纳米石墨/聚合物导电复合膜的制备与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电复合材料是由高分子基体材料与导电填料以一定的复合方式混合在一起得到的导电材料。其复合方式有溶液复合,混炼加工混合以及原位聚合等多种。常用的导电填料有导电金属(如金、银、铜和铝等)及非金属材料(如炭黑、石墨等)。在本论文中,我们选择以可膨胀石墨为原料,经过高温膨胀和超声波震荡处理得到了纳米石墨,并进一步分别对纳米石墨进行氧化和还原处理得到再氧化石墨和还原石墨。分别对聚乙烯醇、聚苯乙烯和纤维素等高分子基体材料进行适当地改性,以改善与纳米石墨导电填料的界面相容性。通过与纳米石墨、再氧化石墨以及还原石墨等导电填料复合制备出九种新型的导电复合膜。对所得到的导电材料的性能进行测定,并对其结构进行表征。具体分为六部分:
     把可膨胀石墨迅速升温至1050℃,得到膨胀石墨,再经过超声波震荡处理制得纳米石墨(nanoscale graphite简称为NanoG)。利用硝酸对NanoG进行氧化处理得到氧化纳米石墨(oxided NanoG简称为ONG);采用电解方法还原处理NanoG得到了还原纳米石墨(reduced NanoG简称为RNG)。通过SEM观察分析,得到的NanoG片层厚度最小可以达到40-70nm,宽度可以高达2μm。NanoG片层堆积毫无规则,片层间形成大小不一,形状不规则的孔洞。结合XRD图和SEM可以得出结论:尽管NanoG非常薄,它们也不是单一的石墨层。按照一片NanoG的厚度在40-70nm之间,及每一个石墨层的厚度假定为0.5nm进行计算,一片NanoG应该含有80-140个单一石墨层。SEM分析还发现,NanoG、RNG和ONG的表面形态没有显著的区别,但是,电导率和氧元素含量均有差异,NanoG填料的电导率(0.1311 S·cm~(-1))大于ONG(0.0727 S·cm~(-1))而小于RNG(0.5345 S·cm~(-1)),NanoG(15.53wt%)的氧元素含量大于RNG(13.67wt%)而小于ONG(21.91wt%)。
     通过聚乙烯醇与氯乙酸作用,在聚乙烯醇分子链上引入羧甲基官能团得到羧甲基聚乙烯醇(CMPVA)。在超声波作用下,把NanoG均匀地分散在羧甲基聚乙烯醇水溶液中,然后将此悬浮液倾倒在塑料薄膜上干燥除水,就得到了NanoG/羧甲基聚乙烯醇导电复合膜。通过傅立叶红外光谱表征证明了羧甲基官能团已经被引入到聚乙烯醇分子链上,而且利用电导滴定测定了它的羧甲基官能团的取代度为2.77%。实验表明,引入的羧甲基官能团所携带的羧基阴离子促进了带有正电荷的NanoG在羧甲基聚乙烯醇溶液中的分散。通过傅立叶红外光谱及XRD表征可以看出羧甲基聚乙烯醇基体的结晶程度有所减弱,利于NanoG在其中的分散。采用SEM观察NanoG/羧甲基聚乙烯醇导电复合膜的表面形态,发现NanoG均匀地分散于羧甲基聚乙烯醇基体中。NanoG/羧甲基聚乙烯醇在室温下的导电渗滤阀值可以低至0.80 wt%。
     在硫酸银催化下把乳液聚合的聚苯乙烯用浓硫酸磺化处理得到了聚苯乙烯磺酸(PSS)。在磺化过程中,磺酸基被引入到聚苯乙烯的苯基上。在超声波震荡下,NanoG均匀分散于磺化聚苯乙烯水溶液中,然后把分散液倾倒于塑料薄膜上得到NanoG/磺化聚苯乙烯导电复合膜。通过傅立叶红外光谱表征证明,磺酸基已经被引入到聚苯乙烯的苯基侧链上。引入的磺酸基由于电离而形成的磺酸基负离子促进了带有正电荷的NanoG的分散。通过扫描电镜和透射电镜观察NanoG/磺化聚苯乙烯导电复合膜的形貌特征,可以发现NanoG均匀地分散于磺化聚苯乙烯基体中,磺化聚苯乙烯分子链已经均匀地插入到NanoG的片层中间。NanoG/磺化聚苯乙烯导电复合膜在填料的体积分数为0.2vol%时,它的室温电导率可以达到1.25×10~(-4)S·cm~(-1),并且它的导电现象可以用经典的渗滤理论进行解释。
     用硫酸对聚乙烯醇进行酯化得了聚乙烯醇硫酸酯(PVA-S),通过对采用微库仑仪测定得到的硫含量进行分析计算,得到聚乙烯醇的酯化度仅为1.60%。通过溶液复合法制得NanoG/聚乙烯醇硫酸酯导电复合膜。用SEM确认了NanoG/聚乙烯醇硫酸酯导电复合膜的形成。该材料的拉伸强度、弹性模量和屈服强度均随着石墨填料的增加而下降。NanoG/聚乙烯醇硫酸酯导电复合膜的导电性能随着温度的上升而上升,说明温度是控制电导率的一个重要因素。NanoG/聚乙烯醇硫酸酯导电复合膜具有较低的导电渗滤阀值(0.2 wt%),其最高电导率为5.4×10~(-5) S·cm~(-1)。
     利用硫酸与硝酸的混合酸硝化纤维素得到硝酸纤维素。利用粘度法测定了制备的硝酸纤维素的分子量为1.3×10~5 g·mol~(-1)。通过傅立叶红外光谱表征确定了硝酸纤维素的结构。通过凯氏定氮仪对煮解的硝酸纤维素试样的氮含量进行测定,并计算得出每个葡萄糖单元的硝化取代度为2.75。分别把NanoG、RNG和ONG加入到硝酸纤维素的丙酮溶液中,经过超声波震荡处理,挥发溶剂后得到三种纳米石墨导电复合膜。三种纳米石墨导电复合膜的电导率随着导电填料含量的增加而逐渐上升。在低石墨粒子含量区域,他们的电导率相互比较接近,甚至导电渗滤阀值都是彼此相等,说明NanoG、RNG和ONG具有相近的纵横比。但是当石墨填料的质量分数上升到3wt%时,对应于NanoG、RNG和ONG的三种导电复合膜的电导率变化有了差异,分别达到0.0385,0.3333,0.0078S·cm~(-1)。
