1),and there was a high concordance between repetitive measured R_2~*(ρ_c=0.983,P=0.000).The average R_2~* of renal cortex of both sides in the normal was significantly higher than that in CKD,as well as for the average R_2~* of renal medulla(P<0.01).Moreover,the average R_2~* of renal medulla increased with the clinical stage of CKD,and there was a statistical difference among different stages of CKD.The average R_2~* of renal medulla of stage 1 is significant higher than that of stage 2 to 4(P<0.05).A significant negative correlation between R_2~* of renal medulla and GFR(r=-0.415, P=0.008) and a significant positive correlation between R_2~* of renal medulla and scores of pathological lesions were found(r=0.450,P=0.004).
     Conclusion:3.0T BOLD-MRI with the echo train length of 6(the maximum TE of 22.4 ms) is adequate for the renal R_2~* measurementand can detect hypoxia of CKD, which have potential advantages in the evaluation of renal oxygenation as a noninvasive modality.
引文
1.National Kidney Foundation.K/DOQI clinical practice guidelines for chronic kidney disease:evaluation,classification,and stratification.Am J Kidney Dis,2002,39(2 Suppl 1):S1-266.No abstract available.
    2.Lysaght MJ.Maintenance dialysis population dynamics:current trends and long-term implications.J Am Soc Nephrol,2002,13 Suppl 1:S37-40.
    3.Ploth DW,Shepp PH,Counts C,et al.Prospective analysis of global costs for maintenance of patients with ESRD.Am J Kidney Dis,2003,42:12-21.
    4.郑伯承。世界肾脏日。中国健康教育2007年4月第23卷第4期742。
    5.Rastaldi MP,Ferrario F,Giardino L,et al.Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies.Kidney Int,2002,62:137-46.
    6.Wagner C,Viedt C,Burger A,et al.Interaction of transforming growth factor beta 1 with human glomerular epithelial cells in culture:opposite effects on synthesis of matrix proteins and on urokinase plasminogen activator.J Mol Med,1996,74:149-54.
    7.Ten Dijke P,Goumans MJ,Itoh F,et al.Regulation of cell proliferation by Smad proteins.J Cell Physiol,2002,191:1-16.
    8.Taouli B,Tolia AJ,Losada M,et al.Diffusion-weighted MRI for quantification of liver fibrosis:preliminary experience.AJR Am J Roentgenol,2007,189:799-806.
    9.Pedersen M,Wen JG,Shi Y,et al.The effect of unilateral ureteral obstruction on renal function in pigs measured by diffusion-weighted MRI.APMIS,Suppl,2003:29-34.
    10.Vexler VS,Roberts TP,Rosenau W.Early detection of acute tubular injury with diffusion-weighted magnetic resonance imaging in a rat model of myohemoglobinuric acute renal failure.Ren Fail,1996,18:41-57.
    11.Ries M,Basseau F,Tyndal B,et al.Renal diffusion and BOLD MRI in experimental diabetic nephropathy.Blood oxygen level-dependent.J Magn Reson Imaging,2003,17:104-13.
    12.Chatziantoniou C,Boffa JJ,Tharaux PL,et al.Progression and regression in renal vascular and glomerular fibrosis.Int J Exp Pathol,2004,85:1-11.
    13.Namimoto T,Yamashita Y,Mitsuzaki K,et al.Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging.J Magn Reson Imaging,1999,9:832-837.
    14.Thoeny HC,Zumstein D,Simon-Zoula S,et al.Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging:initial experience.Radiology,2006,241:812-821.
    15.Xu Y,Wang X,Jiang X.Relationship between the renal apparent diffusion coefficient and glomerular filtration rate:preliminary experience.J Magn Reson Imaging,2007,26:678-81.
    16.Yamashita Y,Tang Y,Takahashi M.Ultrafast MR imaging of the abdomen:echo planar imaging and diffusion-weighted imaging.J Magn Reson Imaging,1998,8:367-374.
    17.Kim BS,Kim JH,Choi GM,et al.Comparison of three free-breathing T2-weighted MRI sequences in the evaluation of focal liver lesions.A JR Am J Roentgenol,2008,190:W19-27.
    18.Heyman SN,Khamaisi M,Rosen S,et al.Renal parenchymal hypoxia,hypoxia response and the progression of chronic kidney disease.Am J Nephrol,2008,28:998-1006.
    19.Rosenberger C,Rosen S,Shina A,et al.Activation of hypoxia-inducible factors ameliorates hypoxic distal tubular injury in the isolated perfused rat kidney.Nephrol Dial Transplant,2008,23:3472-3478.
    20.Heyman SN,Rosen S,Rosenberger C.Renal parenchymal hypoxia,hypoxia adaptation,and the pathogenesis of radiocontrast nephropathy.Clin J Am Soc Nephrol,2008,3:288-296.
    21.Pollock JS,Carmines PK.Diabetic nephropathy:nitric oxide and renal medullary hypoxia.Am J Physiol Renal Physiol,2008,294:F28-29.
    22.Tanaka T,Kato H,Kojima I,et al.Hypoxia and expression of hypoxia-inducible factor in the aging kidney.J Gerontol A Biol Sci Med Sci,2006,61:795-805.
    23.Majid DS,Said KE,Omoro SA.Responses to acute changes in arterial pressure on renal medullary nitric oxide activity in dogs.Hypertension,1999,34(4 Pt 2):832-836.
    24.Majid DS,Nishiyama A.Nitric oxide blockade enhances renal responses to superoxide dismutase inhibition in dogs.Hypertension,2002,39:293-297.
    25.Leong CL,O'Connor PM,Eppel GA,et al.Measurement of renal tissue oxygen tension:systematic differences between fluorescence optode and microelectrode recordings in anaesthetized rabbits. Nephron Physiol, 2008,108:p11-17.
    
