N-甲酰吗啉抽提芳烃体系相平衡及过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以优良的新型芳烃抽提剂N-甲酰吗啉(NFM)在萃取抽提过程中的应用为背景,实验测定了大量的相平衡数据,全面地考察了NFM抽提性能;以相平衡的条件为依据,建立了NFM抽提体系平衡数据关联模型,通过优化方法得到了热力学模型方程的作用参数;在此基础上围绕相平衡组成、临界点以及抽提过程模拟计算等方面,探讨了热力学模型方程在抽提体系中的应用。
     1、相平衡的测定及实验数据可靠性分析。实验测定了不同温度下NFM分别与庚烷、环己烷以及甲基环己烷之间的相互溶解度,以及烷烃(庚烷,环己烷,甲基环己烷)+芳烃(苯,甲苯)+NFM六个体系在多个温度下的三元相平衡数据。相互溶解度实验结果表明,温度升高,NFM与烷烃(庚烷,环己烷,甲基环己烷)之间的相互溶解增大,相互溶解度顺序为环己烷>甲基环己烷>庚烷。以实验数据所建立的三元液液平衡相图表明,该类相图具有热力学相平衡类型Ⅰ的特征,NFM与芳烃和烷烃组成的体系存在较大的相平衡区域,从而NFM能满足抽提溶剂的要求。Othmer-Tobias和Bachman方程对三元体系相平衡实验数据关联的结果表明实验数据具有较好的一致可靠性。
     2、N-甲酰吗啉抽提性能研究。系统地研究了NFM的抽提性能,考察了分配系数,选择性以及分离因子随温度和进料中芳烃含量之间的变化关系。结果表明NFM对芳烃具有良好的抽提性能,苯的分配系数、分离因子和选择性分别高达0.99,12.4和5.2;对于甲苯,也能达到0.85,9.6和3.4。温度升高,有利于芳烃的分配系数增加,而分离因子和选择性却呈下降的趋势;在两相共存区域内,进料中芳烃的含量增加使芳烃的分配系数增大,但其选择性随之减小。
     3、相平衡的热力学模型研究与组成计算。以相平衡稳定性条件为出发点,建立了NFM抽提体系平衡数据关联模型;针对非线性目标函数难以得到全局最优解的问题,采用相平衡体系的Gibbs自由能最小原则,给定多个初值的方法以及共轭梯度算法回归等措施,求出了各体系的热力学模型方程(改进的NRTL和UNIQUAC)的参数,确保了所获得的参数为全局近似最优解。在此基础上,结合物料守恒方程用Broyden算法对各体系平衡组成进行了计算,结果发现,计算值与实验值非常吻合。对于烷烃-NFM二元体系,NRTL方程的偏差在0.0104~0.0817之间,UNIQUAC方程的偏差在0.0182~0.7105之间,而在烷烃-芳烃-NFM的三元体系中,NRTL和UNIQUAC方程的偏差分别在0.0110~0.0937和0.0133~0.1471之间,大大低于文献中规定的1.37的值。由此可见,改进的NRTL方程比UNIQUAC方程更能有效地描述体系的相行为。
     4、平衡体系临界点的估算。以上述热力学模型回归参数为基础,对二元体系和三元体系临界点计算进行了理论研究,分别用NRTL和UNIQUAC两个模型方程给出了的临界点处温度和组成关系的数学表达式,从理论上获得了各体系相平衡曲线上的临界点值,为实际抽提过程中避免在临界点附近操作提供参考依据。
     5、热力学模型在抽提过程模拟计算。将NRTL和UNIQUAC方程与经典的萃取塔模型和流率加和算法相结合,对NFM萃取抽提芳烃过程进行模拟计算,结果表明:在优化条件下,NFM能从烷烃中很好地分离出芳烃;在能产生液液相分离的前提下,温度升高和溶剂比增加有利于抽提过程;在给定进料条件下,在溶剂比为2.875时,庚烷-NFM溶剂体系内,温度为353K,理论板数为8,芳烃的回收率可达95%以上;在环己烷-NFM溶剂内,温度在298K,理论板为8时芳烃回收率达到96%以上;在温度为353K、理论塔板数为15,芳烃在甲基环己烷-NFM溶剂体系中的回收率在92%以上。
As one of the new and excellent aromatics extractants, N-formylmorphoiline(NFM) was investigated through measuring experimentally the liquid-liquid equilibrium (LLE) data for aromatics extraction from hydrocarbon (heptane, cyclohexane, methylcyclohexane), and its extraction capability was studied thoroughly. According to the conditions of phase equilibrium, the mathematical model was established to correlate liquid-liquid equilibrium data and the parameters of the model were obtained by optimization method. Then the applications of the two thermodynamic equations in the extraction systems were carried out by calculation of phase equilibrium, critical points and simulation of extraction process. The main conclusions are as follows.