     在浓硫酸催化下,用醋酸酐对纤维素进行乙酰化处理制备得到乙酸纤维素,并通过傅立叶红外光谱对其结构进行了确认。经过测定其分子量为2.2×10~5g·mol~(-1),乙酰基在每个葡萄糖单元的取代度在2.27-2.43之间,通过改性改善了纤维素衍生物在有机溶剂(丙酮和乙酸)中的溶解性能。通过溶液共混方法分别制备了NanoG/乙酸纤维素、ONG/L酸纤维素和RNG/乙酸纤维素的导电复合膜。对电导率进行测定发现,纳米石墨/乙酸纤维素复合导电膜的电导率随石墨填料含量的增加而增大,其导电渗滤阀值约为2wt%。三种填料的导电复合膜的导电性能大小排序为:NanoG>RNG>ONG。通过电镜分析可以看出,三种纳米石墨粒子均能较好地分散在乙酸纤维素基体中,其中,ONG的分散效果略好一些。热重分析表明,ONG略微增强了乙酸纤维素的热稳定性,RNG在导电复合膜的热降解过程中显示出其自身的稳定性。
Conductive polymer composite materials are usually obtained by mixing conductive fillers with polymer matrix in a certain way.They can be obtained via solution compounding, mixing or in-situ polymerization.Commonly used conductive fillers are conductive metals such as gold,silver,copper and aluminum,and non-metallic materials such as carbon black, graphite,etc.In this paper,we have chosen the expandable graphite as a material,which was properly handled to prepare graphite nanosheets(NanoG),oxidized NanoG(ONG) and reduced NanoG(RNG).Polyvinyl alcohol,cellulose and polystyrene were appropriately modified in order to increase the interface compatibility with a variety of nano-graphite conductive fillers. And then nine kinds of conductive composite materials were fabricated.The performance of conductive composite materials was all determined,and also their structures were characterized.The work is divided into six parts:
     The expandable graphite wastreated at a high temperature(1050℃) to obtain expanded graphite,which was sonicated to prepare NanoG.The NanoG was further reduced or oxided to obtain RNG and ONG,respectively.Some pieces of NanoG can be observed with a thickness of about 40-70nm and width of more than 2μm through scanning electron microscopy(SEM), and the pores among irregularly stacked NanoG are irregular and in unequal size.Although NanoG sheet is very thin,it is not a single layer of graphite.According to the SEM micrographs and X-ray diffraction(XRD) patterns,it is concluded that a piece of NanoG sheet with a thickness of 40-70nm consists of 80-140 graphite layer,based on the assumption of a single carbon layer with a thickness of 0.5nm.The SEM micrographs also indicate no marked difference in morphologies of three kinds of graphites.But there are differences in oxygen contents and electrical conductivites.The electrical conductivity of NanoG(0.1311 S·cm~(-1)) is greater than that of ONG(0.0727 S·cm~(-1)),but less than that of RNG(0.5345 S·cm~(-1)),the oxygen contents of NanoG(15.53wt%) is more than that of RNG(13.67wt%),but less than that of ONG(21.91wt%).
