电渣重熔过程凝固数学模拟及新渣系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于电渣重熔钢锭具有组织致密、成分均匀、表面光洁和成材率高等优点,因此从电渣重熔技术产生之后,就成为生产某些特殊材料的重要手段。长期以来,电渣重熔工艺制度往往凭经验制定,缺乏理论指导,虽然也有许多研究者通过建立数学模型的方法描述电渣重熔过程,并探索最优的工艺,但仍然有许多需要研究的内容。电渣重熔技术产生以后,开发出了许多渣系用于电渣重熔生产,但往往电耗较高,目前国内某厂电渣重熔冷轧辊用钢时吨钢电耗在1500~1600kWh。同时,电渣重熔后钢中增氢严重,电渣钢锭需要进行长期的扩氢处理,以降低钢中的氢含量。在应用电渣重熔生产某些易偏析钢种时,钢中析出的有害相含量较高,有待于通过研究进行控制。本文从上述电渣重熔过程所存在的问题出发,对其进行了相关的研究,旨在提高钢锭质量、降低电耗,探索降低钢中气体含量方法和控制钢中有害相析出含量的途径。
     针对电渣重熔电耗较高等问题,在现场原用三七(L0)渣系基础上,添加了降低渣系电导率的氧化物组元,开发了L1、L2和L3渣系,并与传统的电渣重熔用L0渣系进行了对比研究。对新设计渣系进行的熔点、粘度、碱度、密度和电导率等的测算结果表明,新设计渣系完全满足电渣重熔用渣要求,并且新设计的渣系电导率更低,更有利于降低电耗。
     对渣系渗透性的研究结果表明,L0渣系的渗透率最低,这与众多文献资料报道的使用L0渣系重熔后钢中增氢量最小的结果相一致。本文所测得的L0渣系渗透率数值为0.48×10-6 mol·cm-1·min-1。L2渣系对氢的渗透率比L0渣稍大,渗透率为0.98×10-6 mol·cm-1·min-1,同样具有较低的氢渗透率,适合于生产冷轧辊用钢等氢敏感钢种,而其他渣系的氢渗透率相对较高。影响渣系氢渗透率的因素比较多,首先,光学碱度对渣系氢渗透率有重要的影响,总体趋势是光学碱度越大氢渗透率越大。其次,虽然CaO具有较大的水容量,但CaO含量过高更有利于向钢液中渗氢,而Al2O3作为酸性氧化物而存在,有利于阻止氢的渗透。研究表明,本文中所提出的渣系氢渗透率衡量指数EH越大,氢的渗透率越小
     使用各渣系在实验室所进行的电渣重熔实验研究表明,重熔初期钢中氢含量最高,此时钢中氢含量主要受渣系中含有水分、渣系氢渗透率、自耗电极中氢含量和大气湿度所控制,而重熔中后期钢中氢含量基本恒定,此时钢中氢含量受渣系氢渗透率、自耗电极中氢含量和大气湿度所影响。使用渗透率最低的L0渣系在大气下重熔后,钢中增氢量很小,使用渗透率较低的L2渣系大气下重熔后,钢中增氢量也不大,而其他渗透率较高的渣系大气下重熔后,钢中氢含量较高。研究发现,使用保护气氛和预熔渣重熔,效果最佳,不仅重熔初期钢中氢含量较低,而且重熔中后期钢中增氢量也最低,因为此时钢中氢含量已经基本排除了重熔初期渣系中所含有的水分的影响,也排除了大气湿度对钢中氢含量的影响。对应用各渣系重熔后的钢锭分析后发现,L0和L3渣系重熔后钢中夹杂物总量较低,而L2稍高,L1渣系重熔后钢中夹杂物最高,并且颗粒较大,在L1和L3渣系重熔后的钢中发现大量的氮化物夹杂,这与Ll和L3渣系渗透率较高密切相关。
     工业实验的研究结果表明L1渣系与L0渣系电耗情况相当,而L2渣系可大幅度的降低电耗,吨钢电耗比L0渣系降低了近200kWh,钢中氢含量小于2ppm,同时新渣系的使用,大大提高了产品的合格率,为企业带来了更大的经济效益。
     在前人研究的基础上,从电磁场方程、流体流动方程和热量传输方程出发,建立了电渣重熔数学模型,并以重熔体系的温度场分布作为考查的重点,将铸锭凝固过程的局部凝固时间与枝晶间距联系起来,进而通过控制二次枝晶间距来控制铸锭的凝固质量。研究表明,电渣重熔渣池中心的最高温度达到1800℃以上,直径950mm的重熔钢锭铸锭中心的局部凝固时间最长,达到2300s以上,对应的枝晶间距最大,所检测出的二次枝晶间距的大小在500μm左右,而铸锭边缘部位的局部凝固时间较短,在600s左右,对应的二次枝晶间距相对较小,只有200μm左右,从铸锭边缘到中心,枝晶间距逐渐增大,而铸锭的凝固质量也从边缘到中心逐渐变差。
     模型经过验证后,使用数学模型对Φ130mm结晶器的电渣重熔工艺制度进行了优化设计,并以IN718合金为研究钢种进行了重熔实验,实验发现,电渣重熔后,IN718合金中的夹杂物含量大幅度的降低,通过合理的控制重熔工艺制度,可以有效的控制IN718合金的凝固质量,使其铸锭表面光洁、成分均匀、无宏观缺陷,降低铸锭中的脆性Laves相的析出含量,并降低合金元素的偏析程度。通过实验分析,还提出了Φ130mm结晶器的最佳控制熔速为66kg/h。对应的铸锭中心局部凝固时间为375s,凝固速度(铸锭上涨速度)为10.1mm/min。
     在实验室所进行的电渣重熔Cr5冷轧辊用钢的实验研究进一步表明,模型计算可以为工艺的制定提供理论依据,通过采用合理的工艺制度可以有效控制电渣重熔钢锭的由于偏析所析出的有害相含量,从而提高钢锭质量。
     在现场的电渣重熔实验表明,模型计算的金属熔池形状和深度与硫印实测情况吻合较好,说明模型是比较准确的。对现场实验的Cr5冷轧辊电渣钢锭进行解剖分析后发现,电渣钢锭的大部分元素宏观偏析率基本能够控制在0.95~1.05范围内,气体含量也较低,满足钢种的要求。由钢锭的边缘到中心,钢锭的二次枝晶间距不断增大,所检验出最大二次枝晶间距为557μm。Cr5冷轧辊用钢电渣钢锭中所出现的碳化物相含量由铸锭的边缘到中心不断增多,并且颗粒度也逐渐加大,这与枝晶间距的增大息息相关。因此,以枝晶间距大小作为衡量铸锭凝固质量的一个标准是可行的。经过SEM分析发现,Cr5电渣钢锭中所析出的碳化物主要为M7C3和MC型碳化物。
     现场电渣钢锭分析发现,钢锭中还存在一定的缺陷,这与熔速过高、工艺制度还不够合理有关,因此应用数学模型进行了进一步的工艺制度的计算,新工艺的使用效果还有待于进一步的实验研究。
