铅胁迫对玉米、黄瓜幼苗叶片光合机构活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以鲁玉9号玉米(Zea mays cv.Luyu9)和津春4号黄瓜(Cucumis sativus L.JInchun4)为材料,通过对叶片气体交换、叶绿素荧光、快速叶绿素荧光诱导动力学曲线以及820nm的光吸收、色素含量、抗氧化酶活性、离子含量等分析,着重研究了Pb胁迫对叶片光合机构的影响,探讨了Pb对光合机构的伤害机理,主要结果如下:
     1.分别以0.25和0.5mmol·L-1Pb处理玉米,以1和2mmol·L-1Pb处理黄瓜幼苗20天后,与对照相比,其生长受到抑制,叶片面积减小,叶绿素含量降低,地上、地下部分生物量都下降,并且随着Pb胁迫浓度的增大,其伤害程度增大。
     2. Pb胁迫后玉米、黄瓜叶片叶绿素含量显著降低,而叶片中可能影响色素含量的Mg、N、P、S、K、Fe、Mn等离子含量反而有升高的趋势,因此叶绿素含量的降低不是由于Pb影响了离子吸收引起的。
     3. Pb胁迫后,玉米、黄瓜的净光合速率(Pn)、表观量子效率(AQY)、羧化效率(CE)、气孔导度(Gs)降低,而细胞间隙CO2浓度(Ci)升高。气孔导度不是Pn下降的主要原因。羧化效率的下降可能是其光合作用下降的一个重要因素。
     4.与对照相比,Pb胁迫下,玉米、黄瓜叶片光系统II的实际光化学效率(ФPSII)、PSII的天线转化效率(Fv’/Fm’)、PSII反应中心的开放程度(qP)降低;非光化学猝灭(NPQ)升高。
     5.在PSII中,随着Pb处理浓度的增大,综合反应PSII的性能指数PIABS、φEo和ψO逐渐降低;Wk升高。通过叶绿素荧光诱导动力学曲线我们可知PSII的供体侧和受体侧都受到伤害。单位面积吸收的光量子(ABS/CSm)、用于电子传递的光量子(ETo/CSm)以及单位面积有活性的反应中心数目(RC/CSm)也随着Pb胁迫浓度的增大而逐渐下降,相反,单位面积所耗散的光量子(DIo/CSm)逐渐增加。随着Pb浓度的增大,虽然PSII的光化学活性降低,然而单位反应中心捕获的光量子(TR/RCm)和用于电子传递的光量子(ETo/RC)增加了,这可能是叶片捕获的激发能更多地传给有活性的反应中心并导致电荷分离所致。
     6.随着Pb处理浓度的增大,玉米、黄瓜叶片的PSI的活性逐渐降低。而PSII和PSI究竟谁先受到伤害还是同时受到伤害?还需要进一步研究。
     7. Pb处理玉米、黄瓜幼苗20天后其抗氧化酶SOD、APX活性下降。Pb胁迫后Cu离子含量降低,Cu离子会影响SOD、APX等酶的活性。抗氧化酶活性的下降从而使过剩的激发能产生的活性氧分子会进一步对生物大分子以及生物膜产生伤害。
     8. Pb胁迫后MDA含量升高,表明膜系统受到伤害,而与光合作用相关的色素蛋白复合体都定位在膜上,Pb胁迫对膜伤害后必然会影响光合活性。Pb处理后硝酸还原酶活性显著降低。硝酸还原酶活性降低,会影响植株的铵态氮供应,从而进一步影响生长。
     总之,Pb胁迫通过影响玉米、黄瓜叶片的色素含量、羧化效率、PSII和PSI的活性来最终影响其光合作用,而对生物膜、抗氧化酶和硝酸还原酶活性的影响进一步影响作物的生理状态而影响光合作用,并最终降低作物产量。
By measurement of gas exchange, chlorophyll fluorescence, chlorophyll a fluorescence transient and light absorbance at 820 nm, etc., effects of Pb-stress on photosynthetic apparent in cucumber and maize seedling leaves were investigated in this paper. The main results are as follows:
     1. After treated with different Pb concentration for 20days, the growth of cucumber and maize seedlings was significantly inhibited; leaf area, chlorophyll content and biomass were decreased in Pb treated seedlings leaves and the damage accelerated with the increase of the Pb concentration.
     2. Chlorophyll content significant decreased in Pb treated cucumber and maize leaves. There was no significant decrease in the concentration of Mg, N, P, K, Fe and Mn irons Pb treated leaves, which showed that the decreased content of chlorophyll was not caused by the change in the content of the above irons.