     Carboxymethyl polyvinyl alcohol(CMPVA) was prepared by introducing carboxymethyl groups to polyvinyl alcohol(PVA) with chloroacetic acid.NanoG/CMPVA conducting composite film was prepared by dispersing NanoG in a CMPVA aqueous solution with the aid of sonication and then casted on plastic film to remove water.Carboxymethyl groups were proved to be linked to PVA by Fourier transform infrared(FTIR) spectra and the degree of carboxymethyl substitution on the PVA was 2.77%determined by conductometric titration. Experimental results show that carboxylate anions in introduced carboxymethyl groups faciliate the dispersal of NanoG with positive charges in the CMPVA solution.The CMPVA matrix was detected with XRD and FTIR spectra,and the results indicated that it was less crystal and suitable for the dispersion of NanoG.SEM was used to characterize the morphology of the composites to prove the homogeneous dispersion of NanoG in CMPVA.The percolation threshold of NanoG/CMPVA conducting composite film at room temperature is as low as 0.80 wt%.
     Catalyzed by silver sulfate,polystyrene sulfonic acid(PSS) was prepared by sulfonating polystyrene(PS),which was obtained by emulsion polymerization of styrene.In the sulfonation process,sulfonate groups were introduced on the phenyl groups of PS.NanoG/PSS conducting composite film was prepared by dispersing NanoG in PSS aqueous solution with the aid of sonication,and casting them on a plastic film.It is confirmed by the FTIR spectra that the sulfonic acid groups have been linked to PS.The introduced sulfonate anions on PS resulted from the ionization of sulfonic acid groups facilitate the dispersal process of NanoG with the positive charges.SEM was used to characterize the morphologies of NanoG/PSS conducting composite film and the results exhibit a homogeneous dispersion of NanoG in PSS matrix.A close observation of transmission electron micrographs(TEM) reveals that the PSS has been intercalated into the sub-layers of NanoG homogeneously.The electrical conductivity of NanoG/PSS conducting composite film reached 1.25x10~(-4)S·cm~(-1) at concentration of 0.2 vol%and the electrical conduction phenomenon can be interpreted by classic percolation theory.
     Polyvinyl alcohol hydrosulfate(PVA-S) was obtained by esterification reaction of polyvinyl alcohol using sulfuric acid.The esterification degree of PVA is 1.60%obtained by calculation based on sulfur element content determined by Microcoulomb analyzer.The NanoG/PVA-S nanocomposite was fabricated by solution compounding in aqueous solution of PVA-S.SEM and optical micrographs were applied to confirm the formation of the NanoG/PVA-S nanocomposite.The tensile strength,elastic modulus and yield strength of the NanoG/PVA-S nanocomposite were measured and found to decrease with the increase of NanoG loading.The electrical conductivity rises with the increase in temperature,indicating that the temperature is an important parameter of governing the electrical conductivity.The obtained NanoG/PVA-S nanocomposite showes low percolation threshold value of about 0.2 wt%,and maximum of electrical conductivity of 5.4x10~(-5) S·cm~(-1).
     Cellulose nitrate was obtained via nitration of cellulose using the mixture of sulfuric acid and nitric acid.The molecular weight of the cellulose nitrate was calculated to be 1.3×10~5 g·mol~(-1) based on the intrinsic viscosity measured.The structure of cellulose nitrate was confirmed by its FT-IR spectra.Based on the nitrogen content measured vial Kjeldahl nitrogen detection equipment,the substituted degree of cellulose nitrate by nitric acid was calculated to be 2.75 per glucose unit.Three kind of cellulose nitrate conducting composite films respectively incorporating RNG,NanoG and ONG were prepared by mixing respective fillers with cellulose nitrate in acetone and subsequently removing the solvent.The electrical conductivites of three kinds of films increase with the weight fraction of the fillers.When the weight fraction of three kinds of graphite particles are low,electrical conductivites of the corresponding nanocomposites were close to each other and the percolation thresholds are equal to each other,indicating that the graphite particles have nearly the same aspect ratios. But when their weight fraction of them reached at 3wt%,the electrical conductivity were 0.0385,0.3333,0.0078S·cm~(-1) corresponding to RNG,NanoG and ONG.
