双铁、单铁氢化酶活性中心有机金属模型配合物的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢化酶仿生化学是当前生物有机金属化学研究领域的前沿课题,其核心内容是活性中心的结构和功能模拟研究。本论文研究了双铁氢化酶以及单铁氢化酶活性中心模型化合物的合成,表征,反应性以及相关的理论探索。
     对模型配合物(μ-pdt)[Fe_2(CO)_3]_2及其有机膦配体取代衍生物进行了氧化研究,合成了用于模拟双铁氢化酶活性中心氧气敏感性的模型化合物,并利用1H NMR、31P NMR、IR和MS,EA对所合成的新化合物进行了结构表征,通过X-射线单晶分析,测定了其中五个配合物的晶体结构。DFT理论计算发现基于Fe-Fe键的氧化产物是热力学稳定产物,而氧化实验分离得到了基于硫原子氧化的动力学控制产物。通过化学还原以及电化学还原方法对相应的氧化模型配合物进行了脱氧研究,讨论了氧化与脱氧与氢化酶氧气敏感性的潜在联系。
     通过对模型配合物(μ-pdt)[Fe_2(CO)_3]_2(1)及其氧化产物(μ-pst)[Fe_2(CO)_3]_2(1-O)的羰基/膦配体取代反应动力学研究,考察了基于硫原子的氧化对配体取代反应能垒的影响。发现该反应能垒包括两部分:分子内结构重排的能垒和取代配体亲核进攻的能垒。配合物1的两步CO/PMe_3取代反应均遵循协同作用机理;其中,第二步取代反应能垒大于第一步反应,是速率控制步骤。配合物1-O与PMe_3反应较慢,动力学研究在较高温度下进行,发现第一步取代反应为协同作用机理与解离作用机理并行。配合物1-O中CO/CN-取代反应动力学研究发现,两步取代反应均为协同作用机理,并且配合物1-O的取代反应能垒大于配合物1中CO/CN-取代反应能垒。理论计算与相应的变温核磁研究考察了配合物中Fe(CO)_3中心翻转能垒的变化;研究发现,由于基于硫原子的氧化影响,配合物1-O中Fe(CO)_3中心翻转能垒较大。
     通过前体配合物FeI_2(CO)_4与相应氮杂环卡宾配体、有机膦配体和二齿氮配体的取代反应,合成了一系列分子式为FeI_2(CO)_xL_(4-x),(x=2或3)的单铁氢化酶活性中心前体模型配合物。并利用~1H NMR、~(31)P NMR、IR和MS,EA对所合成的新化合物进行了结构表征,通过X-射线单晶分析,测定其中六个配合物的晶体结构。通过红外吸收光谱和穆斯保尔谱(Mossbauer),研究了所合成模型化合物与单铁氢化酶活性中心的相关联系。通过该系列模型化合物与氮硫二齿配体的取代反应,合成了五个性能更好的模型配合物,通过X-射线单晶分析,测定其中三个配合物的晶体结构,并研究了其相关反应性。
Hydrogenase active site bio-mimetic chemistry is one of the important and hot area in bio-organometallic chemistry. This dissertation describes synthesis, characterization, reactivities and theoretical investigations of binuclear or mononuclear Fe carbonyl complexes that model the active site of the [FeFe]- and [Fe]-H2ases.
     Sulfur oxygenation of (μ-pdt)[Fe_2(CO)_3]_2 and its phosphine derivatives provides synthetic model complexes relevant to the oxygen sensitivity of the [FeFe]-H2ase. All the new synthesized complexes are characterized by 1H NMR、31P NMR、IR、MS and EA. Five of them has been determined by X-ray diffraction measurement. DFT computations find the Fe-Fe bond in the FeIFeI diiron models is thermodynamically favored to produce oxidative addition product, nevertheless the sulfur-based oxidized products are isolated as the kinetic products by synthesis experiment. Deoxygenation of theμ-pst complexes are conducted by chemical reduction and electrochemical reduction method. The possible biological relevance of oxygenation and deoxygenation studies is discussed.
