低渗透煤层气开采与注气增产流固耦合理论及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用煤层气地质学、固体力学、孔隙介质理论、多相渗流和扩散、有限元和数值分析等理论和总结前人已有的研究结果,在低渗透煤层气藏的流固耦合研究方面完成了以下工作:
     一、根据煤层自身的储层特性和储集其中的煤层甲烷运移属性,将煤层抽象为双孔隙度单渗透率的双重孔隙介质模型,并在此基础上,给出了煤储层中煤层气的储集、运移和产出机理;
     二、建立了反映解吸、扩散、渗流过程的低渗透双重介质气、水两相流流固耦合模型和注气增产煤层气多组分流体流固耦合模型;
     三、详细推证了双重介质气、水两相流流固耦合模型和煤基质系统扩散项的数值解法,给出了双重介质的空间离散化网格处理方法和三维双重介质煤层气藏流固耦合模型数值模拟程序设计;
     四、开发了三维、双重介质、气、水两相流、拟稳态非平衡吸附较好反映低渗透煤层气储层的流固耦合模拟软件;
     五、利用安徽省淮南新集煤层气开发试验区现场试井资料和生产动态数据,通过耦合与非耦合两种情况模拟的结果与实际试井实测结果比较,双重介质流固耦合模型计算的气、水产量变化规律与实际更为接近,比较真实地反映低渗透煤储层特征煤层甲烷的运移规律,更有利于指导低渗透煤层气的开采。同时利用所编制的模拟程序对煤层气开发中的生产动态参数变化规律、产量预测和注气增产方面进行了研究,得到的具体结论如下:
     (1) 单井布置,在同一开采时间间隔内,耦合与非耦合情况比较,前者的储层压力比后者的储层压力下降幅度小;前者的气、水产能比后者的气、水产能低;前者的压降漏斗、水饱和度和甲烷浓度变化范围比后者压降漏斗、水饱和度和甲烷浓度变化范围小;前者水饱和度和煤层甲烷浓度比后者的水饱和度和煤层甲烷浓度下降得慢。
     (2) 两井布置,耦合与非耦合情况比较,储层压力、水饱和度和煤层甲烷浓度变化规律与单井开采一致;但两井联合开采一段时间内比单井开采储层压力下降快,两口井筒附近的煤层气含量和储层压力都明显降低,形成了统一的下降漏斗,两口井同时排采过程中形成了井间干扰,提高了排采效果,增加了单井的气产量。
     (3) 由于排采降压将在井底附近形成了较大的流体压力梯度,逐渐向储层边界发展,根据有效应力理论,在孔隙流体压力变化的范围内会引起储层孔隙介质的应力和应变变化,从而使孔隙结构发生变化,由此造成有效渗透率和孔
    
    隙度的降低,与非祸合模型相比产量有较大幅度的降低,同时也是祸合与非祸
    合情况储层参数产生差异的原因,因此在煤层气的开采中,必须重视藕合作用
    对产量造成的不利影响,制定合理的生产制度,尽可能保证储层渗透特性受弱
    化的程度最小。
     (4)选择合理的井群间距对煤层气开采至关重要,它影响到煤层气开发的
    经济效益和煤层气资源的回收率,井群间距的大小主要取决于储层的性质和生
    产规模对经济性的影响,模拟结果表明,井群间距对产能和储层压力等量的影
    响,与储层的渗透率密切相关,渗透率比较高的储层,开采初期的一定期间内,
    出现了井群干扰,增加了储层压降漏斗的影响范围。开采井周围煤基质内甲烷
    未枯竭时,较小井群间距的产气量大于较大井群间距的产气量,渗透率比较低
    的储层,开采初期井距大小对产气量影响较小,等开采一定时间后,出现了井
    群干扰,较近井群间距的产气量大于较大井群间距的产气量。
     (5)通过渗透率、扩散系数对产能影响的研究表明,煤储层渗透率的大
    小直接控制着煤层气产能的大小,拟稳态扩散时,扩散系数越大,煤层气井的
    早期产量上升越快,产气量高峰期到来越早,随着扩散系数减少,在开采初期
    一定时间内,增大渗透率对提高产气量的大小影响不够明显,这说明煤层气的
    开采运移过程同样受到扩散过程的影响,进一步揭示了煤层瓦斯解吸、扩散和
    渗流互为条件、互相联系和互相约束的运移机制。因此,应注重加速煤层甲烷
    解吸扩散过程和提高渗透率并举的增产措施来提高煤层气的产量。
     (6)在低速低渗透情况下,必须有一个附加的压力梯度克服吸附层的阻力
    才能开始流动。考虑启动压力和不考虑启动压力时,前者的储层压力下降范围
    比后者的下降范围小,前者的气、水产能比后者的气、水产能低,因此,开发
    低渗透煤层气藏,应采用小井距、较大压差开发方案;气体在低速渗流时会出
    现滑脱现象,相当于增加了气体的视渗透率,考虑气体的滑脱效应时,气水产
    量比不考虑滑脱效应时高。
     (7)注气的模拟结果表明,不论祸合与非祸合情况,注入的CO:浓度升高
    区范围内,煤层甲烷的浓度下降很快,这是因为二氧化碳气体不但减少了煤层
    甲烷的分压,加速了煤层甲烷的解吸,而且二氧化碳气体比甲烷气体更易吸附,
    竞争吸附置换煤层甲烷分子,大量的煤层甲烷解吸进入割理裂隙系统,从而提
    高了煤层气产量。
     (8)注气时,祸合情况与非藕合情况比较,前者的储层压力、基质内COZ
    浓度和裂隙系统内CO:饱和度比后者的升高得慢;并且注气的驱替影响范围前
    者比后者小;停止注气后,前者的储层压力比后者的储层压力消散下降得慢。
In this thesis, theory of fluid-solid coupling of coalbed methane development and enhanced recovery coalbed methane by CO2 injection in low permeability coal seam reservoir and its application are studied. The major study work of this thesis include:
    1. Coalbed is modeled as dual porosity-single permeability model base on reservoir itself properties and properties of fluid flow through them. In addition, mechanisms of the storage, transport and production for coalbed methane are researched.
    2. A low permeability, dual-porous medium, gas-water two phase flow, fluid-solid coupling mathematical model and multispecies, fluid-solid coupling mathematical model for enhanced coalbed methane recovery by CO2 injection are established, and these model include coalbed methane desorption, diffusion and seepage process.
    3. Numerical solution method of dual-porous medium, gas-water two phase flow, fluid-solid coupling mathematical model and diffusion resource term in matrix system and method of dealing with dual-porosity grid system are given in detail.
    4. A three-dimension, dual-porous medium, gas-water two phase flow, fluid-solid coupling software that can adapt to low permeability coalbed reservoir characteristics are developed.
    5. By comparison coal seam gas prediction production with trial well production in Xin Ji Coal Mine, Anhui province, the correction, reliability, and practicability of the software are verified. Then the software are applied to simulation for coalbed methane development and enhanced recovery coalbed methane by CO2 injection. The main works of simulation in the following sections :
    (1) Single well scheme, comparison of coupling and noncoupling condition, in the equal exploiting time, the former reservoir pressure drop smaller than the latter's reservoir pressure drop. The former gas-water production are smaller than the fetter's gas-water production. The former scope of drop funnel, water saturation and coalbed methane concentration are smaller than the latter's scope of drop funnel, water saturation and coalbed methane concentration. The former water saturation, coalbed methane concentration drop slower than the latter's water saturation, coalbed methane concentration.
    (2) Two wells scheme, comparison of coupling and noncoupling condition, the changing laws of reservoir pressure, water saturation and coalbed methane concentration consistent with single well scheme condition, but after extracting a
    