    26. Priatna A, Epstein FH, Spokes K, et al. Evaluation of changes in intrarenal oxygenation in rats using multiple gradient-recalled echo (mGRE) sequence. J Magn Reson Imaging, 1999, 9:842-846.
    
    27. Liss P, Nygren A, Revsbech NP, et al. Intrarenal oxygen tension measured by a modified clark electrode at normal and low blood pressure and after injection of x-ray contrast media. Pflugers Arch, 1997,434:705-711.
    
    28. Liss P, Nygren A, Revsbech NP, et al. Measurements of oxygen tension in the rat kidney after contrast media using an oxygen microelectrode with a guard cathode. Adv Exp Med Biol, 1997,411:569-576.
    
    29. Epstein FH, Veves A, Prasad PV. Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care, 2002,25:575-578.
    
    30. Simon-Zoula SC, Hofmann L, Giger A, et al. Non-invasive monitoring of renal oxygenation using BOLD-MRI: a reproducibility study.NMR Biomed, 2006,19:84-89.
    
    31. Tumkur SM, Vu AT, Li LP, et al. Evaluation of intra-renal oxygenation during water diuresis: a time-resolved study using BOLD MRI. Kidney Int, 2006,70:139-143.
    
    32. Hofmann L, Simon-Zoula S, Nowak A, et al. BOLD-MRI for the assessment of renal oxygenation in humans: acute effect of nephrotoxic xenobiotics. Kidney Int,2006, 70:144-150.
    
    33. Epstein FH, Prasad P. Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int, 2000, 57:2080-2083.
    
    34. Kruger G, Kastrup A, Glover GH. Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med, 2001,45:595-604.
    
    35. Okada T, Yamada H, Ito H, et al. Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: Measured using BOLD contrast in the primary visual area. Acad Radiol, 2005, 12:142-147.
    
    36. Scarabino T, Giannatempo GM, Popolizio T, et al. 3.0-T functional brain imaging:a 5-year experience. Radiol Med, 2007,112:97-112.
    1.Jin H,Zeng MS,Ge MY,et al.A study of in vitro and in vivo MR of free-breathing whole-heart 3D coronary angiography using parallel imaging.Int J Cardiovasc Imaging,2009,15.[Epub ahead of print]
    2.Morita S,Ueno E,Suzuld K,et al.Navigator-triggered prospective acquisition correction(PACE) technique vs.conventional respiratory-triggered technique for free-breathing 3D MRCP:an initial prospective comparative study using healthy volunteers.J Magn Reson Imaging,2008,28:673-677.
    3.Bamwell JD,Smith JK,Castillo M.Utility of navigator-prospective acquisition correction technique(PACE) for reducing motion in brain MR imaging studies.AJNR Am J Neuroradiol,2007,28:790-791.
    4.Liao JJ,Lewis JW.A note on concordance correlation coefficient.PDA J Pharm Sci Technol,2000,54:23-26.
    5.Bland JM,Altrnan DG.Statistical methods for assessing agreement between two methods of clinical measurement.Lancet 1986,1:307-310.
    6.Carr HY,Purcell EM.Effects of diffusion on free precession in nuclear magnet ic resonance experiments.Phys Rev,1954,94:630-635.
    7.Steijskal EO,Tanner JE.Spin diffusion measurement:spin echoes in the presence of at imedependent filed gradient.J Chem hys,1965,42:288-292.
    8.Le Bihan D,Breton E,Lallemand D,et al.MR imaging of intravoxel incoherent motions:application to diffusion and perfusion in neurologic disorders.Radiology,1986,161:401-407.
    9.Le Bihan D,Breton E,Lallemand D,et al.Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.Radiology,1988,168:497-505.
    10.Cercignani M,Horsfield MA.The physical basis of diffusion-weighted MRI.J Neurol Sci,2001,186 Suppl 1:Sl1-14.Review.
    11.Mukherji SK,Chenevert TL,Castillo M.Diffusion-weighted magnetic resonance imaging.J Neuroophthalmol,2002,22:118-122.Review.
    12.Tan PL,King D,Durkin CJ,et al.Diffusion weighted magnetic resonance imaging for acute stroke:practical and popular.Postgrad Med J,2006,82:289-292.
    13.Ktiker W,Weise J,Krapf H,et al.MRI characteristics of acute and subacute brainstem and thalamic infarctions:value of T2- and diffusion-weighted sequences.J Neurol,2002,249:33-42.
    14. Mansfield P. Multi-planar image using NMR spin echoes. J Phys C, 1977, 10:55-58.
    
    15. Vossen JA, Buijs M, Liapi E, et al. Receiver operating characteristic analysis of diffusion-weighted magnetic resonance imaging in differentiating hepatic hemangioma from other hypervascular liver lesions. J Comput Assist Tomogr,2008, 32:750-756.
    
    16. Colagrande S, Carbone SF, Carusi LM, et al. Magnetic resonance diffusion-weighted imaging: extraneurological applications. Radiol Med, 2006,111:392-419.
    
    17. Keogan MT, Edelman RR. Technologic advances in abdominal MR imaging.Radiology, 2001,220:310-320. Review.
    
    18. Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR Am JRoentgenol, 1998,170:397-402.
    
    19. Prasad PV, Priatna A. Functional imaging of the kidneys with fast MRI techniques. Eur J Radiol, 1999,29:133-148. Review.
    
    20. Romero JC, Lerman LO. Novel noninvasive techniques for studying renal function in man. Semin Nephrol, 2000, 20:456-462. Review.
    
    21. Thoeny HC, De Keyzer F, Oyen RH, et al. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology, 2005, 235:911-917.
    