     3. Pb treatment resulted in a big decrease in net photosynthetic rate, stomatal conductance, apparent quanta yield, as well as carboxylation efficiency, whereas a considerably increase in intercellular CO_2 concentration was observed in Pb treated leaves. The decrease of photosynthesis was not due to stomatal limiting under Pb stress. The decrease in carboxylation efficiency indicated that the inhibition of dark reaction was the limiting factor of photosynthesis decrease in Pb treated leaves.
     4. Pb treatment decreased the actual efficiency of PSII (ФPSII), photochemical quenching (qP) and the efficiency of light energy capture by open PSII reaction centers (Fv’/Fm’) in leaves of cucumber and maize . However, non- photochemical quenching was increased in these leaves .
     5. The parameters obtained from the chlorophyll a transient such as PIABS,φEo andψO decreased and WK increased with the increase of the Pb concentration. The changes of these parameters showed that donor and acceptor sides of PSII were damaged in Pb treated leaves. Photons absorbed by per excited cross-section (ABS/CSm), photons used to move electron transport beyond QA-per excited cross-section (ETo/CSm) and the density of active reaction center per excited cross-section (RC/CSm) decreased and the dissipated flux per excited cross-section (DIo/CSm) increased in Pb treated leaves. It was observed that the fraction of photons used to move electron transport beyond QA-per reaction center (ETo/RC) and trapped photons per reaction center (TR/RCm) increased markedly in the Pb treated leaves, which was attributed to that more absorbed photons by leaves was transported to active reaction centers and resulted in charge separation.
     6. The activity of PSI decreased with the increase of the Pb concentration. Hower further studies are needed to clarify which system btween PSII and PSI was damaged first under the Pb treatement.
     7. The activity of active oxygen scavenging enzymes SOD and APX were declined in Pb treated leaves. Pb stress decreased the content of Cu in cucumber and maize leaves, which might affect the activity of SOD and APX. The decrease in the activity of active oxygen scavenging enzymes may result in more active oxygen species which would damage the large biomolecule and membrane.
     8. The content of MDA increased in Pb treated leaves, indicating the damage of membrane. The damage of membrane affected the activity of membrane bonding protein associated with photosynthesis, which might result in the decrease of photosynthesis. The activity of nitrate reductase (NR) was damaged in Pb treated leaves, which decreased NH_4~+ application.
     In conclusion, Pb stress decreased the content of chlorophyll, the efficiency of carboxylation, the activities of PSII and PSI, oxygen scavenging enzyme and nitrate reductase, which decreased the Pn in cucumber and maize seedling leaves. The decrease of Pn resulted in the decrease of biomass.
引文
代全林,袁剑刚,方炜,杨中艺.玉米各器官积累Pb能力的品种间差异.植物生态学报, 2005, 29(6): 992-999
    何冰,叶海波,杨肖娥.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及也绿素含量比较.农业环境科学学报, 2003, 22(3 ): 274-278
    姜闯道,高辉远,邹琦.类囊体膜PH梯度在光抑制中的保护机理.植物生理学通讯, 2000, 36(2): 97-102
    姜闯道,高辉远,邹琦.缺铁使大豆叶片激发能的耗散增加.植物生理与分子生物学学报, 2002, 28(2): 127-132
    雷冬梅,段昌群,何锋,宋春敬6.不同蚕豆品种对铅污染的光合生理响应特性.应用生态学报,2006,17(6): 1095-1098
    李鹏民,高辉远,Strasser RJ快速叶绿素荧光诱导动力学分析在光合作用研究中的应用。植物生理与分子生物学学报, 2005, 31:559-566
    李涛,于贤昌. Cu2+, Zn2+和Mn2+对冷胁迫下嫁接黄瓜幼苗叶片提取液SOD活性的影响.园艺学报, 2007, 34(4): 895-900
    刘素纯,萧浪涛,廖柏寒,等.铅胁迫对黄瓜幼苗抗氧化酶及同工酶的影响.应用生态学报, 2006, 17(2): 300-304