    
    
    period of time, reservoir pressure drop faster than single well scheme. Reservoir pressure and coalbed methane storage drop faster around Two wells, because of wells interference. At the same time, single well production are improved greatly.
    (3) The bigger fluid pressure gradient of well bottom neighborhood is formed Because the reservoir is depleted. The pressure gradient gradually developing from wells to reservoir boundary. Base on effective stress principle, stress and strain of porous medium are changed because of changing of fluid pressure gradient, and result in changing porous medium structure changing, an the same time, effective permeability and porosity become lower. And production are decreased because of coulping action. Therefore in the cause of coalbed gas exploiting, the disadvantageous influence on production must be overcame, and the reasonable production system, are established to guaranteeing to minimum damage to the reservoir permeability.
    (4) It is important to choice well spacing, when multiple wells scheme are arranged, well spacing affect the economic efficiency and recovery rate of coalbed gas resources. The size of well spacing is decided reservoir characteristic and economic gas production. Shows as the results of simulation, well spacing influence on production and reservoir pressure and also relevant to reservoir permeability. Higher permeability reservoir , at the beginning of exploiting time, appearing wells interference, and increasing influence scope of pressure drop funnel. If the methane quality of coalbed
引文
1.周世宁,林柏泉,煤层瓦斯赋存与流动理论[M],北京,煤炭工业出版社,1999.
    2.叶建平等,中国煤层气资源[M]中国矿业大学出版社,1998.
    3.国家经贸委安全生产局,1999年上半年全国煤矿特大事故情况,煤矿安全,1999,2.1.
    4.邹家华副总理在中联公司成立大会上的讲话,[J]中国煤层气,1996.
    5.鲜学福,我国煤层气开采利用现状及其产业化展望,重庆大学学报,Vol.23,2000
    6.冯文光,中国应尽快实现低渗煤层气藏工业化生产,天然气工业,2001.1.
    7.叶建平等,中国煤储层渗透性及其主要影响因素[J],煤媒炭学报,1999 24(2).
    8.陈永武,中国煤层气产业形成和发展面临的机遇与挑战,天然气工业,2000,20(4)
    9.冯文光,非达西低速渗流的研究现状与进展[J]石油勘探与开发,1986,13(4):76~80.
    10.张新民等.中国煤层甲烷资源的分布特征及对策,煤层气开发与利用,国际会议论文集.北京:1995。
    11. Mavor, M.J., Pratt, T.J.and Nelson, C.R.: "Quantitative Evaluation of Coal Seam Gas Content Estimate Accuracy," Paper SPE 29577 presented at the 1995 SPE Joint Rocky Mountain Regional/Low-Permeability Reservoirs Symp., Denver, CO, 20-22 March 1995.
    12. Barzandji OH, Wolf K-HAA and Bruining J, 2000, Combination of laboratory experiments and field simulations on the improvement of CBM production by CO2 injection, in proceedings of Second International Conference on Methane Mitigation, Novosibirsk, pp 325-336.
    13. Blok K, Williams RH, Katofsky RE and Hendriks CA, 1997, Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery, Energy, the International Journal, 22: 161-168.
    14. Stevens SH and Pekot L, 1999, CO2 injection for enhanced coalbed methane recovery: Project screening and design, in proceedings of Coalbed Methane Symposium, Tuscaloosa.
    15.梁冰,章梦涛,煤层瓦斯流动与煤体变形的耦合数学模型及数值方法,岩石力学与工程学报,1996,15(2):135~142.
    16.梁冰,煤和瓦斯突出固流耦合失稳理论,北京,地质出版社,2000.
    17.赵阳升,矿山岩石流体力学,煤炭工业出版社,1994.
    18.蔚远江,我国煤层气储层研究现状及发展趋势,地质科技情报,VOL20,NO1,2001.
    19.赵庆波等,世界煤层其发展现状,[M],北京,地质出版社,1998。
    20.李凡华,刘慈群,含启动压力梯度的不定常渗流的压力动态[J],油气井测试,1997(1)
    21.邓英尔,刘慈群,低渗透油气藏渗流研究新方法[J],低渗透油气藏,1999,4(3)
    22.冯文光.捉高解吸速度是煤层气工业化生产的关键,矿物岩石,1998:18(2)
    23.仵彦卿,张倬元,岩体水力学导论,成都,西南交通大学出版社,1995.
    24.王希诚,一种全耦合多相流体分析的并行算法,力学学报,1999,NO3.
    25.戴金星,成煤作用中形成的天然气和石油,石油勘探与开发,1979,6.
    26.戴金星,我国天然气资源及其前景天然气工业,1999,19(2),3~6..
    27.林瑞泰,多孔介质传热传质理论[M],北京,科学出版社,1995.
    