     Catalyzed by concentrated sulfuric acid,the acetyl cellulose was obtained via acetylation of cellulose using acetic anhydride,and the structure of acetyl cellulose was confirmed by its FT-IR spectra The molecular weight of the acetyl cellulose was calculated to be 2.2×10~5g·mol~(-1) based on the intrinsic viscosity measured,the substituted degree of acetyl cellulose by acetyl cellulose group was calculated to be 2.27-2.43 per glucose unit.The modification of cellulose by acetic anhydride increase its solubility in acetone and acetic acid. Three kind of acetyl cellulose conducting composite films respectively incorporating RNG, NanoG and ONG were prepared by mixing respective fillers with acetyl cellulose in acetic acid and subsequently removing the solventThe electrical conductivites of three kinds of films increase with the weight fraction of the fillers.When the weight fraction of three kinds of graphite particles are low,the electrical conductivites of the corresponding nanocomposites are close to each other and their percolation thresholds are ca.2wt%.the conducting sequence of three kinds of films are:NanoG>RNG>ONG.The SEM micrographs indicate that NanoG,RNG and ONG are homogeneously dispersed in acetyl cellulose matrix,and among them the dispersal effect of ONG is a little better than others.The thermogravimetric analysis (TGA) indicates that ONG enhances the thermal stability of acetyl cellulose slightly,and RNG shows the thermal stability of its own.
引文
[1]王建国,王公善.功能高分子.上海:同济大学出版社.1996
    [2]雀部博之.导电高分子材料.北京:化学工业出版社.1986
    [3]李星玮.导电高分子材料的性能及应用,1997,1997,4:3-5
    [4]万梅香.导电高分子,高分子通报,1999,3:50-56
    [5]李晓常,李世瑨.导电聚合物的进展——(Ⅱ)结构、机理及应用,化工进展,1992,05:6-
    [6]杨永芳,刘敏江.导电高分子材料的进展,塑料科技,2002,4:58-60
    [7]王利祥,王佛松.导电聚合物聚苯胺的研究进展——Ⅰ.合成、链结构和凝聚态结构,应用化学,1990,5:1-10
    [8]Dall'Olio,A.,Y.Dascola,V.Varacca,V.Bocchi.Comptes Rendus C267 1968:433-440
    [9]Diaz,A.F.,K.K.Kanazawa,G.P.Gardini.Electrochemical polymerization of pyrrole,Journal of the Chemical Society,Chemical Communications 1979:635-636
    [10]Cvetko,B.F.,M.P.Brungs,R.P.Burford,M.Skyllas-Kazacos.Structure,strength and electrical performance of conducting polypyrroles Journal of Materials Science,1988,23(6):2102-2106
    [11]Fu,M.,Y.Zhu,R.Tan,G.Shi.Aligned Polythiophene Micro- and Nanotubules,2001,13(24):1874-1877
    [12]Shi,G.,S.Jin,G.Xue,C.Li.A Conducting Polymer Film Stronger Than Aluminum Science,1995,267:994-996
    [13]Shi,G.,C.Li,Y.Liang.High-Strength Conducting Polymers Prepared by Electrochemical Polymerization in Boron Trifluoride Diethyl Etherate Solution,Advanced Materials,1999,11(13):1145-1146
    [14]Bazzaoui,E.A.,G.Levi,S.Aeiyach,J.Aubard,J.P.Marsault,P.C.Lacaze.SERS Spectra of Polythiophene in Doped and Undoped States,The Journal of Physical chemistry,1995,99:6628-6634
    [15]Mengoli,G.,M.T.Munari,P.Bianco,M.M.Musiani.Anodic synthesis of polyaniline coatings onto fe sheets,1981,26(12):4247-4257
    [16]Tseng,R.J.,J.Huang,J.Ouyang,R.B.Kaner,Y.Yang.Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory,2005,5(6):1077-1080
    [17]Paillard,E.,F.Toulgoat,J.Y.Sanchez,M.Medebielle,C.Iojoiu,F.Alloin,B.Langlois.Electrochemical investigation,of polymer electrolytes based on lithium 2-(phenylsulfanyl)-1,1,2,2-tetrafluoro-ethansulfonate,Electrochimica Acta,2007,53(4):1439-1443
    [18]Marzantowicz,M.,J.R.Dygas,F.Krok,Z.Florjanczyk,E.Zygadlo-Monikowska.Influence of crystalline complexes on electrical properties of PEO:LiTFSI electrolyte,Electrochimica Acta,2007,53(4):1518-1526
    [19]张卫东,冯小云,孟秀兰.国外隐身材料研究进展,宇航材料工艺,2000,3:1-4,10
    [20]张文根,张学英.导电高分子的应用展望,上海化工,2001,7:23-26
    [21]罗延龄,张立基,王庚超,张志平.温度记忆型有机PTC导电材料发展概况,兰化科技,1996,14(3):175-181