Electroslag remelting (ESR) has been used for some special materials since its birth due to the ingot quality of sound structure, uniform compositions, surface smoothness and high yield. For a long time, the process parameters were determined by experience, which has less theoretical guidance. A lot of mathematical models had been established for describing the phenomenon of ESR process and explored the optimum process, but still many problems should be studied and solved.
     The power consumption of ESR process is very high when many existed slags are used. At present, the power consumption is 1500~1600kWh/t steel for ESR cold roll steel in a domestic plant. At the same time, hydrogen pick-up during ESR process is very high for hydrogen sensitive steel; the further long time heat treatment is needed for decreasing the hydrogen content. The content of some segregation phase occurs when some prone segregation alloy is produced by ESR, which needs to be controlled. The existing problems for ESR process have been studied aiming at improving ingot quality, decreasing power consumption and the content of gas and harmful phases in our present work.
     Slag L1, L2 and L3, in which the oxide components were added to decrease the electric conductivity have been designed, in order to decrease the high power consumption when slag LO containing 70%CaF2 and 30%Al2O3 was used in this plant. It indicates from the results of melting point, viscosity, basicity, density and electric conductivity that the designed slags can meet the requirement of ESR process. At the same time the designed slags have low electric conductivity, which is advantaged for decreasing the power consumption.
     The experimental results indicate that slag LO has the lowest hydrogen permeability, which is coincident with the low hydrogen content in steel after remelting with slag LO in many literatures. The measured value of hydrogen permeability for slag L0 is 0.48×10-6 mol·cm-1·min-1 in this work. The hydrogen permeability is 0.98×10-6mol·cm-1·min-1 for slag L2, which is lower than slag L1 and L3, so it is a promising slag for remelting some special steels. There are many influence factors on hydrogen permeability. Firstly, optical basicity has great effect on hydrogen permeability and the higher optical basicity is the higher hydrogen permeability for general trend. Secondly, though CaO has bigger water capacity, the higher CaO content in slag attributes to increasing hydrogen content in steel. Whereas, Al2O3 is advantaged for preventing hydrogen permeation for its low water capacity and exists as acid oxide. Research shows that the higher the parameter EH is the higher hydrogen permeability, which is put forward for an evaluation parameter of hydrogen permeability of slag in this paper.