     1、Measurement of LLE and consistency of experimental data. The LLE data were measured for three binary systems (NFM + heptane or cyclohexane or methylcyclohexane) and six ternary systems (NFM+hydrocarbon (heptane, cyclohexane, methylcyclohexane) +aromatics (benzene, toluene)) using custom-built liquid-liquid equilibrium cell. It was found that the mutual solubilities increased in the higher temperature for the three binary systems. The mutual solubilities for NFM with different hydrocarbons satisfied the following relationship: cyclohexane > methylcyclohexane > heptane. The LLE diagrams obtained showed that they were type I and there exsited the large immiscibility regions, ensuring NFM to meet the demand of extraction solvent. The reliability of experimentally measured tie-line data was correlated by the Othmer-Tobias and the Bachman equations, and it was shown that the correlation coefficients had satisfactory degree of consistency.
     2、The extraction capabilities of NFM. The extraction capabilities of NFM were studied systematically. Distribution coefficients, separation factors and selectivity were evaluated for the immiscibility region, and their connections with temperature and the concentration of aromatic hydrocarbon were studied respectively. The results showed that NFM had excellent extraction capabilities. The values of distribution coefficient, separation factor and selectivity for benzene in these systems are 0.99, 12.4 and 5.2 respectively; and 0.85, 9.6 and 3.4 are also obtained for toluene. It was also found that with temperature increasing, the distribution coefficients of aromatic hydrocarbon increased, while the separation factors and the selectivity decreased. In the two phase coexistence area, as the concentration of aromatic hydrocarbon increased, distribution coefficients became higher and selectivity lower.
     3、The correlation of thermodynamic equations and the LLE calculation. Based on phase stability conditions, the objective function was established to correlate the LLE data. Because the solution of the global optimization is difficult to be obtained for the non-linear equations, several measurements had been employed, such as the minimization of Gibbs free energy of multi-component systems, feasible initial guess for a new minimization, conjugate Gradient method. The parameters of the two thermodynamics equations (NRTL and UNIQUAC) were guaranteed to be near the solution of global optimization. The correct solutions were obtained by the equality of chemical potentials, materiel conservation, and the Broyden method. It was found that NRTL and UNIQUAC used for LLE could provide a good prediction, and the former model was more suitable for the studied systems. In hydrocarbon-NFM binary systems, the root mean square deviation (RMSD) values of NRTL are in the range of 0.0104-0.0817, and those of UNIQUAC are between 0.0182-0.7105. In the ternary systems, the RMSD values are 0.0110-0.0937 for NRTL, 0.0133-0.1471 for UNIQUAC, showing that all RMSD values are lower than 1.37 prescribed by the literature.
     4、Critical points of the equilibrium. Based on the parameters of two thermodynamics equations and thermodynamics principle, the critical points of the binary and ternary systems were studied. Non-linear equations for calculating the critical points are given using the NRTL and the UNIQUAC models, respectively. The critical points can be determined by solving these non-linear equations through Broyden method. These results can be applied in practical extraction process to operate in the conditions far from critical points.
     5、Simulation of extraction process using thermodynamics equations. Simulation of extraction process using NFM as solvent to separate aromatics from hydrocarbon was carried out by adopting classical extraction tower model and Isothermal Sum Rates method. The two thermodynamics equations(NRTL and UNIQUAC) were used to calculate equilibrium constants of components. The optimization results obtained by the two equations show that aromatics can be separated effectively by NFM in extraction tower, and the relative temperature and solvent ratio are favorable on the condition of liquid-liquid phase separation. In the given conditions, in Heptane-NFM solvents system, when theoretical tray is 8, solvent ratio is 2.875, the recovery of aromatics can reach 95% at 353K. In the case of Cyclohexane-NFM, the recovery of aromatics is higher than 96% at 298K, in the conditions of theoretical tray=8, solvent ratio=2.875; As for Methylcyclohexane-NFM, the recovery of aromatics is as high as 92% at 353K, when theoretical tray is 15, solvent ratio is 2.875.