    [22]Medalia,A.I.Electrical conduction in carbon black composites,Rubber Chem Tech,1986,59(3):432-454
    [23]Shklovskii,B.I.,A.L.Efros.Electronic properties of doped semiconductors.Berlin:1984
    [24]Sheng,P.,E.K.Sichel,J.l.Gittleman.Fluctuation-induced tunneling conduction in carbon-polyvinylchlodde composites,Phys Rev Lett,1978,40(18):1197-1200
    [25]汤浩,陈欣方,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算,高分子材料科学与工程,1996,12(2):1-7
    [26]Sumio,I.Helical microtubules of graphitic carbon,Nature,1991,354:56-58
    [27]Kimura,T.,N.Yoshimura,T.Ogiso.Effect of elongation on electric resistance of carbon-polymer system,Polymer,1999,40(14):4149-4152
    [28]Zhang,X.-W.,Y.Pan,Q.Zheng.Time dependence of piezoresistance for the conductor filled polymer composites,Journal of Polymer Science,2000,38(21):2739-2749
    [29]Ezquerra,T.A.,M.Kulescza.Charge transport in polyethylene-graphite composite materials,Adv Mater,1990,2(12):597-600
    [30]Boettger,H.,U.V.Bryksin.Hopping conduction in solids.Berlin:Berlin Verlag Akademie.1986:
    [31]Van,B.,P.Van.Internal field emission in carbon black-loaded natural rubber vulcanizates,Journal of Applied Polymer Science,1962,24:651-655
    [32]卢金荣,吴大军,陈国华.聚合物基导电复合材料几种导电理论的评述,塑料,2004,33(5):43-47
    [33]Shekhar,S.,V.Prasad,S.V.Subramanyam.Transport properties of conducting amorphous carbon-poly(vinyl chloride) composite,Carbon,2006,44(2):334-340
    [34]Shibli,S.M.A.,K.S.Beenakumari,N.D.Suma.Nano nickel oxide/nickel incorporated nickel composite coating for sensing and estimation of acetylcholine,Biosensors and Bioelectronics,2006,22(5):633-638
    [35]Yang,C.Q.,Z.S.Wu,H.Huang.Electrical properties of different types of carbon fiber reinforced plastics(CFRPs) and hybrid CFRPs,Carbon,2007,45(15):3027-3035
    [36]Ferrara,M.,H.-C.Neitzert,M.Sarno,G.Gorrasi,D.Sannino,v.vittoria,P.Ciambelli.Influence of the electrical field applied during thermal cycling on the conductivity of LLDPE/CNT composites,Physica E:Low-dimensional Systems and Nanostructures,2007,37(1-2):66-71
    [37]Frydman,E.U.K.Patent Spec.604 695 I 718 14S
    [38]Kholer,F.U.S.Patent,3,243,753(1966)
    [39]Ohe,K.,Y.Natio.A new resistor having an anomalously large positive temperature coefficient,Japanese Journal of Applied Physics,1971,10:99-108
    [40]Klason,C.,J.Kubat.Anomalous behavior of electrical conductivity and thermal noise in carbon black-containing polymers at Tg and Tm,Journal of Applied Polymer Science,1975,19(3):831-845
    [41]Voet,A.Temperature effect of electrical resistivity of carbon black-filled polymer,Rubber Chemistry Technology,1981,54:42-50
    [42]周平.炭黑填充不相容高分子复合体系的结构与性能研究.上海交通大学工学硕士学位论文.2007:16-17
    [43]宋国君,孙晋立.碳纤维/橡胶复合材料电性能研究,山东纺织工学院学报,1995,10(1):1-5
    [44]HeinrichG_Klunnel,M.Recent advances in the Theory of Filler Networking in Elastomers.2002
    [45]裴志强.聚乙烯基导电复合材料性能的研究.北京化工大学硕士学位论文.2007:10-14
    [46]Inagaki,M.,H.Konno,M.Toyoda,K.Moriya,T.Kihara.Sorption and recovery of heavy oils by using exfoliated graphite Part Ⅱ:Recovery of heavy oil and recycling of exfoliated graphite,Desalination,2000,128(3):213-218
    [47]Chen,G.-H.,D.-J.Wu,W.-G.Weng,W.-L.Yan.Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites,2001,41(12):2148-2154
    [48]莫尊理,孙银霞,左丹丹.聚合物/石墨纳米复合材料的研究进展,功能材料信息,2006,4:21-26
    [49]李侃社,蔡会武,樊晓萍,闫兰英.聚合物/层状无机物纳米复合材料研究进展,西安科技学院学报,2001,21(2):140-144
    [50]曹乃珍,沈万慈.膨胀石墨对油亲和吸附分析,化学研究与应用,1997,9(1):54-56
    [51]Tamon,H.,H.Ishizaka.Porous characterization of carbon aerogels,Carbon,1998,36(9):1397-1399
    [52]Dai,G.Z.,S.MURO,Y.J.CHEN,J.Walter,Diesel Oil Sorption Behavior of Exfoliated Graphite,in International Carbon Conference 2002.2002:Beijing.