     The ESR experiment results with all kinds of slag studied in this paper indicate that hydrogen content is highest at the beginning of the remelting process, which is controlled by water in slag, hydrogen permeability of slag, hydrogen content in electrode and atmospheric moisture. Later the hydrogen content in steel is kept at a lower content, which is influenced by hydrogen permeability of slag, hydrogen content in electrode and atmospheric moisture here. The increase of hydrogen is low after remelting with the lowest hydrogen permeability of slag L0. The increase of hydrogen is also low after remelting with slag L2. However, the hydrogen content is higher after remelting with slag L1 and L3. It has been found that not only the hydrogen content is lowest at the beginning of the ESR process but also the increase of hydrogen is lowest when protective atmosphere and premelted slag are adopted. Water capacity and atmospheric moisture have little influence on the process in this case. And then the inclusions in remelted ingots with diferent slags were analyzed. Results show that the amounts, of inclusions in steel in the case of slags LO and L3 are less than that with slags L1 and L2. But a lot of nitride inclusions were found in steel remelted with slags LI and L3, which resulted from their high hydrogen permeability.
     The power consumption test results at industrial ESR show that the slag L1 and L0 has almost the same power consumption, and slag L2 can decrease the power consumption with 200kWh/t steel. Furthermore the products passing rate is higher than before using the new slag, which will have huge economic benefits.
     A mathematical model, based on electromagnetic field equation, fluid flow equation, and heat transfer equation, was established for the simulation of the electroslag remelting process. The distribution of temperature field was obtained by solving this model. The relationship between the local solidification time and the interdendritic spacing during the ingot solidification process was established, which has been regarded as a criterion for the evaluation of the quality of crystallization. The results indicate that the temperature of slag center is above 1800℃. For a crucible of 950 mm in diameter, the local solidification time (LST) is more than 2300s at the center of the ingot with the longest secondary interdendritic spacing, which is about 500μm. Whereas LST is only 600s at the edge of the ingot according to the calculated results, which is about 200μm for corresponding secondary interdendritic spacing. Secondary interdendritic spacing increases from the edge to center of ESR ingot, and therefore the secondary interdendritic spacing can be used to estimate the ingot quality.
     The power supply parameters was calculated using the proofed model for the crucible ofΦ130mm in diameter and the experiment was carried out using alloy IN718 in laboratory. It was found after experiment that the non-metallic inclusions content decrease after ESR process and the alloy ingot was sound structure, uniform compositions, surface smoothness and no macroscopic defect with the rational power supply parameters. The content of Laves phase and the extent of element segregation decrease. At the same time the optimal melting rate is 66kg/h forΦ130mm crucible by the experiment analysis. The corresponding LST in ingot center is 375s, and the solidification rate of the ingot is 10.1mm/min.
     The further experiment was carried out in laboratory using Cr5 cold roll steel. The power supply was calculated by model for different slags. The analysis results indicate that the carbide content in steel is low using the parameters ascertained by model. The results have proved that model can provide theoretical basis for establishing the ESR power supply parameters.
     The ESR experiment in the industrial scale shows that the predicted shape of molten pool is in agreement with the measured results after the model has been revised, so the model is accurate. It has been found that macrosegregation of most elements in ESR ingot can be controlled at a range of 0.95-1.05 after the Cr5 cold roll steel had been analyzed. The gas content in steel is low, which meet the requirements of steel. Secondary interdendritic spacing gradually increases from edge to the center of the ingot and the largest one measured is 557μm. The content of carbide phase increases form the edge to the center of the ingot and the graininess gradually augments, which has great relationship with the increase of interdendritic spacing. The carbide existing in Cr5 ESR ingot is mainly M7C3 and MC type analyzed by SEM.
     Some defects had been found in the ingot, which have great relationship with the high melting rate and indicate that the power supply is not enough reasonable. Further power supply have been calculated by model and the capacitity need to be confirmed.