引文
[1]吴指南.基本有机化工工艺学.北京:化学工业出版社,1990.99-140
    [2]韩凤山,林克芝.世界芳烃生产技术的发展趋势.当代石油石化,2006,14(5):30-36
    [3]米多.国内外芳烃生产及消费预测.江苏化工,2004,32(6):59-62
    [4]孙玉净,牛晓旭.芳烃生产技术综述.化工科技,2000,8(4):70-75
    [5]刘一心,杨维军.芳烃生产技术现状评述.石油与天然气化工,2006,35(1):23-25
    [6]邱江.芳烃生产技术现状及研究进展.当代化工,2006,35(5):313-317
    [7]李燕秋,白尔铮,段启伟.芳烃生产技术的新进展.石油化工,2005,34(4):209-216
    [8]周晓沧.芳烃生产技术的进展.合成技术及应用,2003,18(4):31-35
    [9]王加伟译.芳烃回收的优良溶剂N一甲酰吗啉.石油炼制译丛,1992,5:26-29
    [10]米多.芳烃主要产品的市场分析.中国石油和化工,2004,11:71-73
    [11]柴国樑.国内外芳烃供需分析.石油化工动态,1999,17(3):16-20
    [12]陈洪钫,刘家祺.化工分离过程.北京:化学工业出版社,1995.1-10
    [13]许杰,朱玉明,郝立刚.苯类分离技术.精细石油化工进展,2005,23(1):33-38
    [14]袁天聪.芳烃抽提工艺评析.石油化工设计,2003,20(4):5-8
    [15]许杰,朱玉明.苯类芳烃分离技术.精细石油化工进展,2005,6(1):33-38
    [16]Morrison,S.G.,Brown,W.E..Reforming Process for Producing High Purity Benzene.Zeolites 1996,17(4):403-410
    [17]李炜.环丁砜抽提蒸馏制苯工艺的工业应用.炼油技术与工程,2006,36(5):16-19
    [18]Nagpal,J.M.,Rawat,B.S..LLE for Toluene-Heptane-NMP and Bz-Heptane-Solvents.J.Chem.Technol.Biotechnol.1981,31(1):146-150.
    [19]Rawat,B.S.,Gulati,I.B..Solvents for Aromatics Extraction & Criteria for Selection.J.Sci.Ind.Res.1976,35(3):383-386.
    [20]Rawat,B.S.,Gulati,I.B..Liquid-Liquid Equalibrium Studies for Separation of Aromatics.J.Appl.Chem.Biotechnol.1976,26(3):425-437.
    [21]Rawat,B.S.,Gulati,I.B..Studies on the Extraction of Aromatics with Sulpholane and its Combination with Thiodiglycol.J.Chem.Technol.Biotechnol.1981,31(1):25-32.
    [22]Rawat,B.S.,Naithani,J..Basic considerations in the Selection of Solvents for Aromatics Extraction.Hydrocarbon Technol.1993,1(1):51-60.
    [23]Rawat,B.S.,Ghosh,S.K.,Gulati,I.B.Basic Considerations in the Selection of Solvents for Aromatics Extraction.Pet.Hydrocarbons 1972,6(2):203-210.
    [24]Rawat,B.S.,Gulati,I.B.,Mallik,K.L..Study of Some Sulphur-Group Solvents for Aromatics Extraction by Gas Chromatography.J.Appl.Chem.Biotechnol.1976,26(2):247-252.
    [25]Rogozkin,V.A.,Grishchenko,N.F.,Koselov,M.L..Extraction of Low Molecular Weight Aromatic Hydrocarbons by N,N-Dimethylacetamide.Khim.Tekhnol.Topl.Masel 1981,2(1):37-39
    [26]Salem,A.B.S.H..Liquid-Liquid Equilibria for the Systems Triethyleneglycol-Toluene-Heptane,Propylene Carbonate-Toluene-Heptane,and Propylene Carbonate-o-Xylene-Heptane.Fluid Phase Equilibr.1993,86(3):351-361
    [27]Symoniak,M.F.,Ganju,Y.N.,Vidueira,J.A.Plant Data for Tetra Process.Hydrocarbon Process.1981,60(1):139-142.