     Kinetic studies of CO/L substitution reactions of the well-known organometallic complex (μ-pdt)[Fe(CO)_3]2, complex 1, and its sulfur-oxygenated derivative (μ-pst)[Fe(CO)_3]2, 1-O, have been carried out with the goal of understanding the influence of the sulfenato ligand on the activation barrier to ligand substitution in such diiron carbonyl complexes which consists of two components: intramolecular structural rearrangement (or fluxionality) and nucleophilic attack by the incoming ligand. The CO/PMe3 substitution reactions of complex 1 follow associative mechanisms in both the first and second substitutions; the second substitution is found to have a higher activation barrier for the overall reaction that yields 1-(PMe_3)_2. Complex 1-O reacts more sluggishly with PMe_3, where practical kinetic measurements are at such high temperatures that CO dissociation parallels the associative path. Kinetic studies have established that in complex 1-O both the first and second CO/CN- substitutions proceed via associative paths with higher Eact barriers than the analogous reactions with complex 1. Theoretical calculations (DFT) have been used in conjunction with variable temperature ~(13)C NMR spectral studies to examine the energy barriers associated with rotation of the Fe(CO)_3 unit. The activation energy required for rotation is higher in the sulfenato than in the analogous thiolato complexes.
     A series of mono- and di-substituted complexes, FeI_2(CO)_xL_(4-x), x = 2 or 3, is conveniently accessed from simple mixing of N-heterocyclic carbenes, phosphines and aromatic amines with FeI_2(CO)_4. All the new complexes are characterized by 1H NMR、~(31)P NMR、IR、MS and EA. Six of them has been determined by X-ray diffraction measurement. Diatomic ligand (ν(CO)) vibrational and Mossbauer spectroscopies are related to those reported for the Hmd active site. Interesting results on structures and reactivities of better [Fe]-H2ases active site complexes, (NS)Fe(CO)_2P will also be discussed.
引文
[1] Pimentel, D.; Hurd, L. E.; Bellotti, A. C.; Forster, M. J.; Oka, I. N.; Sholes, O. D.; Whitman, R. J., Food Production and Energy Crisis. Science 1973, 182 (4111), 443-449.
    [2] Lewis, N. S.; Nocera, D. G., Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (43), 15729-15735.
    [3] Service, R. F., The hydrogen backlash. Science 2004, 305 (5686), 958-961.
    [4] Larminie, J., Fuel Cell Systems Explained. SAE International. : 2003.
    [5] Von Hofmann, A. W., Introduction to Modern Chemistry: Experimental and Theoretic; Embodying Twelve Lectures Delivered in the Royal College of Chemistry. London., 1866.
    [6] Jones, A. K.; Sillery, E.; Albracht, S. P. J.; Armstrong, F. A., Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem. Commun. 2002, (8), 866-867.
    [7] Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y., Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases. Chem. Rev. 2007, 107 (10), 4273-4303.
    [8] Vignais, P. M.; Billoud, B., Occurrence, Classification, and Biological Function of Hydrogenases:  An Overview. Chem. Rev. 2007, 107 (10), 4206-4272.
    [9] Vignais, P. M.; Colbeau, A., Molecular biology of microbial hydrogenases. Curr Issues Mol Biol. 2004, 6 (2), 159-188.
    [10] Conrad, R., Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 1996, 60 (4), 609-640.
    [11] Cammack, R.; Frey, M.; Robson, R.; Eds., Hydrogen as a Fuel. Learning from Nature; Taylor and Francis: London, U.K. 2001.
    [12] De Lacey, A. L.; Fernandez, V. M.; Rousset, M.; Cammack, R., Activation and Inactivation of Hydrogenase Function and the Catalytic Cycle:  Spectroelectrochemical Studies. Chem. Rev. 2007, 107 (10), 4304-4330.
    [13] Vincent, K. A.; Parkin, A.; Armstrong, F. A., Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem. Rev. 2007, 107 (10),4366-4413.
    [14] Lubitz, W.; Reijerse, E.; van Gastel, M., [NiFe] and [FeFe] Hydrogenases Studied by Advanced Magnetic Resonance Techniques. Chem. Rev. 2007, 107 (10), 4331-4365.
    [15] Volbeda, A.; Charon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecillacamps, J. C., CRYSTAL-STRUCTURE OF THE NICKEL-IRON HYDROGENASE FROM DESULFOVIBRIO-GIGAS. Nature 1995, 373 (6515), 580-587.
