多粒子纠缠的制备和操纵
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子纠缠态的制备和操纵是量子信息中重要的研究内容,纠缠态是量子通信和量子计算中的重要资源,比如量子隐形传态,one-way量子计算等,可以说实现量子信息的过程就是对量子态进行操纵的过程,而且它在检测量子力学基本理论方面也有着重要的意义。本论文的主要内容就是关于多粒子纠缠态的制备,以及利用多粒子纠缠态对量子力学基本理论进行检验。在本文中我们提出了制备多粒子纠缠态的理论方案,介绍了我们在实验上实现的六光子纠缠态的制备,而且还通过实验上制备四光子混态首次对混态情况下利用无不等式的Bell定理对量子力学的非定域性进行了实验检验。
     本论文的主要内容和结构如下:
     第一章为绪论,对量子信息学的主要内容进行了简单介绍,阐述了量子纠缠的定义,判定以及纠缠度量的问题。
     第二章首先介绍量子光学中的一些基本技术手段,包括自发参量下转换,以及光学实验中常用到的一些光学器件,然后提出利用光学方法制备五光子图态的理论方案,最后详细介绍我们在实验上实现的六光子纠缠态制备。
     第三章介绍了腔量子电动力学系统中常见的原子和腔场的共振和非共振相互作用,并进一步提出利用原子和腔场非共振相互作用制备五原子纠缠图态的理论方案。
     第四章首先介绍了用来检验量子力学和定域实在论矛盾冲突的Bell不等式,CHSH不等式以及无不等式的Bell定理——GHZ定理,然后介绍我们通过制备四光子混态利用无不等式的Bell定理来验证量子力学非定域性的理论方案和实验结果。
     第五章是对研究工作的总结和进一步的展望。
Preparation and manipulation of quantum entangled states lies at the heart of the quantum information. First, entangled states are important resources for quantum communication and quantum computation such as quantum teleportation, quantum one-way computation and so on. The process of performing quantum information tasks even can be regarded as the process of manipulation of entangled states. Second, they play a crucial role in testing the foundmental principles of quantum mechanics. This thesis is mainly about preparation of the multiparticle entangled states and test of the conflict between quantum mechanics and local realism. In this thesis we propose schemes for generation of multiparticle entangled states and report the experimental realization of six-photon entangled states and the experimental test of the nonlocality of quantum mechanics based on the four-photon mixed state.
     The thesis is structured as follows:
     Chapter No. 1 is the exordium. We simply introduce the main content of quantum information theory and elaborate notion, separability and measure of entanglement.
     In chapter No.2, we firstly introduce some basic technique of quantum optics, including spontaneous parametric down conversion and some optical elements, then, we propose schemes for preparation of five-photon graph states, lastly, we report the experimental realization of six-photon entangled states.
     In chapter No. 3, we introduce resonant and nonresonant interactions beween the atoms and cavities in cavity electrodynamics and propose schemes for generating five-atom graph states via cavity electrodynamics.
     In chapter No.4, we firstly introduce Bell's theory, CHSH inequality and GHZ contradiction, and then, we report the experimental test of all-verus-nothing violation of local realism based on the four-photon mixed state.
     Chapter No.5 is conclusion and future outlook.
引文
[1] R. Feynman, Simulating physics with computers, Int. J. Theor, Phys, 21,467, 1982.
    [2] R. Feynman, Quantum mechanical computer, Opt. News, 11, 11, 1985; Quantum mechanical computers, Found Phys, 16, 507, 1986
    [3] 张永德,《量子信息物理原理》,科学出版社,2006.
    [4] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, Proceedings, 35th Annual Symposium on Fundamentals of Computer Science, 1994.
    [5] L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325, 1997.
    [6] W. G. Unruh, Maintaining coherence in quantum computers. Phys.Rev.A, 51,992, 1995.
    [7] A. R. Calderbank and P.W.shor, Good quantum error-correcting codes exist. Phys.Rev.A, 54, 1098, 1996.
    [8] D. P. Divincenzo and P.W.shor, Fault-tolerant error correction with efficient quantum codes. Phys. Rev. Lett. 77, 3260, 1996.
    [9] A. M. Steane, Multiple particle interference and quantum error correction, Proc.Roy.Soc.Lond, 452, 2551, 1996.