    22. M(?)rtz P, Flacke S, Tr(?)ber F, et al. Abdomen: diffusion-weighted MR imaging with pulse-triggered single-shot sequences. Radiology, 2002,224:258-264.
    
    23. Bammer R, Keeling SL, Augustin M, et al. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn Reson Med, 2001, 46:548-554.
    
    24. Laghi A, Catalano C, Assael FG, et al. Diffusion-weighted echo-planar sequences for the evaluation of the upper abdomen: technique optimization. Radiol Med (Torino), 2001,101:213-218.
    
    25. Bammer R, Augustin M, Prokesch RW, et al. Diffusion-weighted imaging of the spinal cord: interleaved echo-planar imaging is superior to fast spin-echo. J Magn Reson Imaging, 2002, 15:364-373.
    
    26. Yoshikawa T, Kawamitsu H, MitchellDG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. Am J Roentgenol, 2006, 187:1521-1530.
    
    27. Hoge WS, Brooks DH. HUsing GRAPPA to improve autocalibrated coil sensitivity estimation for the SENSE family of parallel imaging reconstruction algorithms. Magn Reson Med, 2008, 60:462-467.
    
    28. Hirokawa Y, Isoda H, Maetani YS, MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique. AJR Am J Roentgenol, 2008,191:1154-1158.
    
    29. Klessen C, Asbach P, Kroencke TJ, et al. Magnetic resonance imaging of the upper abdomen using a free-breathing T2-weighted turbo spin echo sequence with navigator triggered prospective acquisition correction. J Magn Reson Imaging,2005,21:576-582.
    
    30. Hackenbroch M, Nehrke K, Gieseke J, et al. 3D motion adapted gating (3D MAG): a new navigator technique for accelerated acquisition of free breathing navigator gated 3D coronary MR-angiography. Eur Radiol, 2005,15:1598-1606.
    
    31. Basaran C, Agildere AM, Donmez FY, et al. MR cholangiopancreatography with T2-weighted prospective acquisition correction turbo spin-echo sequence of the biliary anatomy of potential living liver transplant donors. AJR Am J Roentgenol,2008,190:1527-1533.
    
    32. Asbach P, Klessen C, Kroencke TJ, et al. Magnetic resonance cholangiopancreatography using a freebreathing T2-weighted turbo spin sequence with navigator-triggered prospective acquisition correction. Magn Reson Imaging,2005,23:939-945.
    
    33. Bonel H, Frei KA, Raio L, et al. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts.Eur Radiol, 2008,18:822-829.
    
    34. Spuentrup E, Stuber M, Botnar RM, et al. Real-time motion correction in navigator-gated free-breathing double-oblique submillimeter 3D right coronary artery magnetic resonance angiography.Invest Radiol, 2002, 37:632-636.
    
    35. Asbach P, Klessen C, Kroencke TJ, et al. Magnetic resonance cholangiopancreatography using a free-breathing T2-weighted turbo spin-echo sequence with navigator-triggered prospective acquisition correction. Magn Reson Imaging, 2005, 23:939-945.
    
    36. Boss A, Schaefer JF, Martirosian P, et al. Contrast-enhanced dynamic MR nephrography using the TurboFLASH navigator-gating technique in children. Eur Radiol,2006, 16:1509-1518.
    
    37. Muthupillai R, Smink J, Hong S, et al. SENSE or k-MAG to accelerate free breathing navigator-guided coronary MR angiography. AJR Am J Roentgenol,2006,186:1669-1675.
    
    38. Kim BS, Kim JH, Choi GM, Kim SH, Park JK, Song BC, Kang W.Comparison of three free-breathing T2-weighted MRI sequences in the evaluation of focal liver lesions. AJR Am J Roentgenol, 2008, Jan;190:W19-27.
    
    39. Klessen C, Asbach P, Kroencke TJ, et al. Magnetic resonance imaging of the upper abdomen using a free-breathing T2-weighted turbo spin echo sequence with navigator triggered prospective acquisition correction. J Magn Reson Imaging,2005,21:576-582.
    
    40. Yang D, Ye Q, Williams DS, et al. Normal and transplanted rat kidneys: diffusion MR imaging at 7 T. Radiology, 2004,231:702-709.
    
    41. Kim S, Naik M, Sigmund E, et al. Diffusion-weighted MR imaging of the kidneys and the urinary tract. Magn Reson Imaging Clin N Am, 2008,16:585-596.
    
    42. Moteki T, Horikoshi H.Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. J Magn Reson Imaging, 2006,24:637-645.
    
    43. Moteki T, Horikoshi H. Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. J Magn Reson Imaging, 2006,24:637-645.
    
    44. Siegel CL, Aisen AM, Ellis JH, et al. Feasibility of MR diffusion studies in the kidney. J Magn Reson Imaging, 1995, 5:617-620.
    
    45. otohamiprodjo M, Glaser C, Herrmann KA, et al. Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol, 2008,43:677-685.
    
    46. Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology, 2006, 241:812-821. and loss of renal volume after partial nephrectomy for tumor in a solitary kidney.J Urol,2008,179:1284-1288.
    
    12. Hidas G, Sosna J, Neeman V, et al. Estimating relative renal function from relative parenchymal volume--a feasibility study. J Endourol, 2008,22:2527-2530.
    
    13. Gandy SJ, Armoogum K, Nicholas RS, et al. A clinical MRI investigation of the relationship between kidney volume measurements and renal function in patients with renovascular disease. Br J Radiol, 2007, 80:12-20.
    
    14. Michaely HJ, Herrmann KA, Nael K, et al. Functional renal imaging: nonvascular renal disease.Abdom Imaging, 2007, 32:1-16.
    