引文
1. Vries R P. Consumable electroflux melting—the hopkins process[J], Industrial Heating,1996,9(1): 1665
    2.李正邦.电渣冶金的回顾与展望[J],特殊钢,1999,20(5):1-2
    3.李正邦.电渣冶金原理及应用[M],北京:冶金工业出版社,1996:前言
    4.李正邦.电渣冶金的回顾与展望[J],特殊钢,1999,20(5):1-6
    5.李正邦,傅杰.电渣重熔技术在中国的应用和发展[J],特殊钢,1999,4(2):7-13
    6.向大林.200t级电渣炉的技术特点和产品评价[J],大型铸锻件,2004(3):49-54
    7.姜周华,余强,臧喜民,等.一种板坯电渣炉[P],专利号:20071010096.X
    8.姜周华,臧喜民,张天彪,等.连铸式电渣炉[P],专利号:ZL200620089551.0
    9.姜周华,臧喜民,张天彪.一种导电结晶器[P],专利号:200720010214.2
    10.张家雯,郭培民,李正邦.电渣重熔体系电毛细振荡的研究[J],2000,35(5):23-25
    11.李正邦.电渣熔铸[M],北京:国防工业出版社,1979:17-24
    12.李正邦,电渣冶金与电渣熔铸在中国的发展[J],铸造,2004.11,53(11):855-861
    13. Choudhary M. A study of heat transfer and fluid flow in the electroslag refining process[D], Cambridge:Massachusetts Institute of Technology,1980:10
    14. Mendrykowske J, Poveromo J J, Szekely J, Mitchell A. Heat transfer and melting process in electroslag remelting part i. the behavior of small electrodes[J], Met. Trans.,1972,3:1761-1768
    15. Mitchell A, Joshi S, Cameron J. Electrode temperature gradients in the electroslag process [J], Met. Trans.,1971.2(2):561-567
    16. Mitchell A, Joshi S. The thermal characteristics of the electroslag process[J], Met. Trans.,1973,4B: 631-642
    17. Carvajal L F, Geiger G E. An analysis of the temperature distribution and the location of the solidus mushy and liquidus zones for binary alloys in remelting processes [J], Met. Trans.,1971,2:2087-2092
    18. Ballantyne A S, Mitchell A. Modeling of ingot thermal fields in consumable electrode remelting processes[J], Ironmaking and Steelmaking,1977(4):222-239
    19. Choudhary M. A study of heat transfer and fluid flow in the electroslag refining process[D], Cambridge:Massachusetts Institute of Technology,1980:19
    20. Choudhary M. A study of heat transfer and fluid flow in the electroslag refining process[D], Cambridge:Massachusetts Institute of Technology,1980:20
    21. Choudhary M, Szekely J. Modelling of fluid flow and heat transfer in industrial-scale ESR system[J], Ironmaking and Steelmaking,1981,8(5):225-231
    22. Dilawari A H, Szekely J. A mathematical model of slag and metal flow in the esr process[J], Met. Trans.,1977(8B):227-236
    23. Dilawari A H, Szekely J. Heat transfer and fluid flow phenomena in electroslag refining[J], Met. Trans.,1978(9B):77-87
    24. Kelkar K M, Mok J, Patankar S V, Mitchell A. Computational modeling of electroslag remelting processes[J], Journal de Physique IV,2004.12,120:421-428
    25.姜兴渭.电渣重熔工艺参数的确定及其诺模图[J],东北大学学报,1977(3):24-46
    26.姜兴渭.电渣重熔过程热平衡计算公式的推导及其应用[J],特钢通讯,1980(1):1
    27.陆锡才.电渣重熔电极熔化过程模型[J],东北工学院学报,1985(1):42-61
    28.唐铁驯,姜兴渭.电渣重熔过程中金属熔池形状的数学模拟[J],东北大学学报,1985(3):78-82
    29.姜周华,姜兴渭.电渣重熔系统渣池发热分布的数学模型[J],东北大学学报,1988(1):54-69
    30.姜周华,姜兴渭.电渣重熔过程渣面以上辐射传热的理论计算[J],1991,12(4):188-193
    31.曲英,杨建,徐保美.熔渣下金属熔池流动现象的数学模型[J],金属学报,1990,26(3):157-163
    32.魏季和,任永莉.电渣重熔体系内熔渣流场的数学模拟[J],金属学报,1994,30(11):481-490
    33.魏季和,任永莉.电渣重熔体系内磁场的数学模拟[J],金属学报,1995,31(2):51-60
    34.刘喜海,陈元元,李宝宽.大型电渣炉钢锭凝固过程的动态快速相应模型[J],东北大学学报,2005,26(2):141-144
    35. Sperner F. The relationship between pooling depth and parameters[J], Stahlueisen,1992(82): 1099-1105
    36. Bangral K. The relationship betweenpooling depth and remeltingcurrent[J], Archiv des Eisenhuttenwesens 35 Tahrgang Heft 8-August,1994:725