    [10] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Perfect quantum error correcting code, Phys. Rev. Lett. 77, 198, 1996.
    [11] A. Ekert and C. Macchiavello, Quantum error correction for communication, Phys. Rev. Lett. 77, 2585, 1996.
    [12] D. A. Lidar, D. Bacon, and K. B. Whaley, Concatenating decoherence-free subspaces with quantum error correcting codes, Phys. Rev. Lett. 82, 4556, 1999.
    [13] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland demonstration of a fundamental quantum logic gate, Phys. Rev. Lett. 75, 4714, 1995.
    [14] Y. Nakamura, Yu. A. Pashkin, J. S. Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box, Nature, 398, 786, 1999.
    [15] Z. Zhao, A.-N. Zhang, Y.-A. Chen, H. Zhang, J.-F. Du, T. Yang, and J.-W. Pan, Experimental demonstration of a nondestructive controlled-not quantum gate for two independent photon qubits, Phys. Rev. Lett. 94, 030501, 2005.
    [16] S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, Realization of a photonic controlled-not gate sufficient for quantum computation, Phys. Rev.Lett. 93, 020504, 2004.
    [17] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. L. Chuang, Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature 414, 883,2001.
    [18] Mikhail Lukin and Matthew Eisaman, Atomic physicsQuantum leap from light to atoms, Nature, 443, 512, 2006.
    [19] C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk and H. J. Kimble, Measurement-induced entanglement for excitation stored in remote atomic ensembles, Nature 438, 828, 2005
    [20] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wooters, Teleporting an unknown quantum state via dual classic and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895, 1993.
    [21] D. Bouwmeester, J-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and Zeilinger, Experimental quantum teleportation. Nature (London) 390, 575, 1997.
    [22] D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121, 1998.
    [23] M. Riebe et al. Deterministic quantum teleportation with atoms. Nature 429, 734, 2004.
    [24] M. D. Barret et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737, 2004.
    [25] Q. Zhang, A. Goebel, C. Wagenknecht, Y.-A. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer and J.-W. Pan. Experimental teleportation of a two-qubit composite system. Nature, 2, 678, 2006.
    [26] C. H. Bennett, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881, 1992.
    [27] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, Dense coding in experimental quantum communication, Phys. Rev. Lett. 76, 4656, 1996.
    [28] D. Bruβ, G. M. D'Ariano, M. Lewenstein, C. Macchiavello, A. Sen(De), and U. Sen Distributed quantum dense coding, Phys. Rev. Lett. 93, 210501, 2004.
    [29] X.-Y. Li, Q. Pan, J.-T. Jing, J. Zhang, C.-D. Xie, and K.-C. Peng, Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam, Phys. Rev. Lett. 88, 047904, 2002.
    [30] C. E. Shannon, Communication theory of secrecy systems, Bell system technical journal, 28, 656, 1949.
    [31] 周春源,量子保密通信系统及其关键技术的研究,华东师范大学博士学位论文,2004.
    [32] D. Kahn, The Codebreakers:The Story of secret writing, New York:Macmillam Publishing Co., 1967.
    [33] W. Diffie and M. E. Hellman, Multiuser Cryptographic Techniques, Proceedings of AFIPS National computer conference, 109, 1976.
    [34] S. J. Wiesner, Conjugate coding, Sigact News,15, 78, 1983.
    [35] C. H. Bennett and G. Brassard, Quantum cryptography: public key distribution and coin tossing, Int. Conf on Computers, Systems and signal processing, Bangalove, India, 10-12, 175, 1984.
    [36] C. H. Bennett, Quantum cryptography using any two nonorthogonal states Phys. Rev. Lett. 68, 3121, 1992.
    [37] A. Ekert. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661, 1991.
    [38] C. H. Bennett, F. Bessette, G. Brassard, L. Savail, Experimental Quantum cryptography. J. Crypt, 5, 3, 1992.
    [39] P. D. Townsend, J. G. Rarity, and P. R. Tapster, Single photon interference in a 10 km long optical fiber interferometer, Electron. Lett. 29, 634, 1993.
    [40] P. D. Townsend, A. Ougazzaden, and P. R. Tapster, Enhanced single photon fringe visibility in a 10 km-long prototype quantum cryptography channel, 29, 1291, 1993.