    15. Heyman SN, Khamaisi M, Rosen S, et al. Renal Parenchymal Hypoxia, Hypoxia Response and the Progression of Chronic Kidney Disease. Am J Nephrol, 2008,28:998-1006.
    
    16. Jones RA, Grattan-Smith JD. Age dependence of the renal apparent diffusion coefficient in children. Pediatr Radiol, 2003, 33:850-854.
    
    17. Saxena AB, Busque S, Arjane P, et al. Preoperative renal volumes as a predictor of graft function in living donor transplantation. Am J Kidney Dis, 2004,44:877-85.
    
    18. Fowler JC, Beadsmoore C, Gaskarth MT, et al. A simple processing method allowing comparison of renal enhancing volumes derived from standard portal venous phase contrast-enhanced multidetector CT images to derive a CT estimate of differential renal function with equivalent results to nuclear medicine quantification. Br J Radiol, 2006, 79:935-942.
    
    19. Bakker J, Olree M, Kaatee R, et al. Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiology, 1999,211:623-628.
    
    20. Cost GA, Merguerian PA, Cheerasarn SP, et al. Sonographic renal parenchymal and pelvicaliceal areas: new quantitative parameters for renal sonographic followup. J Urol, 1996,156:725-729.
    
    21. Mounier-Vehier C, Lions C, Devos P, et al. Cortical thickness: an early morphological marker of atherosclerotic renal disease. Kidney Int, 2002,61:591-598.
    
    22. Coulam CH, Bouley DM, Sommer FG. Measurement of renal volumes with contrast-enhanced MRI. J Magn Reson Imaging, 2002, 15:174-179.
    23. Grenier N, Hauger O, Delmas Y, et al. MR imaging of nephropathies. Abdom Imaging, 2006,31:213-223.
    
    24. Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology, 2007,243:148-157.
    
    25. Collidge TA, Thomson PC, Mark PB, et al. Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology, 2007,245:168-175.
    
    26. Karstoft K, Lodrup AB, Dissing TH, et al. Different strategies for MRI measurements of renal cortical volume. J Magn Reson Imaging, 2007,26:1564-1571.
    
    27. Cai W, Holalkere NS, Harris G, et al. Dynamic-threshold level set method for volumetry of porcine kidney in CT images in vivo and ex vivo assessment of the accuracy of volume measurement. Acad Radiol, 2007,14:890-896.
    
    28. Teh HS, Ang ES, Wong WC, et al. MR renography using a dynamic gradient-echo sequence and low-dose gadopentetate dimeglumine as an alternative to radionuclide renography. AJR Am J Roentgenol, 2003,181:441-450.
    1. Girometti R, Furlan A, Bazzocchi M, et al. Diffusion-weighted MRI in evaluating liver fibrosis: a feasibility study in cirrhotic patients. Radiol Med, 2007,112:394-408.
    
    2. Taouli B, Chouli M, Martin AJ, et al. Chronic hepatitis: role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation.J Magn Reson Imaging, 2008, 28:89-95.
    
    3. Kim S, Naik M, Sigmund E, et al. Diffusion-weighted MR imaging of the kidneys and the urinary tract. Magn Reson Imaging Clin N Am, 2008,16:585-596,
    
    4. Carbone SF, Gaggioli E, Ricci V, et al. Diffusion-weighted magnetic resonance imaging in the evaluation of renal function: A preliminary study. Radiol Med (Torino), 2007,112:1201-1210.
    
    5. Thoeny HC, De Keyzer F, Oyen RH, et al. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology, 2005, 235:911-917.
    
    6. Toyoshima S, Noguchi K, Seto H, et al. Functional evaluation of hydronephrosis by diffusion-weighted MR imaging. Relationship between apparent diffusion coefficient and split glomerular filtration rate. Acta Radiol, 2000,41:642-646.
    
    7. Xu Y, Wang X, Jiang X. Relationship between the renal apparent diffusion coefficient and glomerular filtration rate: Preliminary experience. J Magn Reson Imaging, 2007, 26:678-681.
    
    8. Katafuchi R, Kiyoshi Y, Oh Y, et al. Glomerular score as a prognosticator in IgA nephropathy: its usefulness and limitation. Clin Nephrol, 1998,49:1-8.
    
    9. Taouli B, Tolia AJ, Losada M, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. AJR Am J Roentgenol, 2007,189:799-806.
    
    10. Taouli B, Chouli M, Martin AJ, et al. Chronic hepatitis: role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J Magn Reson Imaging, 2008 , 28:89-95.
    