    [53]刘开平,周敬恩.膨胀石墨化学氧化法制备技术研究进展,长安大学学报(地球科学版),2003,25(4):85-91
    [54]Furdin,G.,M.Klatt,M.Lelaurain,A.Herold.New data concerning the graphite sulfur trioxide system,Synth.Met.,1988,23(1-4):387-394
    [55]Han,J.H.,K.W.Cho,K.H.Lee,H.Kim.Porous graphite matrix for chemical heat pumps,Carbon,1998,36(12):1801-1810
    [56]刘平桂,龚克成.石墨嵌入化合物的研究和发展,化学世界,1999,5:3-8
    [57]刘金鹏,宋克敏.可膨胀石墨制备研究,功能材料,1998,6:659-661
    [58]Savoia,D.,C.Trombini,A.Umani-Ronchi.Potassium-Graphite as a Metalation Reagent.Synthesis of Aldehydes and Ketones by Alkylation of Imines and Dihydro-1,3-oxazine,J.Org.Chem,1978,43(14):2907-2910
    [59]Li,W.,C.Han,W.Liu,M.Zhang,K.Tao.Expanded graphite applied in the catalytic process as a catalyst support,Catalysis Today,2007,125(3-4):278-281
    [60]Contento,M.,D.Savoia,C.Trombini,A.Umani-Ronchi.Potassium-Graphite as Selective Reducing Agent for Activated Double Bond Systems,Synthesis,1979,1979:30-32
    [61]沈万慈,祝力,候涛,刘英杰.石墨层间化合物(GIC_s)材料的研究动向与展望(续),炭素技术,1993,6:26-32
    [62]Karaipekli,A.,A.Sari,K.Kaygusuz.Thermal conductivity improvement of steadc acid using expanded graphite and carbon fiber for energy storage applications,Renewable Energy,2007,32(13):2201-2210
    [63]Sari,A.,A.Karaipekli.Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material,Applied Thermal Engineering,2007,27(8-9):1271-1277
    [64]Zhang,Z.,X.Fang.Study on paraffin/expanded graphite composite phase change thermal energy storage material,Energy Conversion and Management,2006,47(3):303-310
    [65]杨东兴,康飞宇.一种纳米复合材料——石墨层间化合物的结构与合成,清华大学学报,2001,41(10):9-12
    [66]田金星,丁荣芝.石墨层间化合物的开发与应用前景,国外金属矿选矿,1994,1:20-26
    [67]Bhattacharya,A.,A.Hazra,S.Chatterjee,P.Sen,S.Laha,I.Basumallick.Expanded graphite as an electrode material for an alcohol fuel cell,Journal of Power Sources,2004,136(2):208-210
    [68]Docekal,B.,B.Vojtkova.Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry,Spectrochimica Acta Part B:Atomic Spectroscopy,In Press,Corrected Proof:112
    [69]Matsuo,Y.,K.Tahara,Y.Sugie.Synthesis of poly(ethylene oxide)-intercalated graphite oxide,Carbon,1996,34(5):672-674
    [70]Matsuo,Y.,K.Tahara,Y.Sugie.Structure and thermal properties of poly(ethylene oxide)-intercalated graphite oxide,Carbon,1997,35(1):113-120
    [71]Sichel,E.Carbon black-polymer composites.New York:Marcel Dekker.1982
    [72]Ishigure,Y.,S.Iijima,H.Ito,T.Ota,H.Unuma,M.Takahashi,Y.Hikichi,H.Suzuki.Electrical and elastic properties of conductor-polymer composites,J.Mater.Sci.,1999,34(12):2979-2985
    [73]Roldughin,V.I.,V.V.Vysotskii.Percolation properties of metal-filled polymer films,structure and mechanisms of conductivity,Prog.Org.Coat.,2000,39(2-4):81-100
    [74]Hong,B.K.,W.H.Jo,S.C.Lee,J.Kim.Correlation between melting behaviour and polymorphism of syndiotactic polystyrene and its blend with poly(2,6-dimethyl-1,4-phenylene oxide),Polymer,1998,39(10):1793-1797
    [75]Flandin,L.,J.Y.Cavaill,G.Bidan,Y.Brechet.New nanocomposite materials made of an insulating matrix and conducting fillers:Processing and properties,Polym.Compos.,2000,21(2):165-174
    [76]Quivy,A.,R.Deltour,A.G.M.Jansen,P.Wyder.Transport phenomena in polymergraphite composite materials,Physical Review B,1989,39(2):1026-1030