    
    28.李和全,一个气液两相泡沫驱模型[J],大庆石油学院学报,1999,23(3).
    29. Collins, R, E., new theory for gas adsorption and transport in coal. in proceedings of the 1991 coal methane symposium, tuscaloosa, 1991.
    30. Y.X.Xiao, C,F. Lee Assessment of an equivalent porous medium for coupled stress and fluid flow in fractured rock Int J Rock Mech Min Sci & Geomech 36 (1999)871-881
    31. R.W.Zimmermaan coupling in poroelastiity and thermoelasticity Int J Rock Mech Min Sci &Geomech 37 (2000)79-87.
    32.戴金星我国煤成气资源勘探开发和研究的重大意义天然气工业,1993,13(2)8~12.
    33.戴金星等(主编)中国天然气地质学(卷一)北京:石油工业出版社,1992 65~87.
    34. Valliappan S zhang W Numerical modeling of methane gas migarition in dry coal seams. int J for Numerical and Analytical Methods in Geomechanics 1996:20:571-93.
    35. Patton SB, Fan H, Novak T.Johnson PW.Sanford RL, Simulator for degasification methane emission prediction and ventilation Mining Engineering 1994;341-45[Apri11].
    36. rortike w S, Farouq Ali S M. Reservoir simulation interated with geomechanics. JCPT, 1993, (5):28~37.
    37. Noorishad J A.finite element method for couped stress and flow analysis infractured rock mass. Int.J. Rock Mech. Min. Sci. Geomech, Abstr.,1982.
    38. Inada Y.Yokata K. some studies of low temperature rock strength. int J Rock Mech min sci and Geomech 1984:21(3):145~153.
    39.葛家理,油气藏渗流力学[M],北京,石油工业出版社,1982.
    40.J.贝尔著,李竞生,陈崇希译,多孔介质流体动力学,北京:中国建筑工业出版社,1983.
    41.郭尚平等,渗流力学的新发展,力学进展,1986,16(4).
    42. Amy MO.Rouset G.thermo-hydro-mechanical modeling of an underground radioactive wastes disposal in: simith IM. editor Numerical Methods in Geotechnical Engineering Rotterdam Netherlands:A.A Balkema. 1994.
    43. Hart RD A fully coupled thermal-mechanical-fluid flow model for non-linear geologic systems Ph..D thesis. Univ. of Minnesota. 1981.
    44. Hart RD St. John CM. formulation of a fully coupled thermal-mechanical-fluid flow model for non-linear geologic systems Int J Rock Mech Min Sci & Geomech 1986:23(3) 213-24.
    45. Y.X.Xiao, C, F.Lee Assessment of an equivalent porous medium for coupled stress and fluid flow in fractured rock Int J Rock Mech Min Sci & Geomech 36 (1999)871-881.
    46. Bear J.Dynamics of fluids in porous media New York. NY: Elsevier, 1972 764 pp
    47.张金才,刘天泉,裂隙岩体渗流特征的研究,煤炭学报,22(5).
    48.A.E.薛定谔著,忘鸿勋等译,多孔介质中的渗透物理,北京,石油工业出版社,1982.
    49.陈钟祥、刘慈群,双重孔隙介质二相驱替理论,力学学报,1980,12(2).
    50.谢和平,岩土介质分形孔隙与分形粒子,力学进展,1993,23(2).
    51.孙培德,鲜学富,煤层气越流固气耦合理论及应用,煤炭学报,1999,24(1).
    52.孔祥言,高等渗流力学[M],合肥中国科学技术大学出版社,1999.
    53.冯文光,侯鸿斌等.煤层气藏三维数值模拟.矿物岩石,1999;19(2).
    54.韩大匡,油藏数值模拟基础北京:石油工业出版社,1982.
    55.葛加理,数值计算方法北京:国防工业出版社.
    56.许彦卿,张卓元,岩体系统渗流场与应力场耦合的广义双重介质模型的应用研究:工程地
    
    质学报,1996.
    57.王仁,地质村料的力学问题力学与实践,1986.
    58.孙万禄等:煤层气地质学基本问题的探讨,石油与天然气地质,1997 18(13).
    59.孙茂远等:煤层气开发利用手册,煤炭工业出版社(北京),1998.
    60. Bustin RM and Clarkson CR, 1998, Geological controls on coalbed methane reservoir capacity and gas content, International Journal of Coal Geology, 38: 3-26.
    61. Chen G and Harpalani S, 1995, Study of coal networks in coal, from: Fractured and and jointed masses, Balkema, Rotterdam, pp 431-434.
    62. Chi SM, Morsi BI, Klinzig GE and Chiang SH, 1987, Interfacial property of coal under high pressure, in: Moulijn et al. (ed.) proceedings of International Conference on Coal Science, Elsevier Science Publishers, Amsterdam, pp 459-462.
    63. Clark WF and Hemler T, 1998, Completing, equipping, and operating fruitland formation coalbed methane wells in the San Juan Basin, New Mexico and Colorado, in: Fassett JE(ed.), Geology and coal bed methane resources of the northern San Juan Basin, New Mexico and Colorado-Rocky Mountain Association of Geologists, pp 125-132.
    64. Davidson RM, Sloss LL and Clarke LB, 1995, Coalbed methane extraction, IEA Coal Research, London.
    65. de Biasi V, 1999, 250-kW fuel cell-gas turbine hybrid to start operational testing next year, Gas turbine world, July-August: 12.
    66. de Haan MFE, 1999, Enhanced coalbed methane production by carbon dioxide injection; theory, experiments and simulation, NOVEM Technical Report, Contract no.234130/9001, TU Delft, Delft.
    67.白矛,刘天泉 孔隙裂隙弹性理论及应用导论。石油工业出版社1999。
    68.刘慈群,单相和两相流体多维渗流问题,第十届全国水动力学学术会议论文集[C]北京:海洋工业出版社,1996 439~445
    69.宋付权,刘慈群,水平井椭球渗流模型分析与应用[J].
    70.唐书恒,煤层甲烷气藏的数值模拟技术[J]中国煤田地质,1999,10增刊.
    71.孙茂远,黄盛初,中国煤层气开发利用的几个问题[J]中国煤层气,1995,(1):15~17.
    72.秦勇,曾勇编译:煤层甲烷储层评价及生产技术,中国矿业大学出版社.
    73.吴世跃,郭勇义关于注气开发煤层气机理的探讨[J]太原理工大学学报,2000,31(4):361~363
    74.吴世跃,郭勇义煤层气运移特征的研究[J]煤炭学报,1999,24(1):65~69.
    75. Application coals potential reservoirs sequestering carbon dioxides emission from power plants while enhancing CBM production international coalbed methane symposium 1999.
    76. A Guide to coalbed methane Reservoir engineening [M] Gas Reserch institue, Chicago, Illinois, U, S, A, 1996.
    77. Transient Aqueous foam Flow in Porous: Experiment and modeling Blot, M.A, General.
    78. Valliappan S zhang W Numerical modeling of methane gas migarition in dry coal seams. int J for Numerical and Analytical Methods in Geomechanics 1996:20:571-93.
    79. Goodman RE Methods of geological engineering in dis continuous rocks West Publishing Company, 1977.
    