    [16] Higuchi, Y.; Yagi, T.; Yasuoka, N., Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure 1997, 5 (12), 1671-1680.
    [17] Montet, Y.; Amara, P.; Volbeda, A.; Vernede, X.; Hatchikian, E. C.; Field, M. J.; Frey, M.; FontecillaCamps, J. C., Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nature Structural Biology 1997, 4 (7), 523-526.
    [18] Garcin, E.; Vernede, X.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C., The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 1999, 7 (5), 557-566.
    [19] Matias, P. M.; Soares, C. M.; Saraiva, L. M.; Coelho, R.; Morais, J.; Le Gall, J.; Carrondo, M. A., [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 angstrom and modelling studies of its interaction with the tetrahaem cytochrome c(3). J. Biol. Inorg. Chem. 2001, 6 (1), 63-81.
    [20] Volbeda, A.; Garcin, E.; Piras, C.; deLacey, A. L.; Fernandez, V. M.; Hatchikian, E. C.; Frey, M.; FontecillaCamps, J. C., Structure of the [NiFe] hydrogenase active site: Evidence for biologically uncommon Fe ligands. J. Am. Chem. Soc. 1996, 118 (51), 12989-12996.
    [21] Volbeda, A.; Martin, L.; Cavazza, C.; Matho, M.; Faber, B. W.; Roseboom, W.; Albracht, S. P. J.; Garcin, E.; Rousset, M.; Fontecilla-Camps, J. C., Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases. J. Biol. Inorg. Chem. 2005, 10 (3), 239-249.
    [22] Albracht, S. P. J.; Graf, E. G.; Thauer, R. K., THE ELECTRON- PARAMAGNETIC-RES PROPERTIES OF NICKEL IN HYDROGENASEFROM METHANOBACTERIUM-THERMOAUTOTROPHI -CUM. FEBS Lett. 1982, 140 (2), 311-313.
    [23] Cammack, R.; Patil, D.; Aguirre, R.; Hatchikian, E. C., REDOX PROPERTIES OF THE ESR-DETECTABLE NICKEL IN HYDROGENASE FROM DESULFOVIBRIO-GIGAS. FEBS Lett. 1982, 142 (2), 289-292.
    [24] Legall, J.; Ljungdahl, P. O.; Moura, I.; Peck, H. D.; Xavier, A. V.; Moura, J. J. G.; Teixera, M.; Huynh, B. H.; Dervartanian, D. V., THE PRESENCE OF REDOX-SENSITIVE NICKEL IN THE PERIPLASMIC HYDROGENASE FROM DESULFOVIBRIO GIGAS. Biochem. Biophys. Res. Commun. 1982, 106 (2), 610-616.
    [25] Bagley, K. A.; Vangarderen, C. J.; Chen, M.; Duin, E. C.; Albracht, S. P. J.; Woodruff, W. H., INFRARED STUDIES ON THE INTERACTION OF CARBON-MONOXIDE WITH DIVALENT NICKEL IN HYDROGENASE FROM CHROMATIUM-VINOSUM. Biochemistry 1994, 33 (31), 9229-9236.
    [26] Bagley, K. A.; Duin, E. C.; Roseboom, W.; Albracht, S. P. J.; Woodruff, W. H., Infrared-Detectable Group Senses Changes in Charge Density on the Nickel Center in Hydrogenase from Chromatium vinosum. Biochemistry 1995, 34 (16), 5527-5535.
    [27] Happe, R. P.; Roseboom, W.; Pierik, A. J.; Albracht, S. P. J.; Bagley, K. A., Biological activation of hydrogen. Nature 1997, 385 (6612), 126-126.
    [28] Pierik, A. J.; Roseboom, W.; Happe, R. P.; Bagley, K. A.; Albracht, S. P. J., Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases - NiFe(CN)(2)CO, biology's way to activate H-2. J. Biol. Chem. 1999, 274 (6), 3331-3337.
    [29] deLacey, A. L.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; FontecillaCamps, J. C.; Fernandez, V. M., Infrared spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio gigas. J. Am. Chem. Soc. 1997, 119 (31), 7181-7189.