    [28]Taher,A.A.S.,Emina,K..Measurement and Prediction of Phase Equilibria in the Extraction of Aromatics from Naphtha Reformate by Tetraethyleneglycol.Fluid Phase Equilib.1996,118(2):271-285.
    [29]Tripathi,R.P.,Raja,R.A.,Rao,P.B.Liquid-Liquid Equilibria in Ternary System Toluene-n-Heptane-Sulfolane.J.Chem.Eng.Data,1975,20(3):261-264.
    [30]Voetter,H.,Kosters,W.C.G..The Sulfolane Extraction Process.Sixth World Pet.Congr.Proc.1963,3(1):131-145
    [31]路昆,方东海,李玉淑.关于芳烃抽提溶剂环丁砜保护问题的探讨.化工科技,2006,14(5):16-19
    [32]李明玉,姜忠义,孙绪江.芳烃抽提装置中环丁砜循环系统设备腐蚀原因及对策.石油炼制与化工,2005,36(5):30-33
    [33]章炳华.芳烃抽提装置设备腐蚀及防护措施.石油化工腐蚀与防护,2006,23(2):12-15
    [34]顾侃英.芳烃抽提中环丁砜的劣化及其影响.石油学报(石油加工),2000,16(4):19-25
    [35]钱伯章.新型抽提剂及其在石油化工中的应用.精细石油化工进展,2004,5(5):29-35
    [36]邹东雷,隋振英.芳烃萃取剂N-甲酰吗啉的合成.精细化工中间体,2003,33(4):26-27
    [37]陶鹏万.N-甲酰吗啉的生产与应用.精细化工原料及中间体,2003,11:8-10
    [38]吕咏梅.N-甲酰吗啉合成技术与市场分析.化工中间体,2004,34(6):19-21
    [39]朱自强.化工热力学.北京:化工工业出版社,1980.218-336
    [40]化学工程手册编辑委员会.化学工程手册.第十四篇(萃取与浸取)北京:化学工业出版社,1985.7-9.
    [41]韩世钧译.化工相平衡.北京:中国石化出版社,1991.150-154
    [42]朱自强,姚善泾,金彰礼.流体相平衡原理及其应用.浙江:浙江大学出版社.1990.1-20
    [43]邱挺.醋酸甲酯催化精馏水解新工艺及相关基础研究:[博士学位论文].天津:天津大学,2002
    [44]Michael L.Michelsen.State function based flash specifications.Fluid Phase Equilibria,1999,158-160:617-626
    [45]Abrams,D.S.,Prausnitz,J.M..Statistical Thermodynamics of Liquid Mixtures:A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems.AIChEJ,1975,21(1):116-128.
    [46]Renon H,Prausnitz J M..Local Compositions in thermodynamic Excess Function for liquid mixtures.AIChEJ,1968,14(1):135-137
    [47]朱玉山,基于全局稳定性分析的相平衡计算:[博士学位论文].北京:中国科学院,1999
    [48]Escobedo-Alvarado,G.N.,Sandier,S.I..Study of EOS-GE Mixing Rules for Liquid-Liquid Equilibria.AIChE J.1998,44(8):1178-1187.
    [49]Matsuda,H.,Kurihara,K.,Ochi,K.,Kojima,K..Prediction of liquid-liquid equilibria at high pressure for binary systems using EOS-GE models:methanol +hydrocarbon systems.Fluid Phase Equilib,2002,203(1-2):269-284
    [50]Zielke,F.,Lempe,D.A..Generalized calculation of phase equilibria by using cubic equations of state.Fluid Phase Equilib,1997,141(2):63-85.
    [51] Derawi, S. O., Kontogeorgis, G. M., Stenby, et al. Liquid-Liquid Equilibria for Glycols + Hydrocarbons: Data and Correlation. J. Chem. Eng. Data, 2002, 47(2): 169-173.
    [52] Buzzi Ferraris, G. Tronconi, E. Bunlsi. A Fortran Program for Solution of Systems of Non-Linear Algebraic Equations. Comput. Chem. Eng. 1986, 10(1): 129-141.