    
    80. Brooks J D and Smith J W、The diage。sts of plantlds during the formation of coal, petroleum and natural gas hydrocarbons Deocbimica et cosmochimica Asia, 1967, 31: 2389—2397.
    81. TerzaghiK TheoreticalSoil Mechanics. Wily, Newyork, 1943.
    82. Arri LE, Yee D, Morgan WD and Jeausonne MW, 1992, Modelling coalbed methane production with binary gas sorption, in proceedings of SPE Rocky Mountains Regional Meeting, SPE 24363, Society of Petroleum Engineers, Casper, pp 459-472.
    83. Bertheux WB, Wolf K-HAA, Barzandji OH and Bruining J, 2000, CO2-Enhanced coalbed methane production in dry and water saturated coals: experiments, simulations and image analysis.
    84. NOVEM Technical Report, Contract no.234130/9001, TU Delft, Delft.
    85. Bond RL, 1967, Porous carbon solids, London.
    86. Brande S, Chernov N and Turner M, 1999, Fracture analysis form coal fragment shape: Digital image processing and the geometry of particle perimeters, Draft: to be submitted to the International Journal of Coal Geology.
    87. EPA, 1997, A guide to financing coalbed methane projects, US Environmental Protection Agency. Faaij A, Meuleman B and van Ree R, 1998, Long term perspectives of biomass integrated gasification with combined cycle technology, Novem, Utrecht, 93 pp.+annexes.
    88. Farla JCM, Hendriks CA and Blok K, 1995, Carbon dioxide recovery from industrial processes, Climatic Change, 29: 439-461.
    89. Feron PBM and Jansen AE, 1998, Techno-economic assessment of membrane gas absorption for the
    90. production of carbon dioxide from flue gas, in proceedings of Fourth International Conference on Greenhouse Gas Control Technologies, Interlaken.
    91. Fulton PF, Parente CA, Rogers BA, Shah N and Reznik AA, 1980, A laboratory investigation of enhanced recovery of methane from coal by carbon dioxide injection, in proceedings of Unconventional Gas Recovery Symposium, SPE/DOE 8930, Society of Petroleum Engineers, Pittsburgh, pp 65-72.
    92. Gregoire Padró CE and Putsche V, 2000, Survey of the economics of hydrogen technologies, National
    93. Renewable Energy Laboratory, Golden. Gunter WD, Gentzis T, Rottenfusser BA and Richardson RJH, 1997, Deep coalbed methane in Alberta, Canada: a fuel resource with the potential of zero greenhouse gas emissions, Energy Conversion Management, 38, Suppl.: S217-S222.
    94. Hall FE, Chunhe Z, Gasem KAM, Robinson RL and Yee D, 1994, Adsorption of pure methane, nitrogen and carbon dioxide and their binary mixtures on wet fruitland coat, SPE 29194,
    95. Hendriks C, 1994, Carbon dioxide removal from coal-fired power plants(thesis), Utrecht University, Utrecht, 260 pp.
    96. Ishibashi M, Otake K and Kanamori S, 1998, Study on CO2 removal technology from flue gas of thermal power plant by physical adsorption method, in proceedings of Fourth International Conference on Greenhouse Gas Control Technologies, Interlaken.
    
    
    97. Katofsky RE, 1993, The production of fluid fuels from biomass, Center for Energy and Environmental
    98. Studies/Princeton University, Princeton. Kim A, 1977, Estimating methane content of bituminous coalbeds from adsorption data, Report of Investigations 8245, US Department of the Interior-Bureau of Mines.
    99. Krooss BM, Gensterblum Y, Siemons N and Prinz D, 2000, Adsorption of methane, carbon dioxide and mixtures on dry and moist Carboniferous coals of different rank, RWTH Aachen, Aachen.
    100. Levy J, Day SJ and Killingley JS, 1997, Methane capacity of Bowen Basin coals related to coal properties, Fuel, 74: 1-7.
    101. Glikson M and Golding SD (eds.), Coalbed methane: Scientific, environmental, and economical evaluation, Kluwer Academic Publishers.
    102. McElhiney JE, Paul GW, Young GBC and McCartney JA, 1993, Reservoir engineering aspects of coalbed methane, in: Law BE and Rice DD (eds.), Hydrocarbons from coal: AAPG studies in geology 38, pp 361-372.
    103. Ministerie van Economische Zaken, 1995, Derde energienota, SDU uitgeverij, Den Haag, 199 pp.
    104. Mozaffarian M, 1994, Hydrogen production methods, ECN Fossil Fuels, Petten. OECD, 1996, National accounts-Main aggregates, Edition 1997, Paris, 170 pp.
    105.张群,煤层气储层数值模拟模型及应用的研究,西安,煤科总院西安分院.
    106.叶建平等主编,中国煤层气资源江苏徐州:中国矿业大学出版社,1999.
    107.张新民等,中国的煤层甲烷西安:陕西科学技术出版社.
    108. Pagnier HJM, Pestman PJ and van Tongeren PCH, 1987, Recent coal exploration in the Netherlands, in: Martin JW and Barone SP (eds.), proceedings of 13th Annual Underground Coal Gasification Symposium, Laramie.
    109. Pattison CI, Fielding CR, Mc Watters RH and Hamilton LH, 1996, Nature and origin of fractures in Permian coals from the Bowen Basin, Queensland, Australia, in: Gayer R and Harris Ⅰ(eds.), Coalbed methane and coal geology, Geological Society Special Pubication no.109, London, pp 131-150.
    110. Puri R and Yee D, 1990, Enhanced Coalbed Methane REcovery, SPE paper 20732.
    111. Reichle D, Houghton J, Kane B and Ekmann J, 1999, Carbon sequestration, state of the science-A working paper for roadmapping future carbon sequestration R&D-draft, US Department of Energy, 223 pp.
    112. Reznik AA, Singh PK and Foley WL, 1982, An analysis of the effect of carbon dioxide injection on the recovery of in-situ methane from bituminous coal: an experimental study, in proceedings of Unconventional Gas Recovery Symposium, SPE/DOE 10829, Society of Petroleum
    113. Riesenfeld FC and Kohl AL, 1974, Gas Purification, Gulf Publishing Company, Houston, 761 pp.
    114. Sawyer WK, Zuber MD, Kuuskraa VA and Horner DM, 1987, Using reservoir simulation and field data to define mechanisms controlling coalbed methane production, in proceedings of Coalbed
    115. Schaeffer GJ, 1998, Fuel cells for the future; a contribution to technology forecasting form a technology dynamics perspective, Enschede.
    
    Schneider THA and Preuβe A, 1995, Recovery and utilisation of coal seam gasimpetus by the German hard coal mining industry, Erdl Erdgas Kohle, 111(12): 515-519.
    116. Steinberg M and Cheng HC, 1989, Modern and prospective technologies for hydrogen production from fossil fuels, Int. J. Hydrogen Energy, 14(11): 797-820.
    117. Stevenson MD, Pinczewski WV, Somers ML and Bagio SE, 1991, Adsorption/desorption of multicomponent gas mixtures at in-seam conditions, SPE 23026.
    118. Stork Engineering Consultancy BV, 1999, Draft report for assessment of leading technology options for abatement of CO2 emissions; IEA greenhouse gas R&D programme.
    119. Stuffken J, 1957, De mijngasafgifte van kolenlagen, PhD thesis (in Dutch), TH Delft, Delft.
    120. Suda T, Fujii M, Yoshida K, lijima M, Seto T and Mitsuoka S, 1992, Development of flue gas carbon dioxide recovery technology, in: Blok K, Turkenburg WC, Hendriks CA and Steinberg M (eds.), proceedings of First International Conference on Carbon Dioxide Removal, Pergamon Press, Amsterdam.
    121. Williams RH, 1999, Toward zero emissions for coal-roles for inorganic membranes, in proceedings of International symposium toward zero emissions: the challenge for hydrocarbons, Rome.
    122. Wilson MA, Wrubleski RM and Yarborough L, 1992, Recovery of CO2 from power plant flue gases using amines, in: Blok K, Turkenburg WC, Hendriks CA and Steinberg M (eds.), proceedings of First International Conference on Carbon Dioxide Removal, Pergamon Press, Amsterdam, pp 325-331.
    123. Wolf K-HAA, Barzandji O, Bruining J and de Rooij M, 1999a, Feasibility study of CO2-sequestration and Coalbed Methane Production. Report on modelling work, economics and related laboratory experiments on enhanced coalbed methane production by liquid carbon dioxideinjection, NOVEM Technical Report, Contract no. 234130/9001, TU Delft, Delft.
    124. Wolf K-HAA, Westerink HHE, van Delft PTP and Bruining J, 1997, Coalbed methane production in the Netherlands; an inventory, TU Delft/NOVEM, Delft.
    125. Battistelli, A., C. Calore and K. Pruess. The Simulator TOUGH2/EWASG for Modeling
    126. Geothermal Reservoirs with Brines and Non-Condensible Gas, Geothermics, Vol. 26, No. 4, pp. 437 - 464, 1997.
    127. Chang, Y.B., M.T. Lim, G.A. Pope and K. Sepehrnoori. CO2 Flow Patterns Under Multiphase Flow: Heterogeneous Field-Scale Conditions, SPE Reservoir Engineering pp. 208 - 216,1994.
    128. Chapman, N., J. Andersson, P. Bogorinski, J. Carrera, J. Hadermann, D. Hodgkinson, P. Jackson,
    129. Neretnieks, S. Neuman, K. Skagius, T. Nicolson, C.F. Tsang and C. Voss. Developing
    130. Groundwater Flow and Transport Models for Radioactive Waste Disposal - Six Years of Experience from the INTRAVAL Project, in the proceedings of an NEA/SKI Symposium, Paris, France, pp. 45-58, October, 1994.
    