    11. Muller MF, Prasad P, Siewert B, et al. Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology, 1994, 190:475-478.
    
    12. Buckley BT, Wainwright A, Meagher T, et al. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke. Clin Radiol, 2003, 58:234-237.
    13.Boss A,Schaefer JF,Martirosian P,et al.Contrast-enhanced dynamic MR nephrography using the TurboFLASH navigator-gating technique in children.Eur Radiol,2006,16:1509-1518.
    14.Boss A,Schaefer JF,Martirosian P,et al.Contrast-enhanced dynamic MR nephrography using the TurboFLASH navigator-gating technique in children.Eur Radiol,2006,15:1509-1518.
    15.Muthupillai R,Smink J,Hong S,et al.SENSE or k-MAG to accelerate free breathing navigator-guided coronary MR angiography.A JR Am J Roentgenol,2006,186:1669-1675.
    16.Kim BS,Kim JH,Choi GM,et al.Comparison of three free-breathing T2-weighted MRI sequences in the evaluation of focal liver lesions.A JR Am J Roentgenol,2008,190:W19-27.
    17.Fiehler J,Knab R,Reichenbach JR,et al.Apparent diffusion coefficient decreases and magnetic resonance imaging perfusion parameters are associated in ischemic tissue of acute stroke patients.J Cereb Blood Flow Metab,2001,21:577-584.
    18.Dixon WT.Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging:a modest proposal with tremendous potential.Radiology,1988,168:566-567.
    19.Namimoto T,Yamashita Y,Mitsuzaki K,et al.Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging.J Magn Reson Imaging,1999,9:832-837.
    20.Grenier N,Basseau F,Ries M,et al.Functional MRI of the kidney.Abdom Imaging,2003,28:164-175.
    21.Ries M,Jones RA,Basseau F,et al.Diffusion tensor MRI of the human kidney.J Magn Reson Imaging,2001,14:42-49.
    22.Hostetter TH.The hyperfiltering glomerulus.Med Clin North Am.1984,68:387-398.Review.
    23.Hostetter TH,Rennke HG,Brenner BM.Compensatory renal hemodynamic injury:a final common pathway of residual nephron destruction.Am J Kidney Dis.1982,1:310-314.
    24.郭慕依主编.肾活检病理学。复旦大学出版社,2007年,第一版:46.
    25.Tumlin JA,Madaio MP,Hennigar R.IgA nldiopathic IgA nephropathy:pathogenesis,histopathology,and therapeutic options.Clin J Am Soc Nephrol.2007,2:1054-1061.
    26. Glassock RJ.IgA nephropathy: challenges and opportunities. Cleve Clin J Med.2008, 75:569-576.
    
    27. Lee SM, Rao VM, Franklin WA, et al. IgA nephropathy: morphologic predictors of progressive renal disease. Hum Pathol, 1982,13:314-322.
    
    28. Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology, 2006, 241:812-221.
    
    29. Murtz P, Flacke S, Traber F, et al. Abdomen: diffusion-weighted MR imaging with pulse-triggered single-shot sequences. Radiology, 2002,224:258-264.
    
    30. Damasio MB, Tagliafico A, Capaccio E, et al. Diffusion-weighted MRI sequences (DW-MRI) of the kidney: normal findings, influence of hydration state and repeatability of results. Radiol Med (Torino), 2008,113:214-224.
    
    31. Thomas SE, Anderson S, Gordon KL, et al. Tubulointerstitial disease in aging:evidence for underlying peritubular capillary damage, a potential role for renal ischemia. J Am Soc Nephrol, 1998, 9:231-242.
    
    32. Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988, 168:497-505.
    1. Heyman SN, Khamaisi M, Rosen S,et al. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol, 2008,28:998-1006.
    
    2. Rosenberger C, Rosen S, Shina A, et al. Activation of hypoxia-inducible factors ameliorates hypoxic distal tubular injury in the isolated perfused rat kidney.Nephrol Dial Transplant, 2008,23:3472-3478.
    
    3. Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol, 2008,3:288-296.
    
    4. Pollock JS, Carmines PK. Diabetic nephropathy: nitric oxide and renal medullary hypoxia.Am J Physiol Renal Physiol, 2008,294:F28-29.
    
    5. Tanaka T, Kato H, Kojima I, et al. Hypoxia and expression of hypoxia-inducible factor in the aging kidney.J Gerontol A Biol Sci Med Sci, 2006, 61:795-805.
    
    6. Johannes T, Mik EG, Ince C.Dual-wavelength phosphorimetry for determination of cortical and subcortical microvascular oxygenation in rat kidney. J Appl Physiol, 2006,100:1301-1310.
    
    7. Majid DS, Nishiyama A. HNitric oxide blockade enhances renal responses to superoxide dismutase inhibition in dogs. Hypertension, 2002,39:293-297.
    
    8. Leong CL, O'Connor PM, Eppel GA, et al. Measurement of renal tissue oxygen tension: systematic differences between fluorescence optode and microelectrode recordings in anaesthetized rabbits. Nephron Physiol, 2008,108:pl 1-17.
    
    9. Priatna A, Epstein FH, Spokes K, et al. Evaluation of changes in intrarenal oxygenation in rats using multiple gradient-recalled echo (mGRE) sequence. J Magn Reson Imaging, 1999, 9:842-846.
    
    10. Liss P, Nygren A, Revsbech NP, et al. Intrarenal oxygen tension measured by a modified clark electrode at normal and low blood pressure and after injection of x-ray contrast media. Pflugers Arch, 1997,434:705-711.
    
    11. Liss P, Nygren A, Revsbech NP, et al. Measurements of oxygen tension in the rat kidney after contrast media using an oxygen microelectrode with a guard cathode.Adv Exp Med Biol, 1997,411:569-576.
    
    12. Epstein FH, Veves A, Prasad PV. Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care, 2002,25:575-578.
    
    13. Simon-Zoula SC, Hofmann L, Giger A, et al. Non-invasive monitoring of renal oxygenation using BOLD-MRI: a reproducibility study. NMR Biomed, 2006,19:84-89.
    
    14. Tumkur SM, Vu AT, Li LP, et al. Evaluation of intra-renal oxygenation during water diuresis: a time-resolved study using BOLD MRI. Kidney Int, 2006,70:139-143.
    
    15. Hofmann L, Simon-Zoula S, Nowak A, et al. BOLD-MRI for the assessment of renal oxygenation in humans: acute effect of nephrotoxic xenobiotics. Kidney Int,2006,70:144-150.
    
    16. Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J, 1993,64:803-812.
    
    17. Fisel CR, Ackerman JL, Buxton RB, et al. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med, 1991,17:336-347.
    
    18. Tanenbaum LN. Clinical 3T MR imaging: mastering the challenges. Magn Reson Imaging Clin N Am, 2006,14:1-15.
    
    19. Soher BJ, Dale BM, Merkle EM. A review of MR physics: 3T versus 1.5T.Magn Reson Imaging Clin N Am, 2007,15:277-290.
    
    20. Okada T, Yamada H, Ito H, et al. Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: Measured using BOLD contrast in the primary visual area. Acad Radiol, 2005,12:142-147.
    