    37.尧军平,耿茂鹏,马新生,等.ESR熔池深度与重熔电流及锭高关系的数模研究[J],南昌大学学报,2004,26(3):1-4
    38.刘永刚,孙国雄,潘冶.凝固过程微观偏析数值模拟的研究发展[J],铸造技术,2002,23(1):11-14
    39. Somboonsuk K, Trivedi R. Dynamical studies of dendritic growth[J], Acta Metall.1985,33(6): 1051-1060
    40. Huang W D, Geng X G, Zhou Y H. Primary spacing selection of constrained dendritic growth[J], Journal of Crystal Growth,1993,134(1-2):105-115
    41. Wan X, Han Q, Hunt J D. Different growth regimes during directional dendritic growth[J], Acta Mater., 1997,45(10):3975-3979
    42. Jae S L, Toshio S. Numerical simulation of isothermal dendritic growth by phase-field model[J], ISIJ International,1999,39(3):246-252
    43. Saunders N, Guo Z, Miodownik A P, et al., Thermo-physical and physical properties for use in solidification modelling of multi-component alloys[J], Solidification and Crystallization,2005,5:1-7
    44.梁作俭,许庆彦,柳百成.微观偏析建模与仿真的研究进展[J],材料工程,2002(8):39-43
    45. Ridder S D, Reyes F C, Chakravorty S, et al. Steady state segregation and heat flow in ESR[J], Met. Trans.,1978.9(9B):415-425
    46. Sindo K, David R P, Flemings M C. Macrosegregation in rotated remelted ingots [J], Met. Trans., 1978.12(9B):711-719
    47. Cefalu S A, Vanevery K J, Krane M J. Modeling of electroslag remelting of Ni-Cr-Mo alloys[J], Multiphase Phenomena and CFD Modeling and Simulation in Materials Processes,2004:279-288
    48. Laurentiu N. Analytical modeling of solute redistribution during the initial unsteady unidirectional solidification of binary dilute alloys[J], Journal of Crystal Growth,1998,193:271-284
    49. Seong G K, Won T K, Jae S L, et al. Large Scale Simulation of Dendritic Growth in Pure Undercooled Melt by Phase-field Model[J], ISIJ,1999,39(4):335-340
    50. Mortensen A. On the rate of dendrite arm coarsening [J], Met. Trans.,1991.2,22A:569-573
    51. Wang W, Lee P D, Mclean M. A model of solidification microstructures in nickle-based superalloys: predicting primary dendrite spacing selection[J], Acta Materialia,2003,51:2971-2987
    52. Takashi S, Yoshiyuki U, Shozo M. Microsegregation and precipitation behavior during solidification in a nickel-base superalloy[J], ISIJ,1990,30(7):520-528
    53. Dong J X, Zhang M C, Xie X S, et al. Interfacial segregation and cosegregation behaviour in a nickel-base alloy 718[J], Materials Science and Engineering,2002,328:8-13
    54. Patel A D, Murty Y V. Effect of cooling rate on microstructural development in alloy 718[J], Superlloys 718,625,706 and Various Derivatives,2001:123-132
    55.姜周华.电渣冶金的物理化学及传输现象[M],沈阳:东北大学出版社,2000,19-20
    56.张家雯,熊轶.电渣重熔酸性渣的研究及应用[J],特殊钢,1998,19(3):6-9
    57.魏庆成,丁运乔,彭可雕.含BaO保护渣熔点及粘度的研究[J],重庆大学学报,1995,18(4):110-114
    58.李金锡,张鉴,Georges Urbain. MnO-SiO2, MgO-SiO2和CaO-Al2O3-SiO2熔渣粘度的计算模型[J],北京科技大学学报,1999,21(3):237-340
    59.李金锡,张鉴.CaO-MgO-MnO-FeO-CaF2-Al2O3-SiO2渣系粘度的计算模型[J],北京科技大学学报,2000,22(5):438-441
    60.贾娟鱼,白晨光,邱贵宝,等.含Ti02三元渣系粘度计算模型[J],重庆大学学报,2002,25(12):39-41
    61. Wei C H, Xiang S H. Electrical conductivity of molten slags of CaF2+Al2O3 and CaF2+CaO systems for ESR[J], ISIJ International,1993,33(2):239-244
    62. Jahanshahi S, Sun S, Zhang L. Recent developments in physicochemical characterization and modelling of ferroalloy slag systems[J], Journal of the South African Institute of Mining and Metallurgy,2004,104(9):529-540