    
    131. Gunter W. D., Wiwchar, B., and Perkins, E. H. Aquifer Disposal of CO2-Rich Greenhouse Gases: Extension of the Time Scale of Experiment for CO2-Sequestering Reactions byGeochemical Modeling, Mineral. and Petrol., Vol. 59, pp. 121-140, 1997.
    132. Jing L., O. Stephansson, C.-F. Tsang, L. Knight and F. Kautsky. DECOVALEX Ⅱ- Project. Technical Report Task IA and IB. Swedish Nuclear Power Inspectorate, SKI Report 98:39, 1998.
    133. Jing L., C. F. Tsang, and O. Stephansson, DECOVALEX: an International Co-operative Research Project on Mathematical Models of Coupled T-H-M Processes for Safety Analysis of Radioactive Waste Repositories. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 32, No. 5, pp. 389-398, 1995.
    134. Katz, D.L. and R.L. Lee. Natural Gas Engineering, McGraw-Hill Publ. Comp., New York, NY 1990.
    135. Firoozabadi, A. and L. K. Thomas. Sixth SPE Comparative Solution Project: A Comparison of Dual-Porosity Simulators, paper SPE-18741, presented at Tenth SPE Symposium on Reservoir Simulation, Houston, Texas, February 6-8, 1989.
    136. Kongsjorden, H., O. Karstad and T.A. Torp. Saline Aquifer Storage of Carbon Dioxide in the Sleipner Project, Waste Management, Vol. 17, No. 5/6, pp. 303-308, 1997.
    137. Korbol, R. and A. Kaddour. Sleipner Vest CO2 Disposal - Injection of Removed CO2 into the Utsira Formation, Energy Convers. Mgmt., Vol. 36, No. 6 - 9, pp. 509- 512, 1995.
    138. Larsson, A. The International Projects INTRACOIN, HYDRAOCOIN, and INTRAVAL, short communication in Advances in Water Resources, Vol. 15, pp. 85 - 87, 1992.
    139. Modine, A.D. and J.L. Bashbush. The Application of the Method of Characteristics to the Flow of Miscible Gases in a Reservoir, paper SPE - 16988, presented at the 62nd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Dallas, TX, 1987.
    140. Stephansson, O., L. Jing, and C.-F. Tsang (editors), Mathematical and Experimental Studies of Coupled Thermo-Hydro-Mechanical Processes in Fractured Media—DECOVALEX,
    141. Developments in Geotechnical Engineering Series, Number 79. Elsevier Science Publishers, December 1996.
    142. Studlick, J.R.J., R.D. Shew, G.L. Basye and J.R. Ray. A Giant Carbon Dioxide Accumulation in the Norphlet Formation, Pisgah Anticline, Mississipi, in J.H. Barwis, []J.G. McPherson and J.R.J. Studlick (eds.), Sandstone Petroleum Reservoirs, Springer Verlag, New York., pp. 181-203, 1990.
    143. Vargaftik, N.B. Tables on the Thermophysical Properties of Liquids and Gases, 2nd Ed., John Wiley & Sons, New York, NY, 1975.
    144. Xu, T. and K. Pruess. On Fluid Flow and Mineral Alteration in Fractured Caprock of Magmatic Hydrothermal Systems, J. Geophys. Res., in press, 2001.
    145. Stevens, S. H., Spector, D., and Riemer, P., "Enhanced Coalbed Methane Recovery Using CO2 Injection: Worldwide Resource and CO2 Sequestration Potential", paper SPE 48881 presented at the SPE International Conference and Exhibition in Beijing,
    
    
    146. China, November 2-6, 1998.
    147. Joubert, J. I., Grein, C. T., and Bienstock, D., "Sorption of Methane in Moist Coal", Fuel, Vol. 52, pp. 181-185, July, 1973.
    148. Ruppel, T. C., Grein, C. T., and Bienstock, D., "Adsorption of Methane on Dry Coal at Elevated Pressure", Fuel, Vol. 53, pp. 152-162, July, 1974.
    149. Fulton, P. F., Parente, C. A., Rogers, B. A., Shah, N. B., and Reznik, A. A., "A Laboratory Investigation of Enhanced Recovery of Methane from Coal by Carbon Dioxide Injection", paper SPE/DOE 8930 presented at the SPE/DOE Symposium on
    150. Unconventional Gas Recovery, Pittsburgh, PA, May 18-21,1980.
    151. Reznik, A. A., Singh, P. K., and Foley, W. L., "Analysis of the Effect of CO2 Injection on the Recovery of In-Situ Methane from Bituminous Coal: An Experimental Simulation", Society of Petroleum Engineers Journal, Vol. 24, No. 5, pp. 521-528, October, 1984.
    152. Yang, R. T. and Saunders J. T., "Adsorption of Gases on Coals and Heat-Treated Coals at Elevated-Temperature and Pressure. 1. Adsorption from Hydrogen and Methane as Single Gases" ,Fuel, Vol. 64, No. 5, pp. 616-626, 1985.
    153. Bell, G. J. and Rakop, K. C., "Hysteresis of Methane/Coal Sorption Isotherms", paper SPE 15454 presented at the 61 Annual SPE Technical Conference and Exhibition at New Orleans, LA, October 5-8, 1986.
    154. Stevenson, M. D., Pinczewski, W. V., Somers, M. L., and
    155. DeGance, A. E., Morgan, W. D., and Yee, D., "High-Pressure Adsorption of Methane,Nitrogen and Carbon-Dioxide on Coal Substrates", Fluid Phase Equilibria, Vol. 82, pp. 215-224, February, 1993.
    156. Greaves, K. H., Owen, L. B., McLennan, J. D., and Olszewski,A., "Multi-Component Gas Adsorption-Desorption Behavior of Coal", Proceedings of the International Coalbed Methane Symposium, Birmingham, Alabama, Vol. 1, pp. 197-205, May 17-21, 1993.
    157. Chaback, J. J., Morgan W. D., and Yee, D., "Sorption of Notrogen, Methane, Carbon-Dioxide and Their Mixtures on Bituminous Coals at In-Situ Conditions", Fluid Phase Equilibria, Vol. 117, No. 1-2, pp. 289-296, March, 1996.
    158. Arri, L. E., Yee, D., Morgan, W. D., and Jeansonne, M. W., "Modeling Coalbed Methane Production with Binary Gas Sorption", paper SPE 24363 presented at the SPE Rocky Mountain Regional Meeting, Casper, Wyoming, May 18-21, 1992.
    159. Scott, A. R., "Composition of Coalbed Gases", In Situ, Vol. 18, No. 2, pp. 185-208, 1994.
    160. Saxena, S. C. and Thomas, L. A., "An Equibrium-Model for Predicting Flue-Gas Composition of an Incinerator",International Journal of Energy Research, Vol. No. 4, pp. 317-327, June, 1995.
    161. Rhee, H. K., Aris, R., and Amundson, N. R., "First-Order Partial Differential Equations: Volume Ⅱ- Theory and Application of Hyperbolic Systems of Quasilinear Equations", International series in the physical and chemical engineering sciences, 1986,
    162. Prentice Hall, Englewood Cliffs, NJ 07632. 16. Helfferich, F. G., "Non-Linear Waves in Chromatography. 3. Multicomponent Langmuir and Langmuir-Like Systems",
    