    21. Scarabino T, Giannatempo GM, Popolizio T, et al. 3.0-T functional brain imaging: a 5-year experience. Radiol Med, 2007,112:97-112.
    
    22. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990,87:9868-9872.
    
    23. O'Connor PM.Renal oxygen delivery: matching delivery to metabolic demand.Clin Exp Pharmacol Physiol, 2006,33:961-967.
    
    24. Epstein FH. Oxygen and renal metabolism. Kidney Int, 1997, 51:381-385.
    
    25. Evans RG, Gardiner BS, Smith DW, et al. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol,2008,295:F1259-1270.
    
    26. Jandl JH. Blood: textbook of hematology: Boston, Mass: Little, Brown, 1987.154-157.
    27. Thoeny HC, Kessler TM, Simon-Zoula S, et al. Renal oxygenation changes during acute unilateral ureteral obstruction: assessment with blood oxygen level-dependent mr imaging—initial experience. Radiology, 2008,247:754-761.
    
    28. Alford SK, Sadowski EA, Unal O, et al. Detection of acute renal ischemia in swine using blood oxygen level-dependent magnetic resonance imaging. J Magn Reson Imaging, 2005,22:347-353.
    
    29. Li LP, Li BS, Storey P, et al. Effect of free radical scavenger (tempol) on intrarenal oxygenation in hypertensive rats as evaluated by BOLD MRI. J Magn Reson Imaging, 2005,21:245-248.
    
    30. Han F, Xiao W, Xu Y, et al. The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transplant, 2008,23:2666-2672.
    
    31. Djamali A, Sadowski EA, Samaniego-Picota M, et al. Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level-dependent magnetic resonance imaging. Transplantation, 2006, 82:621-628.
    
    32. Epstein FH, Prasad P. Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int, 2000, 57:2080-2083.
    
    33. Amuchastegui SC, Azzollini N, Mister M, et al. Chronic allograft nephropathy in the rat is improved by angiotensin II receptor blockade but not by calcium channel antagonism. J Am Soc Nephrol, 1998, 9:1948-1955.
    
    34. Li LP, Storey P, Pierchala L, et al. Evaluation of the reproducibility of intrarenal R2* and DeltaR2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging, 2004,19:610-616.
    
    35. Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation, 1996, 94:3271-3275.
    
    36. Prasad PV, Priatna A. Functional imaging of the kidneys with fast MRI techniques. Eur J Radiol, 1999,29:133-148.
    
    37. Li LP, Vu AT, Li BS, et al. Evaluation of intrarenal oxygenation by BOLD MRI at 3.0 T. J Magn Reson Imaging, 2004, 20:901-904.
    
    38. Li LP, Ji L, Lindsay S, et al. Evaluation of intrarenal oxygenation in mice by BOLD MRI on a 3.0T human whole-body scanner. J Magn Reson Imaging, 2007,25:635-638.
    
    39. Brezis M, Rosen S. Hypoxia of the renal medulla—its implications for disease. N Engl J Med, 1995, 332:647-655.
    40. O'Connor PM. Renal oxygen delivery: matching delivery to metabolic demand. Clin Exp Pharmacol Physiol, 2006, 33:961-967.
    
    41. Rosenberger C, Rosen S, Heyman SN. Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury. Clin Exp Pharmacol Physiol, 2006,33:980-988.
    
    42. Welch WJ, Baumgartl H, Lubbers D, et al. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int, 2001, 59:230-237.
    
    43. Tanaka T, Kato H, Kojima I, et al. Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A Biol Sci Med Sci, 2006, 61:795-805.
    
    44. Rosenberger C, Rosen S, Shina A, et al. Hypoxia-inducible factors and tubular cell survival in isolated perfused kidneys. Kidney Int, 2006,70:60-70.
    
    45. Goldfarb M, Rosenberger C, Abassi Z, et al. Acute-on-chronic renal failure in the rat: functional compensation and hypoxia tolerance. Am J Nephrol, 2006,26:22-33.
    
    46. Li LP, Storey P, Pierchala L, et al. Evaluation of the reproducibility of intrarenal R2* and DeltaR2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging, 2004,19:610-616.
    
    47. Yang Y, Gu H, Zhan W, et al. Simultaneous perfusion and BOLD imaging using reverse spiral scanning at 3T: characterization of functional contrast and susceptibility artifacts. Magn Reson Med, 2002,48:278-289.
    
    48. Gonen O, Gruber S, Li BS, et al. Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR Am J Neuroradiol, 2001,22:1727-1731.
    
    49. Basile DP, Donohoe D, Roethe K, et al. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function.Am J Physiol Renal Physiol, 2001,281:F887-F899.
    
    50. Matsumoto M, Tanaka T, Yamamoto T, et al. Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis J Am Soc Nephrol, 2004, 15:1574-1581.
    
    51. Manotham K, Tanaka T, Matsumoto M, et al. Evidence of tubular hypoxia in the early phase of the remnant kidney model. J Am Soc Nephrol, 2004, 15:1277-1288.
    
    52. Kairaitis LK, Wang Y, Gassman M, et al. HIF-1a expression follows microvascular loss in advanced murine adriamycin nephrosis. Am J Physiol Renal Physiol, 2005,288:F198-F206.
    
    53. Palm F, Friederich M, Carlsson PO, et al. Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability. Am J Physiol Renal Physiol, 2008,294:F30-F37.
    
    54. Rosenberger C, Pratschke J, Rudolph B, et al. Immunohistochemical detection of hypoxia-inducible factor-1 alpha in human renal allograft biopsies. J Am Soc Nephrol,2007,18:343-351.
    