    [30] Bleijlevens, B.; van Broekhuizen, F. A.; De Lacey, A. L.; Roseboom, W.; Fernandez, V. M.; Albracht, S. P. J., The activation of the [NiFe]-hydrogenase from Allochromatium vinosum. An infrared spectro-electrochemical study. J. Biol. Inorg. Chem. 2004, 9 (6), 743-752.
    [31] DeLacey, A. L.; Stadler, C.; Fernandez, V. M.; Hatchikian, E. C.; Fan, H. J.; Li, S. H.; Hall, M. B., IR spectroelectrochemical study of the binding of carbonmonoxide to the active site of Desulfovibrio fructosovorans Ni-Fe hydrogenase. J. Biol. Inorg. Chem. 2002, 7 (3), 318-326.
    [32] Fichtner, C.; Laurich, C.; Bothe, E.; Lubitz, W., Spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F. Biochemistry 2006, 45 (32), 9706-9716.
    [33] Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C., X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 1998, 282 (5395), 1853-1858.
    [34] Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C., Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure with Folding & Design 1999, 7 (1), 13-23.
    [35] Nicolet, Y.; de Lacey, A. L.; Vernede, X.; Fernandez, V. M.; Hatchikian, E. C.; Fontecilla-Camps, J. C., Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 2001, 123 (8), 1596-1601.
    [36] Fan, H. J.; Hall, M. B., A capable bridging ligand for Fe-only hydrogenase: Density functional calculations of a low-energy route for heterolytic cleavage and formation of dihydrogen. J. Am. Chem. Soc. 2001, 123 (16), 3828-3829.
    [37] Pandey, A. S.; Harris, T. V.; Giles, L. J.; Peters, J. W.; Szilagyi, R. K., Dithiomethylether as a ligand in the hydrogenase H-cluster. J. Am. Chem. Soc. 2008, 130 (13), 4533-4540.
    [38] Lemon, B. J.; Peters, J. W., Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 1999, 38 (40), 12969-12973.
    [39]Huynh, B. H.; Czechowski, M. H.; Kruger, H. J.; Dervartanian, D. V.; Peck, H. D.; Legall, J., DESULFOVIBRIO-VULGARIS HYDROGENASE - A NONHEME IRON ENZYME LACKING NICKEL THAT EXHIBITS ANOMALOUS ELECTRON-PARAMAGNETIC-RES AND MOSSBAUER-SPECTRA. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 1984, 81 (12), 3728-3732.
    [40] Adams, M. W. W., THE MECHANISMS OF H-2 ACTIVATION AND CO BINDING BY HYDROGENASE-I AND HYDROGENASE-II OFCLOSTRIDIUM-PASTEURIANUM. J. Biol. Chem. 1987, 262 (31), 15054-15061.
    [41] Patil, D. S.; Moura, J. J. G.; He, S. H.; Teixeira, M.; Prickril, B. C.; Dervartanian, D. V.; Peck, H. D.; Legall, J.; Huynh, B. H., EPR-DETECTABLE REDOX CENTERS OF THE PERIPLASMIC HYDROGENASE FROM DESULFOVIBRIO-VULGARIS. J. Biol. Chem. 1988, 263 (35), 18732-18738.
    [42] Hatchikian, E. C.; Forget, N.; Fernandez, V. M.; Williams, R.; Cammack, R., FURTHER CHARACTERIZATION OF THE [FE]-HYDROGENASE FROM DESULFOVIBRIO-DESULFURICANS ATCC-7757. Eur. J. Biochem. 1992, 209 (1), 357-365.
    [43] Pierik, A. J.; Hagen, W. R.; Redeker, J. S.; Wolbert, R. B. G.; Boersma, M.; Verhagen, M.; Grande, H. J.; Veeger, C.; Mutsaers, P. H. A.; Sands, R. H.; Dunham, W. R., REDOX PROPERTIES OF THE IRON-SULFUR CLUSTERS IN ACTIVATED FE-HYDROGENASE FROM DESULFOVIBRIO-VULGARIS (HILDENBOROUGH). Eur. J. Biochem. 1992, 209 (1), 63-72.