    [41] A. Muller, J. Breguet, N. Gisin, Experimental demonstration of quantum cryptography using polarized photons in optical fiber over more than 1 km, Europhys. Lett, 23, 383, 1993.
    [42] D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden. Quantum key Distribution over 67 km with a plug & play system. New Journal of Physics, 41, 1, 2002.
    [43] C. Kurtsiefer, et al. A step towards global key distribution, Nature, 419, 450, 2002.
    [44] M. Aspelmeyer and et al, Long-distance free-space distribution of quantum entanglement, Science, 301, 621, 2003.
    [45] C.-Z. Peng and et.al., Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km, Phys. Rev. Lett. 94, 150501, 2005.
    [46] K. J. Resch, M. Lindenthal, and et.al., Distributing entanglement and single photons through an intra-city, free-space quantum channel, Opt. Express, 13, 202, 2005.
    [47] A. Einstein, B. Podolsky and N. Rosen. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777, 1935.
    [48] 周正威,量子信息中量子纠缠的理论研究,中国科学技术大学博士论文,2001.
    [49] J. S. Bell. On the Einstein Poldolsky Rosen paradox. Physics 1, 195, 1964.
    [50] 李承祖等,《量子通信和量子计算》,国防科技大学出版社,2000。
    [51] A. Aspect, et al., Experimental test of Bell's inequalities using time-varying analyzers, Phys. Rev. Lett. 49, 1804, 1982.
    [52] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A, 40, 4277, 1989.
    [53] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76, 722, 1996.
    [54] S. Popescu, Bell's inequalities versus teleportation: What is nonlocality? Phys. Rev. Lett. 72, 797, 1994.
    [55] D. M. Greenberger, M. Home, A. Zeilinger, Bell's theorem, quantum theory, and conception of the universe, edited by M.Kafatos (Kluwer. Dordrecht), 1989.
    [56] W. Dur, G. Vidal and J. I. Ciac, Three qubits can be entangled in two inequivalent ways, Phys.Rev.A, 62, 062314, 2000.
    [57] M. Hein, J. Eisert and H. J. Brigel, Multiparty entanglement in graph states, Phys.Rev.A, 69, 062311, 2004.
    [58] W. Dur, H. Aschauer, and H. J. Briegel, Multiparticle Entanglement Purification for Graph States, Phys. Rev. Lett. 91, 107903, 2003.
    [59] R. Raussendorf, D. E. Browne, and H. J. Briegel, Measurement-based quantum computation on cluster states, Phys. Rev. A, 68, 022312, 2003.
    [60] M. Hein, J. Dur, J. Eisert, R. Raussendorf, M. V. D. Nest and H. J. Briegel, Entanglement in Graph States and its Applications, quantum-ph 0602096.
    [61] J. Preskill. Lecture Notes for Physics 299: Quantum Information and Quantum Computation. CIT, 1998.
    [62] B.Terhal, Linear Algebra Appl. 323, 61, 2000.
    [63] M. Lewenstein, B. Kraus, J. I. Cirac and P. Horodecki, Optimization of entanglement witnesses, Phys.Rev.A, 62, 052310, 2000.
    [64] M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Characterization of separable states and entanglement witnesses, Phys.Rev.A, 63, 044304, 2001.
    [65] A. Acin, D. BruB, M. Lewenstein, and A. Sanpera, Classification of mixed three-qubit states, Phys. Rev. Lett. 87, 040401, 2001.
    [66] 韩永建,多体系统量子纠缠的研究,中国科学技术大学博士学位论文,2005.
    [67] H. Mikarni, Y.-M. Li, and T. Kobayashi, Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion, Phys. Rev. A, 70, 052308, 2004
    [68] J. G. Rarity and P. R. Tapster, Three-particle entanglement from entangled photon pairs and a weak coherent state, Rev.Rev.A, 59, 35, 1999.
    [69] C.-W. Zhang, Preparation of polarization-entangled mixed states of two photons_, Phys. Rev. A, 69, 014304, 2004.
    [70] D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, Observation of three-photon Greenberger-Horne-Zeilinger entanglement, Phys. Rev. Lett. 82, 1345, 1999.