    a)Journal of Chromatography A, Vol. 768, No. 2, pp. 169-205, April, 1997.
    163. Dindoruk, B., "Analytical Theory of Multiphase, Multicomponent Flow in Porous Media", PhD dissertation, Stanford University, 1992.
    164. Peng, D. Y. and Robinson, D. B., "A New Two-Constant Equation of State", Ind. Eng. Chem. Fund., Vol. 15, pp. 59-64,1976.
    165. Markham, E. C. and Benton, A. F., "The Adsorption of Gas Mixtures By Silica", Journal of American Chemistry Society, Vol. 53, pp. 497-507, 1931.
    166. HOLZ, M., VIEIRA, P. E., KALKREUTM, W. (2000): The Early Permian coal-bearing succession of the Paraná Basin in southernmost Brazil: depositional model and sequence stratigraphy. Revista Brasileira de Geocincias., 30, 3, 420. 422,
    167. Rightmire, C.T., Eddy, G.E., and Kirr, J.N., eds.:Coalbed Methane Resources of the United States AAPG Studies in Geology Series #17, American Association of Petroleum Geologists, Tulsa, OK (1984) 375 p.
    168. Schwochow, S., ed.: The International Coal Seam Gas Report, Carin Point Publishing, Inc., Denver, CO (1997) 218 p.
    169. Nelson, C.R.: Gas Research Institute North American Coalbed Methane Resource Map, Gas Research Institute Report GRI-99/0131, Chicago, IL (1999).
    170. Nelson, C.R.: "Changing Perceptions Regarding the Size and Production Potential of Coalbed MethaneResources," GasTIPS, Vol. 5, No. 2 (Spring 1999) Gas Research Institute, Chicago, IL, pp. 4-11.
    171. Pierce, D.L., et a7., eds.: Potential Supply of Natural Gas in the United States, Potential Gas Agency, Colorado School of Mines, Golden, CO (1999) 195 p.
    172. Diamond, W.P., Bodden, W.R., III, Zuber, M.D. and Schraufnagel, R.A.: "Measuring the Extent of Coalbed Gas Drainage After 10 Years of Production at the Oak Grove Pattern, Alabama," Paper 8961, Proc., 1989 Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL (17-20 April 1989) pp. 185-193.
    173. Malone, P.G., Briscoe, F.H., Camp, B.S., and Boyer, C.M., Ⅱ: "Methods of Calculating Coalbed Methane Reserves with Insight into the Advantages and Disadvantages of Each Method," Paper 8716, Proc., 1987 Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL (16-19 November 1987) pp. 73-79.
    174. Richardson, J.S., Sparks, D.P., and Burkett, W.C.: "The TEAM Project Reserve Analysis: A Comprehensive Evaluation to Predict Ultimate Recovery of Coalbed Methane, " Paper 9105, Proc., 1991 Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL(13-17 May 1991) pp. 293-306.
    175. Close, J.C. and Erwin, T.M.: "Significance and Determination of Gas Content Data as Related to Coalbed Methane Reservoir Evaluation and Production Implications," Paper 8922, Proc., 1989 Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL (17-20 April 1989) pp. 37-55.
    176. Mayor, M.J., Close, J.C., and McBane, R.A.: "Formation Evaluation of Exploration Coalbed Methane Wells," in Coalbed Methane, SPE Reprint Series No. 35, Society of Petroleum Engineers, Richardson, TX (1992) p. 27-45.
    177. Mayor, M.J., Pratt, T.J., and Britton, R.N.: Improved Methodology for Determining Totsl GasContent, Volume I. Canister Gas Desorption Data Summary, Gas Research Institute Topical Report GRI-93/0410, Chicago, IL (1994) 230 p.
    