    任丽丽,高辉远.低温弱光胁迫对野生大豆和大豆栽培中光系统功能的影响.植物生理与分子生物学学报, 2007, 33(4): 333-340
    王艳,辛士刚,马莲菊,等.剪股颖和高羊茅对铜、铅吸收及耐受性.应用生态学报,2007, 18(3): 625-630
    许大全.光合作用效率.上海:上海科学技术出版社, 2002
    薛国希,高辉远,李鹏民,邹琦.低温下壳聚糖处理对黄瓜幼苗生理生化特性的影响.植物生理与分子生物学学报, 2004, 30(4): 441-448
    袁敏,铁柏清,唐美珍.重金属单一污染对龙须草叶绿素含量和抗氧化酶系统的影响.土壤通报, 2005, 36(6): 929-932
    张小磊,何宽,符燕,谷蕾,段海静,马建华. Cd、Pb、Ni、AS单一污染对油麦菜叶绿素含量和抗氧化系统的影响.西北农业学报, 2006,15(5): 206-219
    Adams III WW, Demmig-Adams B, Logan BA, Baker DH, Osmond CB. Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understorey of an open Eucalyptus forest. Plant, Cell and Environment, 1999, 22:125-136
    Adams III WW. The xanthophyll cycle and sustained energy dissipation activity in Vinca minor and Euonymus Kiauts chovicus in winter. Plant, Cell and Environment, 1995, 18: 117-127
    Adams III WW, Demmig-Adams B. Operation of the xanthophyll cycle in higher plants in response to diurnal changers in incident sunlight. Plant, 1992, 29: 387-396
    Adriano DC. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer-Verlag, New York, NY, 2001
    Albert KR, Mikkelsen TN and Ro-Poulsen H. Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll a fluorescence paramenters from fluorescence transients. Physiologia Plantarum, 2005, 124: 208-226
    Anderson JM, Aro EM . Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under suntained high irradiance: a hypothesis. Photosynthesis Research, 1994, 41: 315-323
    Appenroth K J, Stǒckel J, Srivastava A, et al. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIPchlorophyll a fluorescence. Environmental Pollution, 2001, 115: 49-64
    Belkhodja R, Morales F, Abadia A, Gomez-Aparisj J, Abadia J. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley(Hordeum vulgare L.). Plant Physiol , 1994, 104: 667-673
    Blubaugh DJ, Atamian M. Photoinhibition of hydroxylamine-extracted photosystem II membranes-identification of the sites of photodamage. Biochemistry, 1991, 30: 7586-7597
    Bricker TM, Frankel LK. Use of a monoclonal antibody in structural investigations of the 48 KD polypeptides of photosystem II. Arch Biochem Biophys, 1987, 256: 295-301
    Burzyński M, Klobus G. Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica, 2004, 42(4): 505-510
    Chow WS. Photoprotection and photoinhibatiory damage. Adv Mol Cell Biol, 1994, 10: 151-196
    Corbineau F, Gay-Mathieu C, Vinel D. Decrease in sunflower seed viability caused by high temperatures as related to energy metabolism, membrane damage and lipid composition. Physiol Plant, 2002, 116: 489-496
    Demmig-Adama B. Carotenoids and photoprotection in palnt: A role for the Xanthophylls zeaxanthin . Biochim. Biophys Acta, 1990, 1020: 1-24
    Demmig-Adams B, Adams WWⅢ. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 599-626
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthetic. Ann Rev Plant Physiol, 1982, 33: 317-345.
    Force L, Critchley C and van Rensen JJS . New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illumination on thefluorescence parameters of the JIP-test. Photosynthesis Research, 2003, 78: 17-33
    Frank HA, Bautisa JA, Josue JS, Young AJ. Mechanism of non-photochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry, 2000, 39: 2831-2837
    Genty B, Briantais J M, Baker N R. The relationship between the quenching of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim.Biophys Acta, 1989, 990: 87-92
    Giannopolitis CN, Ries SK. Superoxide dismutases. I. Occurrence in higher plants. Plant Physiol, 1997, 59: 309–314.