    55. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol, 2006,17: 17-25.
    
    56. Manotham K, Ongvilawan B, Urusopone P, et al. Intrarenal hypoxia in CKD patients, a BOLD MRI study. J Am Soc Nephrol, 2006,17:164A.
    
    57. Fine LG, Bandyopadhay D, Norman JT. Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. Kidney Int, 2000, 57(suppl 75):S22-S26.
    
    58. Rathaus M, Greenfeld Z, Podjarny E, et al. Sodium loading and renal prostaglandins in old rats. Prostaglandins Leukot Essent Fatty Acids, 1993, 49:815-819.
    
    59. Baylis C. Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol, 2008,294:F1-F9.
    
    60. Adler S, Huang H, Wolin MS, et al. Oxidant stress leads to impaired regulation of renal cortical oxygen consumption by nitric oxide in the aging kidney. J Am Soc Nephrol, 2004,15:52-60.
    1.Saxena AB,Busque S,Arjane P,et al.Preoperative renal volumes as a predictor of graft function in living donor transplantation.Am J Kidney Dis,2004,44:877-885.
    2.Bakker J,Olree M,Kaatee R,et al.Renal volume measurements:accuracy and repeatability of US compared with that of MR imaging.Radiology,1999,211:623-8.
    3.Cost GA,Merguerian PA,Cheerasam SP,et al.Sonographic renal parenchymal and pelvicaliceal areas:new quantitative parameters for renal sonographic followup.J Urol,1996,156:725-729.
    4.Mounier-Vehier C,Lions C,Devos P,et al.Cortical thickness:an early morphological marker of atherosclerotic renal disease.Kidney Int,2002,61:591-598.
    5.Coulam CH,Bouley DM,Sommer FG.Measurement of renal volumes with contrast-enhanced MRI.J Magn Reson Imaging,2002,15:174-179.
    6.Grenier N,Hauger O,Delmas Y,et al.MR imaging of nephropathies.Abdom Imaging,2006,31:213-223.
    7.Sadowski EA,Bennett LK,Chan MR,et al.Nephrogenic systemic fibrosis:risk factors and incidence estimation.Radiology,2007,243:148-157.
    8.Collidge TA,Thomson PC,Mark PB,et al.Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis:retrospective study of a renal replacement therapy cohort.Radiology,2007,245:168-175.
    9.Chapman AB,Guay-Woodford LM,Grantham JJ,et al.Renal structure in early autosomal-dominant polycystic kidney disease(ADPKD):The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease(CRISP) cohort.Kidney Int,2003,64:1035-1045.
    10.King BF,Reed JE,Bergstralh EJ,et al.Quantification and longitudinal trends of kidney,renal cyst,and renal parenchyma volumes in autosomal dominant polycystic kidney disease.J Am Soc Nephrol,2000,11:1505-1511.
    11.Semelka RC,Cordgan K,Ascher SM,et al.Renal corticomedullary differentiation: observation in patients with differing serum creatinine levels.Radiology, 1994,190:149-152.
    
    12. Chung JJ, Semelka RC, Martin DR. Acute renal failure: common occurrence of preservation of corticomeduUary differentiation on MR images. Magn Reson Imaging, 2001,19:789-793.
    
    13. Muller MF, Prasad P, Siewert B, et al. Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology, 1994,190:475-478.
    
    14. Ries M, Jones RA, Basseau F, et al. Diffusion tensor MRI of the human kidney. J Magn Reson Imaging, 2001,14:42-49.
    
    15. Prasad PV, Priatna A. Functional imaging of the kidneys with fast MRI techniques. Eur J Radiol, 1999,29:133-148.
    
    16. Muller MF, Prasad PV, Bimmler D, et al. Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology, 1994,193:711-715.
    
    17. Pedersen M, Wen JG, Shi Y, et al. The effect of unilateral ureteral obstruction on renal function in pigs measured by diffusion-weighted MRI. APMIS Suppl,2003:29-34.
    
    18. Vexler VS, Roberts TP, Rosenau W. Early detection of acute tubular injury with diffusion-weighted magnetic resonance imaging in a rat model of myohemoglobinuric acute renal failure. Ren Fail, 1996,18:41-57.
    
    19. Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging, 2003,17:104-113.
    
    20. Chatziantoniou C, Boffa JJ, Tharaux PL, et al. Progression and regression in renal vascular and glomerular fibrosis. Int J Exp Pathol, 2004, 85:1-11.
    
    21. Namimoto T, Yamashita Y, Mitsuzaki K, et al. Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging, 1999, 9:832-837.
    
    22. Thoeny HC, Zumstein D, Simon-Zoula S, et al. Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology, 2006,241:812-821.
    