    
    178. Mayor, M.J., Pratt, T.J., and Nelson, C.R.: "Quantify the Accuracy of Coal Seam Gas Content," Petroleum Engineer International, V. 68, No. 10 (October 1995) pp. 37-42.
    179. Mavor, M.J., Pratt, T.J., and Nelson, C.R.: "Quantitative Evaluation of Coal Seam Gas Content Estimate Accuracy," Paper 9525, Proc., INTERGAS '95, The University of Alabama, Tuscaloosa, AL (15-19 May 1995) pp. 379-388.
    180. McLennan, J. D., Schafer, P.S., and Pratt, T.J.: A Guide to Determining Coalbed Gas Content, Gas Research Institute Report GRI-94/0396, Chicago, L (1995) 182 p.
    181. Mayor, M.J. and Pratt, T.J. : Improved Methodology for Determining Total Gas Content. Volume Ⅱ. Comparative Evaluation of the Accuracy of Gas-In-Place Estimates and Review of Lost Gas Models, Gas Research Institute Topical Report GRI-94/0429, Chicago, IL (1996) 167 p.
    182. Mavor, M.J., Pratt, T.J., Nelson, C.R., and Casey, T.A.: "Improved Gas-In-Place Determination for Coal Gas Reservoirs," Paper SPE 35623, presented at the SPE Gas Technology Symposium, Calgary, Alberta, Canada, April 28-May 1, 1996.
    183. Nelson, C.R. and Mavor, M. J.: Improved Coal Seam Reservoir Gas-In-Place Analysis Protocol, Gas Research Institute Report GRI-96/0481, Chicago, IL(1996) 4 p.
    184. Nelson, C.R., Mavor, M.J., Pratt, T.J. and T. A. Casey, T.A.: "Protocol Ups Coal Seam Gas Analysis," The American Oil and Gas Reporter, Ⅴ. 40, No. 10 (October 1997) pp. 86-89.
    185. Mavor, M. J. and Nelson, C.R.: Coalbed Reservoir Gas- In-Place Analysis, Gas Research Institute Report GRI- 97/0263, Chicago, IL (1997) 144 p.
    186. Nelson, C.R.: "Advances in Coalbed Reservoir Gas-In-Place Analysis," GasTIPS, Vol. 4, No. 1 (Winter 1997/1998) Gas Research Institute, Chicago, IL pp. 14-19.
    187. Nelson, C.R.: "Effects of Coalbed Reservoir Property Analysis Methods on Gas-In-Place Estimates," Paper SPE 57443, presented at the SPE Eastern Regional Meeting, Charleston, WV, 20-22 October 1999.
    188. Nelson, C.R., Hill, D.G., and Pratt. T.J.: "Properties f Paleocene Fort Union Formation Canyon Seam Coal at the Trition Federal Coalbed Methane Well, Campbell County, Wyoming," Paper SPE 59786 presented at the2000 SPE/CERI Gas Technology Symposium, Calgary, Alberta Canada, 3-5 April 2000.
    189. Close, J.C. : "Natural Fractures in Coal," inHydrocarbons From Coal, AAPG Studies in Geology #38, Law, B.E. and Rice, D.D., eds., American Association of Petroleum Geologists, Tulsa, OK (1993) pp. 119-132.
    190. Jones, A.H., Bell, G.J., and Schraufnagel, R.A.: "A Review of the Physical and Mechanical Properties of Coal with Implications for Coal-Bed Methane Well Completion and Production," in Geology and Coal-Bed Methane Resources of the Northern San Juan Basin, Colorado and New Mexico, Fassett, J.E., ed., Rocky Mountain Association of Geologists, Denver, Colorado (1988) pp. 169-181.
    191. Enever, J.R.E. and Hennig, A.: "The Relationship Between Permeability and Effective Stress for Australian Coals and Its Implications with Respect to Coalbed Methane Exploration and Reservoir Modelling," Paper 9722, Proc., 1997 International Coalbed Methane Symposium, The University of Alabama, Tuscaloosa,
    
    AL (12-16 May 1997) pp. 13-22.
    192. Saulsberry, J.L., Lambert, S.W., Wallace, J.A., Spafford, S.D., and Steidl, P.F.: Rock Creek Multiple Coal Seams Project, Gas Research Institute Final Report GRI95/0036, Chicago, IL (1995) 110 p.
    193. Mavor, M.J. and Logan, T.L.: Western Cretaceous Coal Seam Project, Gas Research Institute Final Report GRI-94/0089, Chicago, IL (1995) 155 p.
    194. Neavel, R.C., Smith, S.E., Hippo, E.J., and Miller, R.N.: "Interrelationships Between Coal Compositional Parameters," Fuel, Ⅴ. 65 (1986) pp. 312-320.
    195. Unsworth, J.F., Fowler, C.S., and Jones, L.F.: "Moisture in Coal: 2. Maceral Effects on Pore Structure," Fuel, Ⅴ. 68 (1989) pp. 18-26.
    196. Schopf, J.M.: "A Definition of Coal," Economic Geology, Ⅴ. 51 (1956) pp. 521-527.
    197. Standard Classification of Coals by Rank, D 388-88: Annual Book of ASTM Standards, Philadelphia, PA (1988) pp. 297-299.
    198. Close, J., Woolverton, S., and Swainson, K.: "Non-Fairway, Underpressured Fruitland Coal Resource Characterization Study, Southern San Juan Basin, New Mexico," Paper 9727, Proc., 1997 International Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL (12-16 May 1997) pp. 23-32.
    199. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal, D3174-82: Annual Book of ASTM Standards, Philadelphia, PA (1988) pp. 297-299.
    200. Burns, T. D. and Lamarre, R. A.: "Drunkards Wash Project: Coalbed Methane Production from Ferron Coals in East-Central Utah," Paper 9709, Proc., 1997 International Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL (12-16 May 1997) pp. 507-520.
    201. Kelafant, J.R. and Boyer, C.M., A Geologic Assessment of Natural Gas From Coal Seams in the Central Appalachian Basin, Gas Research Institute Topical Report GRI-88/0302, Chicago, IL (1988) 66 p.
    202. Bertard, C., Bruyer, B., and Gunther, J.: "Determination of Desorbable Gas Concentration of Coal (Direct Method)," International Journal of Rock Mechanics and Mining Science, V. 7 (1970) pp. 43-65.
    203. Kissell, F. N., McCulloch, C. M., and Elder, C. H.: "The Direct Method of Determining Methane Content of Coalbeds for Ventilation Design," Report of Investigations 7767, U.S. Department of the Interior, Bureau of Mines, Washington, D.C. (1973) 17 p.
    204. McCulloch, C.M., Levine, J.R., Kissell, F.N., and Deul, M.: Measuring the Methane Content of Bituminous Coalbeds, Report of Investigations 8043, United States Department of the Interior, Bureau of Mines, Washington, D.C. (1975) 22 p.
    205. Diamond, W. P. and Levine, J. R.: Direct Method Determination of the Gas Content of Coal: Procedures and Results, Report of Investigations 8515, United States Department of the Interior, Bureau of Mines, Washington, D.C. (1981) 36 p.
    206. Eddy, G.E., Rightmire, C.T., and Byrer, C.W.: "Relationship of Methane Content of Coal Rank and Depth: Theoretical vs. Observed," Paper SPE/DOE 10800, presented at the 1982 SPE/DOE Unconventional Gas Recovery Symposium, Pittsburgh, PA, 16-18 May 1982.
    