    [53] Robert A. Heidemann, Rida M. Abdel-Ghani. A ternary system with five equilibrium phases. Chemical Engineering Science, 2001, 56(24): 6873-6881
    [54] J. Balogh, T. Csendes, R.P. Stateva. Application of a stochastic method to the solution of the phase stability problem: cubic equations of state. Fluid Phase Equilibria, 2003, 212(1-2): 257-267
    [55] Yushan Zhu, Katsutoshi Inoue. Calculation of chemical and phase equilibrium based on stability analysis by QBB algorithm: application to NRTL equation. Chemical Engineering Science, 2001, 56(24): 6915-6931
    [56] Mehrdad Khanpour, G.A. Parsafar, B. Najafi. Calculation of thermodynamic properties of simple fluids using a new derived pair correlation function, Fluid Phase Equilibria, 2007, 254(1-2): 138-143
    [57] Gade Pandu Rangaiah, Evaluation of genetic algorithms and simulated annealing for phase equilibrium and stability problems. Fluid Phase Equilibria, 2001, 187-188: 83-109
    [58] Yushan Zhu, Hao Wen, Zhihong Xu. Global stability analysis and phase equilibrium calculations at high pressures using the enhanced simulated annealing algorithm. Chemical Engineering Science, 2000, 55(17): 3451-3459
    [59] Dan Vladimir Nichita, Susana Gomez, Eduardo Luna. Multiphase equilibria calculation by direct minimization of Gibbs free energy with a global optimization method. Computers and Chemical Engineering, 2002, 26(12): 1703-1724
    [60] Angelo Lucia, Laxminarasimhan Padmanabhan, S. Venkataraman. Multiphase equilibrium flash calculations. Computers and Chemical Engineering, 2000, 24(12): 2557-2569
    [61] Dan Vladimir Nichita, Susana Gomez, Eduardo Luna. Phase stability analysis with cubic equations of state by using a global optimization method. Fluid Phase Equilibria, 2002, 194-197: 411-437
    [62] Stanislaw K. Wasylkiewicz, Sophie Ung. Global phase stability analysis for heterogeneous reactive mixtures and calculation of reactive liquid-liquid and vapor-liquid-liquid equilibria. Fluid Phase Equilibria, 2000, 175(1-2): 253-272
    [63] Gang Xua, William D. Haynes, Mark A. Stadtherr. Reliable phase stability analysis for asymmetric models. Fluid Phase Equilibria, 2005, 235(2): 152-165
    [64] Stephen R. Tessierl, Joan F. Brennecke, Mark A. Stadtherr. Reliable phase stability analysis for excess Gibbs energy models. Chemical Engineering Science, 2000, 55(10): 1785-1796
    [65] K. Wasai, G. Kaptay, K. Mukai, N. Shinozaki. Modified classical homogeneous nucleation theory and a new minimum in free energy change 2. Behavior of free energy change with a minimum calculated for various systems. Fluid Phase Equilibria. 2007, 255(1): 55-61
    [66] James Z. Hua, Robert W. Maier , et,al. Interval analysis for thermodynamic calculations in process design: a novel and completely reliable approach. Fluid Phase Equilibria, 1999,158-160: 607-615
    [67] James Z. Hua, Joan F. brennecke, Mark A. Stadtherr. Reliable computation of phase stability using interval analysis: Cubic equation of state models. computers Chem. Eng, 1997, 22(9): 1207-1214
    [68] James Z. Hua, Joan F. Brennecke and Mark A. Stadtherr. Reliable Prediction of Phase Stability Using an Interval Newton Method. Fluid Phase Fxluilibria, 1996, 116(1-2): 52-59
    [69] Hatice Gecegormez, Yasar Demirel. Phase stability analysis using interval Newton method with NRTL model. Fluid Phase Equilibria, 2005, 237 (1): 48-58
    
    [70] 袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,2001.183~199
    [71] Gabriela I. Burgos-Solorzano, Joan F. Brennecke, Mark A. Stadtherr. Validated computing approach for high-pressure chemical and multiphase equilibrium. Fluid Phase Equilibria, 2004, 219(2): 245-255
    [72] P. Colonna, N.R. Nannan, A. Guardone, E.W. Lemmon. Multiparameter equations of state for selected siloxanes. Fluid Phase Equilibria, 2006, 244(2): 193-211
    [73]V.R.Vasquez,W.B.Whiting.Regression of binary interaction parameters for thermodynamic models using an inside-variance estimation method IVEM.Fluid Phase Equilibria,2000,170(2):235-253
    [74]Luke D.Simoni,Youdong Lin,Joan F.et,al.Reliable computation of binary parameters in activity coefficient models for liquid-liquid equilibrium.Fluid Phase Equilibria,2007,255(2):138-146
    [75]J.David Raal,Deresh Ramjugemath.Rigorous characterization of static and dynamic apparatus for measuring limiting activity coefficients.Fluid Phase Equilibria,2001,187-188:473-487
    [76]Weinstein,O.,Semiat,R.,Lewin,D.R.Modeling.Simulation and Control of Liquid-Liquid Extraction Columns.Chem.Eng.Sci.,1998,53(2):325-339.