    Govindjee. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Australian Journal of Plant Physiology, 1995, 22: 131-160
    Hermans C, Smeyers M, Rodriguez RM, Eyletters M, Strasser RJ and Delhaye JP . Quality assessment of urban trees: A comparative study of physiological characterization, airborne imaging and on site of fluorescence monitoring by the OJIP-test. Journal of Plant Physiology, 2003, 160: 81-90
    Hernández-Allica J, Garbisu C, Barrutia O, Becerril JM. EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environmental and Experimental Botany, 2007, 60: 26-32
    Hodges DW, Andrews CJ, Johnson DA, Hamilton RI. Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids. Crop Science, 1997, 37: 857-863
    Horton P, Ruban A,Walter RG. Regulation of light harvesting in green plants: indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiology, 1994, 106: 415-420
    Huang JW, Chen JJ, Berti WR, Cunningham SD.) Phytoremediation oflead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Thechnol, 1997, 31: 800-805
    Huang JW, Cunningham SD. Lead phytoextraction: species variation in lead uptake and translocation. New Phytol, 1996, 134: 75-84
    Hulsebosch RJ, Hoff AJ, Shuvalov VA. Influence of KF, DCMU, and removal of Ca2+ on the high-spin EPR signal of the cytochrome b-559 heme Fe(III) ligated by OH- in choroplasts. Biochim Biophys Acta, 1996, 1277: 103-106
    Ilík P, Schansker G, KotabováE, Váczi P, Strasser RJ and Barták M. A dip in the chlorophyll fluorescence induction at 0.2-2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystemⅠ. A comparison with higher plants. Biochimica et Biophysica Acta, 2006, 1757: 12-20
    Jiang C D, Jiang G M, Wang X, et al. Enhanced photosystem 2 themostability during leaf growth of elm (Ulmus pumila) seedlings. Photosynthetica, 2006, 44(3): 411-418
    Jiang CD, Gao HY and Zou Q. Enhanced thermal energy dissipation depending on xanthophyll cycle and D1 protein turnover in iron-deficient maize leaves exposed to high light. Photosynthetica, 2001, 39: 269-274
    Jiang CD, Gao HY and Zou Q. Changes of donor and accepter side in photosystemⅡcomplex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 2003, 41: 267-271
    Jiang CD, Gao HY, Zou Q. Characterisitics of photosynthetic apparatus in Mn-starved leaves. Photosynthetica, 2002, 40(2): 209-213
    Kosobrukhov A, Knyazeva I, Mudrik V. Plantago major plants responses to increase content of lead in soil: Growth and photosynthesis. Plant Growth Regulation, 2004, 42: 145-151
    Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Biol, 1991, 42: 313-349
    Krause GH. Photoinhibition of photosynthesis: An evaluation of damaging and protective mechanisms. Physiologia Plantarum, 1988, 74: 566-574
    Krause GH and Weis E. Chlorophyll fluorescence and photosynthesis: the basis. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 313-349
    Krüger GHJ, Tsimilli-Michael M and Strasser RJ . Light stress provokes plastic and elastic modifications in structure and function of photosystemⅡin camellia leaves. Physiologia Plantarum, 1997, 101: 265-277
    Lazár . The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Functional Plant Biology, 2006, 33: 9-30
    Li P M, Gao H Y, Strasser R J. Application of the chlorophyll fluorescence Induction dynamics in photosynthesis study. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 559-566
    Lu CM, Qiu NW, Lu QT, Wang BS, Kuang TY. PSII photochemistry, thermal energy dissipation, and the xanthophyll cycle in Kalancho? daigremontiana exposed to a combination of water stress and high light. Physiologia Plantarum, 2003, 118: 173-182
    Lu CM, Vonshak A. Effects of Salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 2002, 114:405-413
    McBride MB . Environments chemistry of soils. Oxford University Press, New York, NY, 1994
    Munné-Bosch S, Alegre L. The xanthophyll cycle is induced bu light irrespective of water status in field-grown lavender (Lavandula stoechas). Physiologica Plantarum, 2000, 108: 147-151
    Nakano, Y, Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specificperoxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22: 867–880.
    Niyogi KK. Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 333-359
    Oquist G, Hurry V M, Huner N P A. The temperature dependence of the redox state of QA and susceptibility of photosynthesis to photoinhibition. Plant Physiol Biochem, 1993, 32: 683–691
    Oberhuber W, Dai Z, Edwards GE. Light dependence of quantum yields of photosystemⅡand CO2 fixation in C3 and C4 plants. Photosynthe Res, 1993,35: 265-274
    Owens TG, Shreve AP, Albrecht AC. Dynamics and mechanism of singlet energy transfer between carotenoids and chlorophylls: light havesting and nonphotochemical fluorescence quenching. In Murata N(ed). Research in photosynthesis. Dordrecht: Kluwer Academic, 1992, 5: 179-186
    Prassad DDK, Prassad ARK. Alterδ-aminolaevulinic acid metabolism by lead and mercury in germinating seedlings of Bajra(Pennisetum typhoideum). J plant physiol, 1987, 127: 241-249
    Rashid A., Camm EL, Ekramoddoullah KM. . Molecular mechanism of action of Pb2+ and Zn2+ on water oxidizing complex of photosystem II. FEBS Lett, 1994, 350: 296-298
    Raven JA, Samuelsson G. Photoinhibition at low quantum flux densities in a marine dinoflagellate (Amphidinium). Maringe Biology, 1986, 70: 21-26
    Roanowska E, Igamberdiev AU, Parys E, Gardestr?m P. Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiologia Plantarum, 2002, 116: 148-154
    Sandmann G, Richard M. Iron-sulfur centers and activities of the photosynthetic electron transport chain in iron deficient cultures of theblue-green alga aphanocapsa. Plant Physiol, 1983, 73: 724-728
    Schansker G, Srivastava A, Govindjee, et al. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 2003, 30: 785-796.