    [44] Roseboom, W.; De Lacey, A. L.; Fernandez, V. M.; Hatchikian, E. C.; Albracht, S. P. J., The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J. Biol. Inorg. Chem. 2006, 11 (1), 102-118.
    [45] VanderSpek, T. M.; Arendsen, A. F.; Happe, R. P.; Yun, S. Y.; Bagley, K. A.; Stufkens, D. J.; Hagen, W. R.; Albracht, S. P. J., Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy. Eur. J. Biochem. 1996, 237 (3), 629-634.
    [46] Pierik, A. J.; Hulstein, M.; Hagen, W. R.; Albracht, S. P. J., A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur. J. Biochem. 1998, 258 (2), 572-578.
    [47] De Lacey, A. L.; Stadler, C.; Cavazza, C.; Hatchikian, E. C.; Fernandez, V. M., FTIR characterization of the active site of the Fe-hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 2000, 122 (45), 11232-11233.
    [48] Popescu, C. V.; Munck, E., Electronic Structure of the H Cluster in [Fe]-Hydrogenases. J. Am. Chem. Soc. 1999, 121 (34), 7877-7884.
    [49] Pereira, A. S.; Tavares, P.; Moura, I.; Moura, J. J. G.; Huynh, B. H., Mossbauer characterization of the iron-sulfur clusters in Desulfovibrio vulgaris hydrogenase. J. Am. Chem. Soc. 2001, 123 (12), 2771-2782.
    [50] Korbas, M.; Vogt, S.; Meyer-Klaucke, W.; Bill, E.; Lyon, E. J.; Thauer, R. K.; Shima, S., The iron-sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. Journal of Biological Chemistry 2006, 281 (41), 30804-30813.
    [51] Shima, S.; Thauer, R. K., Chem. Rec. 2007, 7, 37.
    [52]Shima, S.; Lyon, E. J.; Sordel-Klippert, M. S.; Kauss, M.; Kahnt, J.; Thauer, R. K.; Steinbach, K.; Xie, X. L.; Verdier, L.; Griesinger, C., The cofactor of the iron-sulfur cluster free hydrogenase Hmd: Structure of the light-inactivation product. Angewandte Chemie-International Edition 2004, 43 (19), 2547-2551.
    [53] Lyon, E. J.; Shima, S.; Buurman, G.; Chowdhuri, S.; Batschauer, A.; Steinbach, K.; Thauer, R. K., UV-A/blue-light inactivation of the 'metal-free' hydrogenase (Hmd) from methanogenic archaea - The enzyme contains functional iron after all. European Journal of Biochemistry 2004, 271 (1), 195-204.
    [54] Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U., The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 2008, 321 (5888), 572-575.
    [55] Hiromoto, T.; Ataka, K.; Pilak, O.; Vogt, S.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Shima, S.; Ermler, U., The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl- iron ligation in the active site iron complex. FEBS Lett. 2009, 583 (3), 585-590.
    [56] Shima, S.; Lyon, E. J.; Thauer, R. K.; Mienert, B.; Bill, E., Mossbauer studies of the iron-sulfur cluster-free hydrogenase: The electronic state of the mononuclear Fe active site. J. Am. Chem. Soc. 2005, 127 (29), 10430-10435.
    [57] Siegbahn, P. E. M.; Tye, J. W.; Hall, M. B., Computational Studies of [NiFe] and [FeFe] Hydrogenases. Chem. Rev. 2007, 107 (10), 4414-4435.
    [58] Adams, M. W. W., The Structure and mechanism of iron-hydrogenases. Biochim. Biophys. Acta 1990, 1020, 115-145.
    [59] Shima, S.; Thauer, R. K., A third type of hydrogenase catalyzing H-2 activation. Chemical Record 2007, 7 (1), 37-46.
    [60] Vignais, P. M., H/D exchange reactions and mechanistic aspects of the hydrogenases. Coord. Chem. Rev. 2005, 249 (15-16), 1677-1690.
    [61] Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U., Science 2008, 321, 572.
    [62] Yang, X.; Hall, M. B., Monoiron Hydrogenase Catalysis: Hydrogen Activation with the Formation of a Dihydrogen Bond and Methenyl-H4MPT+ Triggered Hydride Transfer. J. Am. Chem. Soc. 2009, 131 (31), 10901-10908.