    63.梁连科.关于炉渣的光学碱度问题[J],辽宁冶金,1995,(5):24-27
    64.李正邦,张家雯,林功文,等译.电渣重熔译文集2[M],北京:冶金工业出版社,1990
    65.殷秀文.电渣重熔含Ti钢种[Ti]的烧损[J],特钢技术,2001,(2):23-25
    66.魏季和,刘宗远.电渣重熔用CaF2+Al2O3和CaF2+Al2O3+CaO系熔渣传氧的研究[J],金属学报,1994,30(8):B350-360
    67.王宾,陈涛,李艳丽.电渣重熔渣系选择的工艺探索[J],四川冶金.2001,(5):3-6
    68. Fraser M E. Mass-Transfer aspects of AC electroslag remelting[D], Canada:The University of British Columbia,1974
    69.茅洪祥,李正邦.低氟渣及无氟渣电渣重熔研究[J],钢铁研究学报,1983,4:597-611
    70.李正邦.无氟渣电渣重熔[J],特殊钢,1987:65-70
    71.李正邦.无氟渣电渣重熔彻底解决氟污染[J],特殊钢,1987:112-114
    72.张家雯,李正邦,杨海森等.无氟渣电渣重熔及铸锭的凝固组织[J],钢铁研究学报,1990(2):1-8
    73.梁连科,岳桂菊,郭仲文,杨怀.电渣重熔用CaO-Al2O3-SiO2三元无氟渣系的研究[J],东北大学学报,1991.6,12(3):230-235
    74. Masui A, Sasajima Y, Sakata N, et al. Improtant factors affecting hydrogen pickup and oxidation during electroslag remelting[J], Journal of the Iron and Steel Institute of Japan,1977,63(13): 2181-2190
    75. Romanov O N, Novokhatskii I A, Kozhukhar V Ya, et al. Hydrogen permeability of standard electroslag remelting fluxes[J], Steel in the USSR,1989,19(7):295-297
    76. Nakamura Y, Harashima R Hydrogen contents of slag and ingot in the electroslag remelting process (ESR)[J], Journal of the Iron and Steel Institute of Japan,1977,63(8):1235-1243
    77. #12
    78. Brandberg J. Water vapor solubility in ladle-refining slags[J], Metallurgical and Materials Transactions B (Process Metallurgy and Materials Processing Science),2006,37B(3):389-393
    79. Nakamura Y, Harashima R. Hydrogen contents of slag and ingot in the electroslag remelting process (ESR)[J], Journal of the Iron and Steel Institute of Japan,1977,63(8):1235-1243
    80. Sachdev P L, Majdic A, Schenck H. Solubility of water in lime-alumina-silica melts[J], Metallurgical Transactions,1972,3(6):1537-1543
    82. Kondratev A S, Kornilov V A, Karpov A Yu. Behavior of hydrogen during electroslag remelting of structural steels[J], Trudy-Leningradskii Politekhnicheskii Institut imeni M.I. Kalinina,1984(403): 39-44
    83. Pocklinqton D N. Hydrogen pick-up during electroslag refining[J], Journal of the Iron and Steel Institute,1973,211(6):419-425
    84. Jeszenskv G, Kajita T, Rawson D W, et al. Influence of the use of lime-alumina-based slags on the hydrogen content of steel remelted by the electroslag process[J], Metalurgia, ABM,1983,39(308): 345-349
    85. Chuiko N M, Borodulin V G, Moshkevich E I, et al. Behavior of hydrogen in electroslag remelting[J], Metallurgist,1977,21(7-8):454-457
    86.梁连科,杨怀,郭仲文等.炉渣物理性质对电渣重熔过程电耗的影响[J],东北工学院学报,1993,14(2):143-153
    90. Jha K N, Sardar M K, Jha N N, et al. Hydrogen control during steel making for medium carbon wheels[J], Scandinavian Journal of Metallurgy,2003,32(6):296-300
    91. Stull D R, Prophet H, Janaf thermochemical tables, Washington DC:Publisher of University of Utah, 1971:1141
    92. Sigworth G K, Elliott, J.F, The thermodynamics of liquid dilute iron alloys [J], Met·Sci,1974(8): 298-310
    93. Lloyd M H, Shanahan C E A. Determination of the hydrogen content of basic slag[J], Journal of the Iron and Steel Institute,1973,9:615-621
    94. Michio I, Yasushi K, Makoto K. Physico-chemical considerations on the electroslag remelting process[J],1975,61(1):139-156