    [77]Broughton D.B.,Asselin G.F..Production of High Purity Aromatics by the Sulfolane Process.Seventh World Pet.Congr.Proc.1967,4(1):65-73
    [78]Sungjin L.,Hwayong K..Liquid-liquid Equiliubria for the Ternary Systems Sulfolane+Octane+Benzene,Sulfolane+Octane+Toluene,and Sulfolane+Octane+p-xylene.J.Chem.Eng.Data,1995,40(2):499-502
    [79]Sungjin L.,Hwayong K.Liquid-liquid Equiliubria for the Ternary Systems Sulfolane+Octane+Benzene,Sulfolane+Octane+Toluene,and Sulfolane+Octane+p-xylene at Elevated Temperatures.J.Chem.Eng.Data,1998,43(3):358-361.
    [80]Cincotti A.,Murru M.,Cao G.,et al.M.Liquid-Liquid Equilibria of Hydrocarbons with N-Formylmorpholine.J.Chem.Eng.Data,1999,44(3):480-483.
    [81]Awwad,A.M.,Salman,M.A.,Hassan,F.A.Liquid-liquid Equilibria for the Ternary Systems A-Butyrolactone-n-Heptane-Benzene,A-Butyrolactone-n-Heptane-Toluene,and A-Butyrolactone-n-Heptane-p-Xylene J.Chem.Eng.Data,1988,33(3):263-265.
    [82]Broughton,D.B.,Asselin,G.F.Production of High Purity Aromatics by the Sulfolane Process.Seventh World Pet.Congr.Proc.1967,4(1):65-73.
    [83]Cinelli,E.,Noe,S.,Paret,G.Extract Aromatics with FM.Hydrocarbon Process.1972,51(1):141-144.
    [84]Deal C.H.,Evans H.D.,Oliver E.D.,et al.Extraction of Aromatics with Sulfolane.Fifth World Pet.Congr.Proc.1959,3(2):283-297.
    [85]Hassan M.S.,Fahim M.A.,Mumford C.J..Correlation of Phase Equilibria of Naphtha Reformate with Sulfolane.J.Chem.Eng.Data,1988,33(2):162-165.
    [86]Klaus W.,Wemer K..Aspect of Development of Selective Solvent,for Separation of BTX,in the Development of AREX Process.Chem.Ges.D.D.R.1983,30(1):49-55
    [87]Krishina R.,Goswami A.N.,Nanoti S.M.,et al.Extraction of Aromatics from 63 to 69℃ Naphtha Fraction for Food Grade Hexane Production Using Sulpholane and NMP as Solvents.Indian J.Technol.1987,25(4):602-606.
    [88]Taher A.A.S.,Emina K..Measurement and Prediction of Phase Equilibria in the Extraction of Aromatics from Naphtha Reformate by Tetraethyleneglycol.Fluid Phase Equilibia,1996,118(2):271-285
    [89]唐焕文,秦学志.最优化方法.大连:大连理工大学出版社,1994.90-145
    [90]刁在筠,郑汉鼎,刘家壮等.运筹学.北京:高等教育出版社,2000.95-126
    [91]蔡宣三.最优化与最优控制.北京:清华大学出版社,1982.236-266
    [92]陈宝林.最优化理论与计算.北京:清华大学出版社,1989.334-383
    [93]郑汉鼎,刁在筠.数学规划.济南:山东教育出版社,1997.191-218
    [94]肖柳青,周石鹏.实用最优化方法.上海,上海交通大学出版社,2000.101-190
    [95]张可村.工程优化的算法与分析,西安:西安交通大学出版社,1988.94-234
    [96]周爱月.化工数学,北京:化学工业出版社,1996.172-178
    [97]李庆扬,莫孜中,祁力群.非线性方程数值解法.北京:科学出版社,1999.83-122
    [98]Haverland Hartmut,Vogelpohl Alfons,Gourdon Christophe,et al.An Expert System Based on C Language.Chem.Eng.Technol.,1981,10(3):151-157