    [71] Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Zukowski, and J.-W. Pan, Experimental violation of local realism by four-photon Greenberger-Horne- Zeilinger entanglement, Phys. Rev. Lett. 91, 180401, 2003.
    [72] Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H. Briegel, J.-W.Pan, Experimental demonstration of five-photon entanglement and open-destination quantum teleportation, Nature 430, 54, 2004.
    [73] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59, 2044, 1987.
    [74] Y. H. Shih and C. O. Alley, New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion, Phys. Rev. Lett. 61, 2921, 1988.
    [75] P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, New high-intensity source of polarization-entangled photon pairs, Phys. Rev. Lett. 75, 4337, 1995.
    [76] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Ultrabright source of polarization-entangled photons, Phys. Rev. A, 60, R773, 1999.
    [77] M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, Experimental realization of a three-qubit entangled W State, Phys. Rev. Lett. 92, 077901, 2004.
    [78] B. G. Englert, C. Kurtsiefer, and H. Weinfurter, Universal unitary gate for single-photon two-qubit states, Phys. Rev. A, 63, 032303, 2001.
    [79] V. Scarani, A. Acin, E. Schenck, and M. Aspelmeyer, Nonlocality of cluster states of qubits, Phys. Rev. A, 71, 042325, 2005.
    [80] D. Schlingemann and R. F. Werner, Quantum error-correcting codes associated with graphs, Phys.Rev.A, 65, 012308, 2002.
    [81] R. Cleve, D. Gottesman, and H. K. Lo, How to Share a Quantum Secret, Phys. Rev. Lett. 83,648, 1999.
    [82] R. Raussendorf and H. J. Briegel, A One-Way Quantum Computer, Phys.Rev.Lett. 86, 5188, 2001.
    [83] N. Kiesel, C. Schmid, U. Weber, C. Toth, O. Guhne, Experimental Analysis of a Four-Qubit Photon Cluster State, Rhys.Rev.Lett. 95, 210502, 2005.
    [84] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Experimental test of quantum nonlocality in three-photon greenberger-horne-zeilinger entanglement, Nature (London), 403, 515, 2000.
    [85] E. Knill, R. Laamme, and G. Milburn, A scheme for efficient quantum computation with linear optics, Nature (London), 409, 46, 2001.
    [86] J.-W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature (London), 410, 1067, 2001.
    [87] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, D. J. Wineland, Creation of a six-atom shordinger cat state, Nature, 438, 639, 2005.
    [88] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger, Experimental one-way quantum computing, Nature 434, 169, 2005.
    [89] T. P. Bodiya and L.-M. Duan, Scalable Generation of Graph-State Entanglement Through Realistic Linear Optics, Phys. Rev. Lett. 97, 143601, 2006.
    [90] M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Guhne, P. Hyllus, D. Bruβ, M. Lewenstein, and A. Sanpera, Experimental Detection of Multipartite Entanglement using Witness Operators, Phys. Rev. Lett. 92, 087902, 2004.
    [91] G. Toth and O. Guhne, Entanglement detection in the stabilizer formalism, Phys. Rev. A 72, 022340, 2005.
    [92] O. Guhne, M. Reimpell, R. F. Werner, Estimating entanglement measures in experiments, quant-ph/0607163, 2006.
    [93] W. Dur, H. Aschauer, and H.-J. Briegel, Multiparticle Entanglement Purification for Graph States, Phys. Rev. Lett. 91, 107903, 2003.
    [94] Paternostro, M. et al., Hybrid cluster state proposal for a quantum game. New J. Phys. 7, 226, 2005.
    [95] C. M. Dawson, H. L. Haselgrove, & M. A. Nielsen, Noise thresholds for optical quantum computers. Phys. Rev. Lett. 96, 020501, 2006.
    [96] Kok, P. et al., Linear optical quantum computing, quant-ph/051207I, 2005.
    [97] O. Guhne, et al., Bell inequalities for graph states. Phys. Rev. Lett. 95, 120405 (2005).
    [98] W. Dur, & H.-J. Briegel, Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92, 180403, 2004.
    [99] M. Varnava, D. E. Browne, and T. Rudolph, Loss Tolerance in One-Way Quantum Computation via Counterfactual Error Correction, Phys. Rev. Lett. 97, 120501, 2006.