    23. Xu Y, Wang X, Jiang X. Relationship between the renal apparent diffusion coefficient and glomerular filtration rate: preliminary experience. J Magn Reson Imaging, 2007, 26:678-681.
    24.Yamashita Y,Tang Y,Takahashi M.Ultrafast MR imaging of the abdomen:echo planar imaging and diffusion-weighted imaging.J Magn Reson Imaging,1998,8:367-374.
    25.Kim BS,Kim JH,Choi GM,et al.Comparison of three free-breathing T2-weighted MRI sequences in the evaluation of focal liver lesions.A JR Am J Roentgenol,2008,190:W19-27.
    26.Klessen C,Asbach P,Kroencke TJ,et al.Magnetic resonance imaging of the upper abdomen using a free-breathing T2-weighted turbo spin echo sequence with navigator triggered prospective acquisition correction.J Magn Reson Imaging,2005,21:576-582.
    27.Boss A,Schaefer JF,Martirosian P,et al.Contrast-enhanced dynamic MR nephrography using the TurboFLASH navigator-gating technique in children.Eur Radiol,2006,16:1509-1518.
    28.Muthupillai R,Srnink J,Hong S,et al.SENSE or k-MAG to accelerate free breathing navigator-guided coronary MR angiography.A JR Am J Roentgenol,2006,186:1669-1675.
    29.Gourtsoyianni S,Papanikolaou N,Yarmenitis S,et al.Respiratory gated diffusion,weighted imaging of the liver:value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions.Eur Radiol,2008,18:486-492.
    30.Fine LG,Bandyopadhay D,Norman JT.Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia.Kidney Int Suppl,2000,75:S22-26.
    31.Brezis M,Rosen S.Hypoxia of the renal medulla--its implications for disease.N Engl J Med,1995,332:647-655.
    32.Prasad PV,Edelman RR,Epstein FH.Nonlnvasive evaluation of intrarenal oxygenation with BOLD MRI.Circulation,1996,94:3271-3275.
    33.Juillard L,Lerman LO,Kruger DG,et al.Blood oxygen level-dependent measurement of acute intra-renal ischemia.Kidney Int,2004,65:944-950.
    34.Textor SC,Glockner JF,Lerman LO,et al.The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis.J Am Soc Nephrol,2008,19:780-788.
    35.Thoeny HC,Kessler TM,Simon-Zoula S,et al.Renal oxygenation changes during acute unilateral ureteral obstruction:assessment with blood oxygen level-dependent mr imaging-initial experience. Radiology, 2008,247:754-761.
    
    36. Prasad PV, Epstein FH. Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int, 1999, 55:294-298.
    
    37. Prasad PV, Priatna A, Spokes K, et al. Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging, 2001,13:744-747.
    
    38. Li LP, Storey P, Pierchala L, et al. Evaluation of the reproducibility of intrarenal R2* and DeltaR2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging, 2004,19:610-616.
    
    39. Han F, Xiao W, Xu Y, et al. The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transplant, 2008,23:2666-2672.
    
    40. Sadowski EA, Fain SB, Alford SK, et al. Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience.Radiology, 2005,236:911-919.
    
    41. Li LP, Vu AT, Li BS, et al. Evaluation of intrarenal oxygenation by BOLD MRI at 3.0 T. J Magn Reson Imaging, 2004,20:901-904.
    
    42. Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.Proc Natl Acad Sci U S A, 1992, 89:5951-5955.
    
    43. Fisel CR, Ackerman JL, Buxton RB, et al. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med, 1991,17:336-347.
    
    44. Li LP, Ji L, Lindsay S, et al. Evaluation of intrarenal oxygenation in mice by BOLD MRI on a 3.0T human whole-body scanner. J Magn Reson Imaging, 2007,25:635-638.
    
    45. Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging.Radiology, 1990,175:489-493.
    
    46. Lowenborg EK, Jaremko G, Berg UB. Glomerular function and morphology in puromycin aminonucleoside nephropathy in rats. Nephrol Dial Transplant, 2000,15:1547-1555.
    
    47. Hauger O, Delalande C, Trillaud H, et al. MR imaging of intrarenal macrophage infiltration in an experimental model of nephrotic syndrome. Magn Reson Med,1999,41:156-162.
    
    48. Hauger O, Delalande C, Deminiere C, et al. Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-prelimi nary findings in a rat model. Radiology,2000,217:819-826.
    
    49. Zhang Y, Dodd SJ, Hendrich KS, et al. Magnetic resonance imaging detection of rat renal transplant rejection by monitoring macrophage infiltration. Kidney Int,2000,58:1300-1310.
    
    50. Hauger O, Grenier N, Deminere C, et al. USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans. Eur Radiol, 2007,17:2898-2907.
    
    51. Gupta S, Verfaillie C, Chmielewski D, et al. A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int, 2002,62:1285-1290.
    
    52. Hoehn M, Kustermann E, Blunk J, et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A, 2002,99:16267-16272.
    
    53. Kraitchman DL, Heldman AW, Atalar E, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 2003,107:2290-2293.
    
    54. Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver.Radiology, 2004,233:781-789.
    
    55. Hauger O, Frost EE, van Heeswijk R, et al. MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology, 2006, 238:200-210.
    
    56. Michaely HJ, Schoenberg SO, Oesingmann N, et al. Renal artery stenosis:functional assessment with dynamic MR perfusion measurements—feasibility study. Radiology, 2006, 238:586-596.
    
    57. Gandy SJ, Sudarshan TA, Sheppard DG, et al. Dynamic MRI contrast enhancement of renal cortex: a functional assessment of renovascular disease in patients with renal artery stenosis. J Magn Reson Imaging, 2003,18:461-466.
    
    58. Lee VS, Rusinek H, Noz ME, et al. Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology,2003,227:289-294.
    
    59. Trillaud H, Degreze P, Combe C, et al. USPIO-enhanced MR imaging of glycerol-induced acute renal failure in the rabbit. Magn Reson Imaging, 1995,13:233-240.
    
    60. Yang D, Ye Q, Williams M, et al. USPIO-enhanced dynamic MRI: evaluation of normal and transplanted rat kidneys. Magn Reson Med, 2001,46:1152-1163.
    
    61. Roberts DA, Detre JA, Bolinger L, et al. Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology, 1995,196:281-286.
    
    62. Karger N, Biederer J, Lusse S, et al. Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging, 2000,18:641-647.
    
    63. Michaely HJ, Schoenberg SO, Ittrich C, et al. Renal disease: value of functional magnetic resonance imaging with flow and perfusion measurements. Invest Radiol, 2004,39:698-705.
    
    64. Thulborn KR. Clinical rationale for very-high-field (3.0 Tesla) functional magnetic resonance imaging. Top Magn Reson Imaging, 1999,10:37-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700