    [99]Lao MiaoZhen,Kingsley Jeffery Po.,Krishnamurthy R J,et al.the Current Situation and Development about Solvent Extriction.Chem.Eng.Commun.,1989,86(1):73-89
    [100]Cesari G,Fermegia M,Kikic I,et al.Isolation and Properties of Aniouic Protest Inhbitors from Buck-wheat Seeds.Comput.Chem.Eng.,1989,13(10):1175-1178
    [101]Sereno A M.An Oriented Geographic Information System shell.Comput.Chem.Eng.,1987,11(2):177-185
    [102]王振华.稀土串级萃取分离过程的数学模型和计算机仿真.中国稀土学报,2002,20(10):132-135
    [103]李繁荣,郑英峨,赵维彭.N-甲酰吗啉芳烃萃取塔等温流率加和法模拟计算.炼油设计,1999,29(4):30-33
    [104]温晓明,费维扬.环丁砜芳烃抽提过程的计算机辅助设计.石油化工,2000,29(1):41-45
    [105]顾正桂,毛梅芳,林军,司玲.糠醛水溶液错流和逆流萃取分离的模拟计算.南京师范大学学报(工程技术版),2003,3(2):15-18
    [106]包焕升,夏书申,刘居东.超临界二氧化碳萃取小茴香油的工艺参数优化及数学模型研究.农业系统科学与综合研究,2000,16(4):290-291
    [107]原华山,银建中,丁信伟.超临界CO_2流体萃取大豆油的研究与数值模拟.化学工业与工程,2002,19(6):430-436
    [108]周大鹏,李谦,卢凤莉.超临界流体萃取过程混合模型的建立.河南大学学报(自然科学版),2006,36(3):42-46
    [109]石冰洁,张泽廷,于恩平.超临界流体萃取塔流体力学特性的研究.北京化工大学学报,2000,27(4):15-18
    [110]赵跃强,吴争鸣,刘玮炜.超临界流体萃取天然产物传质模型.化工学报,2006,57(3):521-525
    [111]丁彩梅,丘泰球,罗登林.超声强化超临界流体萃取的数学模型及机理.华南理工大学学报(自然科学版),2005,33(4):83-86
    [112]郑英峨,蔡锐,赵维彭.用N-甲酰吗啉萃取精馏分离苯加氢油中的烷烃.燃料与化工,1997,28(2):90-93
    [113]郑英峨,林司旭,赵维彭.芳烃抽提溶剂性能的研究.石油化工,1999,28(10):671-675
    [114]郑英峨,李繁荣,赵维彭.含N-甲酰吗啉三组分物系等温液液平衡.石油化工,2002,31(1):28-32
    [115]郑英峨,李繁荣,赵维彭.烷烃-芳烃-N-甲酰吗啉体系液-液平衡研究.石油学报(石油加工),2001,17(6):34-38
    [116]郑英峨,李繁荣,赵维彭.烷烃-芳烃-N-甲酰吗啉体系液液平衡.南京化工大学学报,1998,20(3):92-95
    [117]司林旭,郑英峨,赵维彭.N-甲酰吗啉加水溶剂抽提芳烃的液液平衡.南京化工大学学报,2000,22(1):54-58
    [118]蔡锐,郑英峨,赵维彭.UNIFAC基团贡献法预测烃类在N-甲酰吗啉中的相平衡数据.南京化工大学学报,1997,19(3):87-90
    [119]赵权宇,郑英峨,赵维彭.UNIFAC基团贡献法预测含N-甲酰吗啉体系的汽液平衡.石油化工,2001,30(5):376-379
    [120]赵权宇,郑英峨,赵维彭.新的N-甲酰吗啉UNIFAC基团相互作用参数.化工学报,2003,54(3):246-249
    [121]王艳红,朱兆友,高军.含N-甲酰吗啉溶液体系的相平衡模型研究.化学工业与工程技术,2005,26(3):16-18
    [122]Mohamed A.Q.,Taher A.A.,Mohamed.A.F..Liquid-Liquid Equilibria in Some Binary and Ternary Mixtures with N-Formylmorpholine.J.Chem.Eng.Data,1995,40(1):88-90
    [123]MinSu Ko,Sungjin Lee,Jungho Cho,et al.Liquid-Liquid Equilibria for Binary Systems Containing N-Formylmorpholine.J.Chem.Eng.Data,2002,47(4):923-926
    [124]MinSu Ko,Sangyoup Na,Soyoung Kwon.et al.Liquid-Liquid Equilibria for the Binary Systems of N-Formylmorpholine with Branched Cycloalkanes.J.Chem.Eng.Data,2003,48(3):699-702
    [125]MinSu Ko,Sangyoup Na,Sungjin Lee,et al.Liquid-Liquid Equilibria for the Binary Systems of N-Formylmorpholine with Cycloalkanes.J.Chem.Eng.Data,2003,48(2):249-252
    [126]Alberto Cincotti,Marcello Murru,Giacomo Cao.Liquid-Liquid Equilibria of Hydrocarbons with N-Formylmorpholine.J.Chem.Eng.Data,1999,44(3):480-483