    [100] W.Dur and H.-J. Briegel, Stability of Macroscopic Entanglement under Decoherence, Phys. Rev. Lett. 92, 180403, 2004.
    [101] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Decoherence, continuous observation, and quantum computing: A cavity QED model, Phys. Rev. Lett. 75, 3788, 1995.
    [102] G.-C. Guo and Y.-S. Zhang, Scheme for preparation of the W state via cavity quantum electrodynamics, Phys. Rev. A, 65, 054302, 2002.
    [103] S.-B. Zheng and G.-C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85, 2392, 2000.
    [104] S.-B. Zheng, One-step synthesis of multiatom Greenberger-Horne-Zeilinger states, Phys. Rev. Lett. 87, 2304040, 2001.
    [105] G.-P. Guo, C.-F. Li, J. Li, and G.-C. Guo, Scheme for the preparation of multiparticle entanglement in cavity QED, Phys. Rev. A, 65, 042102, 2002.
    [106] E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, Generation of Einstein-Podolsky-Rosen Pairs of Atoms, Phys. Rev. Lett. 79, 1, 1997.
    [107] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, Step-by-step engineered multiparticle entanglement, Science, 288, 2024, 2000.
    [108] S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, Coherent control of an atomic collision in a cavity, Phys.Rev.Lett, 87, 037902, 2001.
    [109] J. M. Raimond, M. Brune, and S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73,565, 2001.
    [110] L. Ye, L.-B. Yu, and G.-C. Guo, Generation of entangled states in cavity QED, Physical Review A, 72, 034304, 2005.
    [111] A. O.-Castro, N. F. Johnson, and L. Quiroga, Scheme for on-resonance generation of entanglement in time-dependent asymmetric two-qubit-cavity systems, Physical Review A, 70, 020301, 2004.
    [112] J. F. Clauser, M. A. Home, A. Shimony, R. A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880, 1969.
    [113] D. M. Greenberger, M. A. Home,and A. Zeilinger, in Bell's Theorem, Quantum Theory, and conceptions of the Universe, M.Kafatos,ed, Kluwer, Dordrecht, 1989.
    [114] D. M. Greenberger, M. A. Home, A. Shimony, and A. Zeilinger, Am. J. Phys, 58,1131, 1990.
    [115] G. K wiat, S. B.-Lopez, A. Stefanovand, N. Gisin, Nature(London), 409, 101, 2001.
    [116] T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, M. Zukowski, Z. -B. Chen, and J. -W. Pan. All-versus-nothing violation of local realism by two-photon, four- dimensional entanglement. Phys. Rev. Lett. 95, 240406, 2005.
    [117] L. Hardy, Nonlocality for two particles without inequalities for almost all entangled states, Phys. Rev. Lett. 71, 1665, 1993.
    [118] A. Cabello, Bell's Theorem without Inequalities and without Probabilities for Two Observers, Phys. Rev. Lett. 86, 1911,2001.
    [119] A. Cabello, "All versus nothing" inseparability for two observers, Phys. Rev. Lett. 87, 010403, 2001.
    [120] A. Cabello, Stronger two-observer all-versus-nothing violation of local realism, Phys. Rev. Lett. 95, 210401, 2005.
    [121] Z.-B. Chen, J.-W. Pan, Y.-D. Zhang, C. Brukner, and A. Zeilinger, All-Versus- Nothing violation of local realism for two entangled photons, Phys. Rev. Lett. 90, 160408, 2003.
    [122] C. Cinelli, M. Barbieri, R. Perris, P. Mataloni, and F. De Martini, All-Versus- Nothing nonlocality test of quantum mechanics by two-Photon hyper entanglement, Phys. Rev. Lett. 95, 240405, 2005.
    [123] J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, Experimental demonstration of four-photon entanglement and high-fidelity teleportation, Phys. Rev. Lett. 86, 4435, 2001.
    [124] Z. Hradil, Quantum-state estimation, Phys. Rev. A, 55, R1561, 1997.
    [125] K. Banaszek, G. M. D'Ariano, M. G. A. Paris, and M. F. Sacchi, Maximum-likelihood estimation of the density matrix, Phys. Rev. A, 61, 010304, 1999.
    [126] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Measurement of qubits, Phys. Rev. A, 64, 052312, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700