    
    207. Hewitt, J. L.: "Geologic Overview, Coal and Coalbed Methane Resources of the Warrior Basin - Alabama and Mississippi," in Coalbed Methane Resources of the United States, AAPG Studies in Geology Series #17, Rightmire, C.T., Eddy, G.E., and Kirr, J. N., eds., American Association of Petroleum Geologists, Tulsa, OK (1984) pp. 73-104.
    208. Telle, W. R. and Thompson, D. A.: "Coalbed Methane Development Prospects in Southern Tuscaloosa County, Alabama, " Paper 8966, Proc., 1989 Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL (17-20 April 1989) pp. 225-239.
    209. Hunt, A.M. and Steele, D.J.: "Coalbed Methane Development in the Northern and Central Appalachian Basins - Past, Present and Future," Paper 9161, Proc., 1991 International Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL (13-17 May 1991) pp. 127-141.
    210. Archer, P.L. and Kirr, J. N.: "Pennsylvanian Geology, Coal, and Coalbed Methane Resources of the Illinois Basin - Illinois, Indiana, and Kentucky," in Coalbed Methane Resources of the United States, AAPG Studies in Geology Series #17, Rightmire, C.T., Eddy, G.E., and Kirr, J.N., eds., American Association of Petroleum Geologists, Tulsa, OK (1984) pp. 105-134.
    211. Harper, D. : Coalbed Methane in Indiana, Indiana Geological Survey Occasional Paper 56, Bloomington, IN (1991) 18 p. 48. Diamond, W.P, LaScola, J.C., and Hyman, D.M.: Results of Direct-Method Determination of the Gas Content of U.S. Coalbeds, Bureau of Mines Information Circular 9067, United States Department of the Interior, Washington, D.C. (1986) 95p.
    212. Cardott, B.J.: "Coal as Gas-Source Rock and Reservoir, Hartshorne Formation, Oklahoma," in The Hartshorne Play in Southeastern Oklahoma: Regional and Detailed Sandstone Reservoir Analysis and Coalbed-Methane Resources, Oklahoma Geological Survey Special Publication 98-7, The University of Oklahoma, Norman, OK (1998) pp. 41-62.
    213. Knox, L. M.: "Coalbed Methane in Upper Silesia, Poland-A Comprehensive, Integrated Study," Paper 9728, Proc, 1997 International Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL (12-16 May 1997) pp. 127-135.
    214. Choate, R., Lent, J., and Rightmire, C.T.: "Upper Cretaceous Geology, Coal, and the Potential for Methane Recovery from Coalbeds in San Juan Basin Colorado and New MexiCo," in Coalbed Methane
    215. Smith, D.M. and Williams, F.L.: "A New Technique for Determining the Methane Content of Coal," Proc., 16th Intersociety Energy Conservation Engineering Conference, Atlanta, GA (1981) pp. 1, 267-1,272.
    216. Smith, D.M. and Williams, F.L.: "Diffusion Models for Gas Production From Coals, Application to Methane Content Determination," Fuel, Ⅴ. 63 (1984) pp. 251-255.
    217. Smith, D.M. and Williams, F.L.: "Direct Method of Determining the Methane Content of Coal - A Modification," Fuel, Ⅴ. 63 (1984) pp. 425-427.
    218. Yee, D., Seidle, J.P., and Hanson, W.B.: "Gas Sorption on Coal and Measurement of Gas Content," in Hydrocarbons From Coal, AAPG Studies in Geology #38, Law, B.E. and Rice, D.D., eds., American Association of Petroleum Geologists, Tulsa,
    
    OK (1993) pp. 203-218.
    219. Nelson, C.R., ed.: Chemistry of Coal Weathering, Elsevier Science Publishers, NY (1989)230 p.
    220. Ulery, J.P. and Hyman, D.M.: "The Modified Direct Method of Gas Content Determination: Applications and Results," Paper 9163, Proc., 1991 Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL (13-17 May 1991) pp. 489-500.
    221. McFall, K.S., Wicks, D.E., and Kuuskraa, V.A., A Geologic Assessment of Natural Gas From Coal Seams in the Warrior Basin, Alabama, Gas Research Institute Topical Report GRI-86/0272, Chicago, IL (1986) 80 p.
    222. Henderson, K.S. and Gazzier, C.A., Preliminary Evaluation of Coal and Coalbed Gas Resource Potential of Western Clay County, Mississippi, Report of Investigation 1, Mississippi Dept. of Natural Resources, Bureau of Geology, Jackson, MS (1989) 31 p.
    223. Nolde, J.E. and Spears, D., "A Preliminary Assessment of In Place Coalbed Methane Resources in the Virginia Portion of the Central Appalachian Basin," International J. Coal Neology, Ⅴ. 38 (1998) pp. 115-136.
    224. Malone, P.G., Briscoe, F.H., Camp, B.S., and Boyer, C.M., Ⅱ, "Discovery and Explanation of Low Gas Contents Encountered in Coalbeds at the GRI/USSC Big Indian Creek Site, Warrior Basin, Alabama," Paper 8715, Proc., 1987 Coalbed Methane Symposium, The University of Alabama, Tuscaloosa, AL (16-19 November 1987) pp.63-72.
    225. Resources of the United States, AAPG Studies in Geology Series #17, Rightmire, C.T., Eddy, G. E. and Kirr, J. N., eds., American Association of Petroleam Geologists, Tulsa, OK (1984) pp. 185-222.
    226. Noorishad J, Tsang C-F, Witherspoon PA. Coupled thermal±hydraulic±mechanical phenomena in saturated fractured porous rocks: numerical approach, J Geophys Res 1984;89:10365±73.
    227. Richards LA. Capillary conduction of liquids through porous media. Physics 1931;1:318±33.
    228. Biot MA. General theory of three dimensional consolidation. J Appl Phys 1941; 12: 155±64.
    229. Noorishad J, Tsang C-F. ROCMAS-simulator: a thermohydro-mechanical computer code. In: Stephansson O, Jing L, Tsang C-F, editors. Coupled Thermo-hydro-mechanical processes of fractured media, vol. 79. Elsevier: Developments in Geotechnical Engineering, 1996. p. 551±8.
    230. Nguyen TS, Selvadurai APS. Coupled thermal-hydrological-mechanical processes in sparsely fractured rock. Int J Rock Mech Min Sci Geomech Abstr 1995;32:465±80.
    231. Philip JR, de Vries DA. Moisture movement in porous material under temperature gradients. EOS Trans 1957;38:222±32.
    232. Zienkiewicz OC, Humpheson C, Lewis RW. A unied approach to soil mechanics problems (including plasticity and viscoplasticity). In: Gudehus G, editor. Finite elements in geomechanics. New York: Wiley, 1977. p. 151±77.
    233. Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, Shiomi T. Static and dynamic behaviour
    
    of soils: a rational approach to quantitative solutions. Ⅰ. Fully saturated problems. Proc Roy SocLondon 1990;A429:285±309.
    234. Zienkiewicz OC, Xie YM, Shre-er BA, Ledesma A, Bicanic N. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. Ⅱ. Semi-saturated problems. Proc Roy SocLondon 1990;A429:311±21.
    235. Pruess K. TOUGH2 A general ppurpose numerical simulator for multiphase -uid and heat folw. Lawrence Berkeley National Laboratory Report LBL-29400, 1991.
    236. Bear J, Bachmat Y. Introduction to modeling of transport phenomena in porous media. Netherlands: Kluwer Academic Publisher, 1991. p. 553.
    237. Vargaftik NB. Tables of the thermophysical properties of liquids and gases. New York: Wiley, 1975.
    238. Bishop AW, Blight GE. Some aspects of e. ective stress in saturation and partly saturated soil. Geote chique 1963;13:177±97.
    239. Detournay E, Cheng AH-D. Fundamentals of poroelasticity. In: Hudson J, editor. Comprehensive rock engineering. Oxford: Pergamon Press, 1993. p. 113±71.
    240. Zienkiewicz OC, Taylor RL. The nite element method, 4th Edition. Basic formulations and linear problems, vol. 1. London: McGraw-Hill Book Company, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700