    95. Sasabe M, Kinoshita M. Transport phenomena of oxygen through molten Cao-SiO2 system containing zinc and/or nickel oxide[J]. Transactions ISIJ,1980,20:801-809
    96.刘沛环,冯启成,邢玉录.熔融CaO-SiO2-Al2O3-MgO渣系氢的渗透度[J].东北大学学报,1985,44(3):61-66
    97. Lie P H, Feng Q C, Xing Y L, et al. Permeability of hydrogen in the molten CaO-SiO2-Al2O3-MgO system[J], Iron and Steel,1986,21(1):17-221
    100. Romanov O N, Novokhatskii I A, Kozhukhar V Ya, et al. Hydrogen permeability of standard electroslag remelting fluxes[J], Steel in the USSR,1989,19(7):295-297
    102.刘德富,尹钟大.冷轧辊制造工艺的发展[J],特殊钢,2004.1,25(1):5-6
    103. Shimizu S, Aoki K, Kobayashi M, et al. A Ti-enhanced cold rolling work roll with self-generating optimal roughness characteristics[J], ISIJ International,1992,32(11):1238-1243
    104. Hashimoto M, Tanaka T, Inoue T, et al. Development of cold rolling mill rolls of high speed steel type by using continuous pouring process for cladding[J], ISIJ International,2002,42(9):982-989
    105.王桂兰,刘志琴,申飞平.高性能冷轧辊的研究和选用[J],大型铸锻件,2002,(1):30-34
    106.于杰栋(编译).日本研制出新型轧辊—高铬锻钢冷轧辊[J],上海钢研,2003,(1):51
    107. Hashimoto M, Otomo S, Yoshida K, et al. Development of high-performance roll by continuous pouring process for clading[J], ISIJ International,1992,32(11):1202-1-210
    108. Baird J D, Milton W M, Tennent R B and Cameron J. Applications of electroslag refining to rollmaking [J], Ironmaking and Steelmaking,1980(2):82-88
    109. Shimizu M, Shitamura O, Matsuo S, et al. Development of high performance new composite roll [J], ISIJ International,1992,32(11):1244-1249
    110. Medovar B I, Medovar L B, Chernets A V, et al. Electroslag surfacing by liquid metal new way for hss2rolls manufacturing[A],38th Mwsp Conf. Proc. Iss[C],1997,34:83
    111. Shimizu M, Shitamura O, Matsuo S, et al. Development of high performance new composite roll [J], ISIJ International,1992,32(11):1244-1249
    112.宫开令,董雅军,高春利.高速钢复合轧辊的研制及生产[J],钢铁,1998,33(3):67-71
    113. Kawai N, Furuta S, Notomi K. New roll steel made from gas atomized adamite steel and high chromium iron powders[J], Kobe Steel Engineering Reports,1985,35(3):77-80
    114. Price R I, Gisborne H T. Application of spray forming to high quality strip mill rolls[J], Steel Rolling, 1998:429-432
    115. Ikawa Y, Itami T, Yumagai K, et al. Spray deposition and its application to the production of mill rolls[J], ISIJ, International,1990,30(9):756-763
    116. Kennedy R L, Forbes Jones R M, Davis R M, et al. Superalloys made by conventional vacuum melting and a novel spray forming process[J], Vacuum,1996,47:819-824
    117.冶军.美国镍基高温合金[M],北京:科学出版社,1978:24-25
    118. Hodge F G, Tundermann J H. Historical development and current use of esr at haynes international[A], Medovar Memorial Symposium[C],2001:123-129
    119. Patel S J, Smith G D.杜金辉,译.铌作为合金元素的应用[J],铌在变形高温合金中的作用[M],2001:692-693
    120. Moyer J M, Jackman L A, Adasczik C B, et al. Advances in triple melting sueralloys 718,706 and 720[J], Superalloys 718,625,706 and Various Derivatives edited by E.A. Loria, TMS,1994:39-48
    121. Kennedy R L, Forbes Jones R M, Davis R M, et al. Superalloys made by conventional vacuum melting and a novel spray forming process[J], Vacuum,1996,47:819-824