    [127]Manoranjan Saha.Liquid-Liquid Equilibrium Studies on Toluene+Heptane +Solvent.J.Chem.Eng.Data,1998,43(3):422-426
    [128]Marusina M.B.,Gaile A.A.,Semenov L.V..Physicochemical Studies of Systems and Processes-Extraction of Aromatic Hydrocarbons by Mixtures of Diethylene Glycol with N-Formylmorpholine.Russ.J.Appl.Chem.1995,68(6):948-952
    [129]Marusina N.B.,Gaile A.A.,Semenov L.V..Extraction of Aromatic Hydrocarbons by Diethylene glycol-N-Formylmorpholine Mixtures.Zh.Prikl.Khim.1995,68:1084-1089
    [130]Raghunath P.Tripathi,A.Raja Ram,and P.Bhimeshwara Rao.Liquid-Liquid Equilibria in Ternary System Toluene-n-Heptane-Sulfolane.J.Chem.Data,75,20(3):261-264
    [131]M.Mohsen-Nia,H.Modarress,F.Doulabi a,H.Bagheri.Liquid+liquid equilibria for ternary mixtures of(solvent+aromatic hydrocarbon+alkane).J.Chem.Thermodynamics,2005,37(11):1111-1118
    [132]阳明盛,罗长章.最优化原理、方法及求解软件.北京:科学出版社,2006.172-190
    [133]李人厚,张平安.精通MATLAB综合辅导与指南.西安:西安交通大学出版社,1998
    [134]J.M.Sorensen,W.Arlt.Liquid-Liquid Equilibrium Collection Data.vol.V,Part 2,Dechema Chemistry Data Series,Frankfort,Germany,1980.
    [135]王关勤,张兵,刘伊芙等.甲苯一正庚烷一环丁砜三元体系液一液平衡测定及色谱定量分析的研究.石油化工,1982,11(2):10-11
    [136]J.M.Shaw,E.Behar..SLLV phase behavior and phase diagram transitions in asymmetric hydrocarbon fluids.Fluid Phase Equilibria,2003,209(2):185-206
    [137]A.M.Bollen,J.A.Wesselingh.The behaviour of the binodal and spinodal curves for near-binary compositions,Fluid Phase Equilibria.1998,149(1):17-25
    [138]Jones E.Schmitz,Roger J.Zemp,M ario.Artificial neural networks for the solution of the phase stability problem,Fluid Phase Equilibria.2006,245(1):83-87
    [139]韩世钧译.化工相平衡.北京:中国石化出版社,1991.394-437
    [140]胡宇军,黑恩成,刘国杰.液液平衡和会溶现象.化工学报,1999,50(4):483-486
    [141]胡宇军,黑恩成,史济斌等.液液平衡和临界现象.化学世界,1996(s1):126-128
    [142]Bo Hyun Lee,Yuan Qin,John M.Prausnitz.Thermodynamic representation of ternary liquid-liquid equilibria near-to and far-from the plait point,Fluid Phase Equilibria.2006,240(1):67-72
    [143]Paul H.E.Meijer.The metamorphosis from LCEP to UCEP in the metastable three-phase region in type V phase-diagrams.Fluid Phase Equilibria,1999,158-160:575-582
    [144]B.M.Jaffar Ali,A.Kumar.Mean-field critical behaviour of susceptibility near a curve of plait points in a ternary liquid mixture.Physics Letters A,1998.237(4-5):257-263
    [145]Josef P.Novak,Karel Rehak,Petr Vonka,Jaroslav Matous.Critical curves of liquid-liquid equilibria in ternary systems Description by a regular-solution model.Fluid Phase Equilibria,2003,208(1-2):199-221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700