    Schansker G, Tóth SZ , Strasser RJ. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystemⅠin the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta, 2005, 1706: 250-261
    Sekimoto H, Hoshi M, Nomura T, Yokota T. Zinc Deficiency Affects the Levels of Endogenous Gibberellins in Zea mays L. Plant and Cell Physiology, 1997, 38(9): 1087-1090
    Shen Z G, LI X D, Wang C C, et al. Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual, 2002, 31: 1893-1900
    Srivastava A, Strasser RJ. Stress and stress management of land plants during a regular day. Journal of Plant Physiology, 1996, 148: 445-455
    Strasser B J. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transient. Photosynth Res, 1997, 52: 147-155
    Strasser BJ , Strasser RJ . Measuring fast fluorescence transients to address environmental questions: The JIP test. In: Mathis P (ed) Photosynthesis: from Light to Biosphere. Kluwer Academic Publishers, Dordrecht, 1995, 5: 977-980
    Strasser RJ, Srivastava A and Tsimilli-Michael M . Screening the vitality and photosynthetic activity of plants by the fluorescence transient. In: Behl RK, Punia MS and Lather BPS (eds) Crop Improvement for Food Security. SSARM, Hisar, India, 1999, 72-115
    Strasser RJ, Srivastava A and Tsimilli-Michael M . The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M,Pathre U and Mohanty P (eds) Probing Photosynthesis: Mechanism, Regulation and Adaptation. London, Taylor and Francis, 2000, 445-483
    Strasser RJ, Tsimill-Michael M and Srivastava . Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G and Govindjee (eds) Advances in Photosynthesis and Respiration. Berlin, Springer, 2004, 321-362
    Strasser RJ. The grouping model of plant photosynthesis. In: Akoyunoglou G, Argyroud-Akoyunoglou JH. Eds. Chloroplast development. Amsterdam. The Netherland: Elsevier/North-Holland Biomedical Press, 1978, 513-542
    Telfer A, De Las Rivas J, Barber J.β-carotene within the isolated photosystem II reaction center: ptotooxidation and irreversible bleaching of this chromophose by oxidized p680. Biochim. Biophys Acta., 1991, 1060: 106-114
    Tóth SZ, Schansker G and Strasser RJ . In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: A DCMU-inhibition study. Biochimica et Biophysica Acta, 2005, 1708: 275-282
    Van Assche F, Clijsters H. Effects of metal on enzyme activity in plants. Plant Cell Environ, 1990, 13: 198-206
    van Heerden PDR, Strasser RJ and Krüger GHJ . Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiologia Plantarum, 2004, 121: 239-249
    van Heerden PDR, Tsimilli-Michael M, Krüger GHJ and Strasser RJ. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiologia Plantarum, 2003, 117: 476-491
    van Kooten O, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res, 1990, 25: 147-150
    Vassil AD, Kapulnik Y, Raskin I, Salt DE. The role of EDTA in lead transport and accumulation by indian mustard. Plant Physiology, 1998, 117: 447-453
    Verhoeven AS, Adams WW, Demmig-Adams B, et al. Xanthophyll cycle pigment localization and dynamics during exposure to low temperature and light stress in Vinca major. Plant Physiol, 1999, 120: 727-737
    Walker MA, McKersie BD3. Role of the ascorbate-glutation antioxidant system in chilling resistance of tomato. J Plant Physiol, 1993, 141: 234-239
    Wen X G, Qiu N W, Lu Q T, et al. Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta, 2002, 220: 486-497
    Yordanov I, Velikova V. Photoinhibition of Photosystem I. Bulg J Plant Physiol, 2000, 26: 70-92.
    Zhu XG, Govindjee, Baker NR, deSturler E, Ort DR and Long SP . Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystemⅡ. Planta, 2005, 223: 114-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700