    122.刘林,张蓉,甄宝林.镍基高温合金铸件的晶粒组织控制——添加剂的影响[J],航空学报,1995,16(3):315-318
    123.刘林.镍基高温合金铸件的晶粒组织控制——铸造工艺参数的影响[J],航空学报,1994,15(11):1357-1361
    124. Wang X, Barratt M D, Ward R M, et al., The effect of VAR process parameters on white spot formation in Inconel 718[J], Journal of Materials Science,2004, (39):7169-7174
    125. Xu X, Ward R M, Jacobs M H, Lee P D, et al. Tree-ring formation during vacuum arc remelting of inconel718:part i. experimental investigation[J], Metallurgical and Materials Transactions A,2002.6, 33A:1795-1804
    126. Xu X, Zhang W, Lee P D. Tree-ring formation during vacuum arc remelting of inconel718:part Ⅱ: mathematical modeling[J], Metallurgical and Materials Transactions A,2002.6,33 A:1805-1815
    127. Long Z D, Liu X B, Yang W H, et al. Thermodynamic assessment of liquid composition change during solidification and its effect on freckle formation in superalloys[J], Materials Science and Engineering A,2004, (386):254-261
    128.姜周华.电渣重熔过程传热特性的数学模型及实验分析[D],沈阳:东北工学院,1986
    129.梁连科,杨怀,郭仲文等.炉渣物理性质对电渣重熔过程电耗的影响[J],东北工学院学报,1993,14(2):171
    130.梁连科,岳桂菊,郭仲文,杨怀.电渣重熔用CaO-Al2O3-SiO2三元无氟渣系的研究[J],东北工学院学报,1991,12(3):230-235
    131.梁连科,郭仲文,王方志等.交流四探针法测定炉渣电导率的研究[J],东北工学院学报,1985,6(3):71
    132.高伟.GH136合金电渣重熔渣系的研究[J],特钢技术,1995,(2):12-18
    133. Verein Deutscher Eisenhuttenleute. Salg Atlas(2nd Edition)[M],1995:197
    134.姜周华.电渣冶金的物理化学及传输现象[M],沈阳:东北大学出版社,2000,61-62
    135.梁连科.关于炉渣的光学碱度问题[J],辽宁冶金,1995,(5):24-27
    136.梁连科,杨怀.电渣重熔用渣的物理化学及其应用译文集[M],沈阳:东北大学出版社,]989:111-123
    137.梁连科,杨怀.电渣重熔用渣的物理化学及其应用译文集[M],沈阳:东北大学出版社,1989:113-114
    138.刘沛环,冯启成,邢玉录.熔融CaO-SiO2-Al2O3-MgO渣系氢的渗透度[J],东北大学学报,1985,44(3):61-66
    139.王常珍.冶金物理化学研究方法[M],沈阳:东北大学出版社,1982:76-78
    140. Choudhary M. A study of heat transfer and fluid flow in the electroslag refining process[D], Cambridge:Massachusetts Institute of Technology,1980
    141.姜周华.电渣重熔过程传热特性的数学模型及实验分析[D],沈阳:东北工学院,1986
    142.魏季和,任永莉.电渣重熔体系内熔池流场的数学模型[J],金属学报,1994,30(11):481-490
    143. Kelkar K M, Mok J, Patankar S V, Mitchell A. Computational modeling of electroslag remelting processes[J], Journal de Physique IV 2004.12,120:421-428
    144. Dilawari A H, Szekely J. Heat transfer and fluid flow phenomena in electroslag refining[J], Metallrugical Transactions, 1978 9B(3):77-87
    145. Dilawari H, Szekely J. Calculation of current-voltage relationships and heat-generation patterns in electroslag refining process[J], Ironmaking and Steelmaking,1977,5:308-312
    146. Dilawari H, Szekely J. A mathematical model of slag and metal flow in the ESR process[J], Ironmaking and Steelmaking,1977.6(8B):227-236
    147.姜周华.电渣冶金的物理化学及传输现象[M],沈阳:东北大学出版社,2000:187-189
    148. Hernandez M B, Mitchell A. Review of mathematical models of fluid flow, heat transfer, and mass transfer in electroslag remelting process[J], Ironmaking and Steelmaking,1999,26(6):423-438
    149.陈国胜,周奠华,金鑫,曹美华.全封闭Ar气保护电渣重熔GH4169合金[J],特殊钢,2004,25(3):46-47
    150. Radhakrishnan B, Thompson R G. A phase diagram approach to study liquation cracking in alloy 718[J], Met. Trans.,1991.4,22A:887-902
    151. Knorovsky G A, Cieslak M J, Headley T J. Inconel718:a solidification diagram [J], Met. Trans., 1989.10(20A):2149-2158
    152.杨爱民.K4169高温合金组织细化及性能优化原因[D],西北工业大学,2002:52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700