    [77]Shioyama,H.,K.Tatsumi,N.Iwashita,K.Fujita,Y.Sawada.On the interaction between the potassium—GIC and unsaturated hydrocarbons,Synth.Met.,1998,96(3):229-233
    [78]Krohn,H.,F.Beck.Electrochemical GIC sensor for the charge stored in a lead acid battery,Synth.Met.,1990,34(1-3):707-712
    [79]Wunderlich,B.A classification of molecules,phases,and transitions as recognized by thermal analysis,Thermochim.Acta,1999,340-341:37-52
    [80]Pinto,G.,A.Jim(?)nez-Mart(?)n.Conducting aluminum-filled nylon 6 composites,Polym.Compos.,2001,22(1):65-70
    [81]Saunders,D.S.,S.C.Galea,G.K.Diermendjian.The development of fatigue damage around fastener holes in thick graphite/epoxy composite laminates,Composites 1993,24(4):309-321
    [82]Ezquerra,T.A.,M.Kulescza,F.J.Balta-Calleja.Electrical transport in polyethylene-graphite composite materials,Synth.Met.,1991,41(3):915-920
    [83]Matsuo,Y.,K.Hatase,Y.Sugie.Preparation and Characterization of Poly(vinyl alcohol)-and Cu(OH)_2-Poly(vinyl alcohol)-Intercalated Graphite Oxides Chem.Mater,1998,10(8):2266-2269
    [84]Xu,J.,Y.Hu,L.Song,Q.Wang,W.Fan,Z.Chen.Preparation and characterization of poly(vinyl alcohol)/graphite oxide nanocomposite,Carbon,2002,40(3):450-451
    [85]Kyotani,T.,H.Moriyama,A.Tomita.High temperature treatment of polyfurfuryl alcohol/graphite oxide intercalation compound,Carbon,1997,35(8):1185-1187
    [86]Chung,D.D.L.Exfoliation of graphite,J.Mater.Sci.,1987,22(12):4190-4198
    [87]Celzard,A.,E.McRae,J.F.Mareche,G.Furdin,M.Dufort,C.Deleuze.Composites based on micron-sized exfoliated graphite particles:Electrical conduction,critical exponents and anisotropy,J.Phys.Chem.Solids,1996,57(6-8):715-718
    [88]Jovic,N.,D.Dudic,A.Montone,M.V.Antisari,M.Mitric,V.Djokovic.Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites,Scripta Materialia,2008,58(10):846-849
    [89]Du,L.,S.C.Jana.Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells,Journal of Power Sources,2007,172(2):734-741
    [90]Yasmin,A.,J.-J.Luo,I.M.Daniel.Processing of expanded graphite reinforced polymer nanocomposites,Compos.Sci.Technol.,2006,66(9):1182-1189
    [91]Zheng,W.,S.-C.Wong.Electrical conductivity and dielectric properties of PMMA/expanded graphite composites,Compos.Sci.Technol.,2003,63(2):225-235
    [92]Wang,W.-p.,Y.Liu,X.-x.Li,Y.-z.You.Synthesis and characteristics of poly(methyl methacrylate)/expanded graphite nanocomposites,J.Appl.Polym.Sci., 2006,100(2):1427-1431
    [93]Mo,Z.,Y.Sun,H.Chen,P.Zhang,D.Zuo,Y.Liu,H.Li.Preparation and characterization of a PMMA/Ce(OH)3,Pr2O3/graphite nanosheet composite,Polymer,2005,46(26):12670-12676
    [94]Weng,W.,G.Chen,D.Wu.Transport properties of electrically conducting nylon 6/foliated graphite nanocomposites,Polymer,2005,46(16):6250-6257
    [95]Pan,Y.-X.,Z.-Z.Yu,Y.-C.Ou,G.-H.Hu.A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization,J.Polym.Sci.,Part B:Polym.Phys.,2000,38(12):1626-1633
    [96]Weng,W.,G.Chen,D.Wu.Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites,Polymer,2003,44(26):8119-8132
    [97]Xiao,P.,L.Sun,M.Xiao,K.Gong.Preparation and properties of exfoliated graphite/polystyrene composite,in Materials Research Society Symposium-Proceedings.2001.
    [98]Wang,W.-P.,C.-Y.Pan.Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization,Polymer,2004,45(12):3987-3995
    [99]Chen,G.,C.Wu,W.Weng,D.Wu,W.Yan.Preparation of polystyrene/graphite nanosheet composite,Polymer,2003,44(6):1781-1784
    [100]Zhu,L.,S.Z.D.Cheng,B.H.Calhoun,Q.Ge,R.P.Quirk,E.L.Thomas,B.S.Hsiao,E Yeh,B.Lotz.Phase structures and morphologies determined by self-organization,vitrification,and crystallization:confined crystallization in an ordered lamellar phase of PEO-b-PS diblock copolymer,Polymer,2001,42(13):5829-5839
    [101]Wang,W.P.,C.Y.Pan,J.S.Wu.Electrical properties of expanded graphite/poly(styreneco -acrylonitrile) composites,Journal of Physics and Chemistry of Solids,2005,66(10):1695-1700
    [102]Chert,G.-H.,D.-J.Wu,W.-G.Weng,W.-L.Yan.Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization,Journal of Applied Polymer Science 2001,82(10):2506-2513
    [103]李平.制备膨胀石墨的研究,化工设计通讯,2004,30(2):49-54
    [104]葛永兴,徐红,周燕.电化学法制备可膨胀石墨工艺探讨,大化科技,2002,4:55-57
    [105]Krzesinska,M.,A.Celzard,B.Grzyb,J.F.Mareche.Elastic properties and electrical conductivity of mica/expanded graphite nanocomposites,Mater.Chem.Phys.,2006,97(1):173-181
    [106]Kalaitzidou,K.,H.Fukushima,L.T.Drzal.A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold,Compos.Sci.Technol.,2007,67(10):2045-2051
    [107]Chen,G.,W.Weng,D.Wu,C.Wu.PMMA/graphite nanosheets composite and its conducting properties,Eur.Polym.J.,2003,39(12):2329-2335
    [108]CHEN,G.,W.WENG,D.WU,D.WU,J.CHEN,L.YE,W.YAN.INVESTIGATION ON THE NANO-DISPERSION OF GRAPHITE INTO POLYMER MATRIX,Acta Polymerica Sinica,2001,6:803-806
    [109]Uhl,F.M.,Q.Yao,H.Nakajima,E.Manias,C.A.Wilkie.Expandable graphite/polyamide-6 nanocomposites,Polym.Degrad.Stab.,2005,89(1):70-84
    [110]黄少斌,方建章.田菁胶羧甲基取代度的定量分析,华南理工大学学报(自然科学版),1997,25(12):116-118
    [111]Duquesne,S.,M.L Bras,S.Bourbigot,R.Delobel,H.Vezin,G.Camino,B.Eling,C.Lindsay,T.Roels.Expandable graphite:A fire retardant additive for polyurethane coatings,Fire and Materials,2003,27(3):103-117
    [112]Christie,M.H.,A.P.Nikolaos.Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods.2000:37-65
    [113]Peppas,N.A.Tear propagation resistance of semicrystalline polymeric networks,Polymer,1977,18(4):403-407
    [114]Peppas,N.A.,S.L.Wright.Solute Diffusion in PVA/PAA Interpenetrating Networks,Macromolecules,1996,29:8798-8804
    [115]Peppas,N.A.Infrared Spectroscopy of Semicrystalline PVA Networks,Makromol.Chemic,1977,178:595-601
    [116]何曼君,陈维孝,董西侠.高分子物理.北京:复旦大学出版社.2001:174-184
    [117]Lu,X.,R.A.Weiss.Specific interactions and ionic aggregation in miscible blends of nylon-6 and zinc sulfonated polystyrene ionomer,Macromolecules,1992,25(23):6185-6189
    [118]Zheng,W.,S.-C.Wong,H.-J.Sue.Transport behavior of PMMA/expanded graphite nanocomposites,Polymer,2002,43(25):6767-6773
    [119]Kaburagi,Y.,Y.Hishiyama.Highly crystallized graphite films prepared by hightemperature heat treatment from carbonized aromatic polyimide films,Carbon,1995,33(6):773-777
    [120]Stauffer,D.,A.Aharony.Introduction to percolation theory.London:Taylor & Francis.1991
    [121]Grimmett,G.Percolation.New York:Springer.1989
    [122]Xu,J.,Y.Hu,L.Song,Q.Wang,W.Fan,G.Liao,Z.Chen.Thermal analysis of poly(vinyl alcohol)/graphite oxide intercalated composites,Polym.Degrad.Stab.,2001,73(1):29-31
    [123]Yazici,M.S.,D.Krassowski,J.Prakash.Flexible graphite as battery anode and current collector,J.Power Sources,2005,141(17:171-176
    [124]复旦大学高分子科学系,高分子科学研究所.高分子实验技术.上海:复旦大学出版社.1996:22-26
    [125]陈凤清,梁忠岩.凯氏定氮法测定松杉灵芝子实体水溶性多糖中蛋白质含量,长春工程学院学报(自然科学版),2005,6(4):65-66
    [126]王文平,刘燕,王斌,王平华.聚甲基丙烯酸甲酯/膨胀石墨纳米导电复合材料的制备与表征,高分子材料科学与工程,2006,22(6):209-212
    [127]薛颜彬.无机超细粒子改性聚丙烯复合材料结构与性能的研究.青岛科技大学硕士研究生学位论文.2007:50-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700