    [63] Pershad, H. R.; Duff, J. L. C.; Heering, H. A.; Duin, E. C.; Albracht, S. P. J.; Armstrong, F. A., Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: Application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H-2 value. Biochemistry 1999, 38 (28), 8992-8999.
    [64] Leger, C.; Jones, A. K.; Roseboom, W.; Albracht, S. P. J.; Armstrong, F. A., Enzyme electrokinetics: Hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase. Biochemistry 2002, 41 (52), 15736-15746.
    [65] Jones, A. K.; Lamle, S. E.; Pershad, H. R.; Vincent, K. A.; Albracht, S. P. J.; Armstrong, F. A., Enzyme electrokinetics: Electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase. J. Am. Chem. Soc. 2003, 125 (28), 8505-8514.
    [66] Lamle, S. E.; Vincent, K. A.; Halliwell, L. M.; Albracht, S. P. J.; Armstrong, F. A., Hydrogenase on an electrode: a remarkable heterogeneous catalyst. Dalton Trans. 2003, (21), 4152-4157.
    [67] Lamle, S. E.; Albracht, S. P. J.; Armstrong, F. A., Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: Insights into the puzzling difference between unready and ready oxidized inactive states. J. Am. Chem. Soc. 2004, 126 (45), 14899-14909.
    [68] Armstrong, F. A.; Albracht, P. J., [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2005, 363 (1829), 937-954.
    [69] Vincent, K. A.; Cracknell, J. A.; Parkin, A.; Armstrong, F. A., Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology. Dalton Trans. 2005, (21), 3397-3403.
    [70] Vincent, K. A.; Parkin, A.; Lenz, O.; Albracht, S. P. J.; Fontecilla-Camps, J. C.; Cammack, R.; Friedrich, B.; Armstrong, F. A., Electrochemical definitions of O-2 sensitivity and oxidative inactivation in hydrogenases. J. Am. Chem. Soc. 2005, 127 (51), 18179-18189.
    [71] Elgren, T. E.; Zadvorny, O. A.; Brecht, E.; Douglas, T.; Zorin, N. A.; Maroney, M.J.; Peters, J. W., Immobilization of Active Hydrogenases by Encapsulation in Polymeric Porous Gels. Nano Lett. 2005, 5 (10), 2085-2087.
    [72] Alonso-Lomillo, M. A.; Rudiger, O.; Maroto-Valiente, A.; Velez, M.; Rodriguez-Ramos, I.; Munoz, F. J.; Fernandez, V. M.; De Lacey, A. L., Hydrogenase-Coated Carbon Nanotubes for Efficient H2 Oxidation. Nano Lett. 2007, 7 (6), 1603-1608.
    [73] McDonald, T. J.; Svedruzic, D.; Kim, Y.-H.; Blackburn, J. L.; Zhang, S. B.; King, P. W.; Heben, M. J., Wiring-Up Hydrogenase with Single-Walled Carbon Nanotubes. Nano Lett. 2007, 7 (11), 3528-3534.
    [74] Kubas, G. J., Fundamentals of H2 Binding and Reactivity on Transition Metals Underlying Hydrogenase Function and H2 Production and Storage. Chem. Rev. 2007, 107 (10), 4152-4205.
    [75] Davidson, E. R.; Kunze, K. L.; Machado, F. B. C.; Chakravorty, S. J., THE TRANSITION-METAL CARBONYL BOND. Acc. Chem. Res. 1993, 26 (12), 628-635.
    [76] Dobson, G. R., TRENDS IN REACTIVITY FOR LIGAND-EXCHANGE REACTIONS OF OCTAHEDRAL METAL-CARBONYLS. Acc. Chem. Res. 1976, 9 (8), 300-306.
    [77] Darensbourg, D. J., MECHANISTIC PATHWAYS FOR LIGAND SUBSTITUTION PROCESSES IN METAL-CARBONYLS. Adv. Organomet. Chem. 1982, 21, 113-150.
    [78] Ford, P. C.; Rokicki, A., NUCLEOPHILIC ACTIVATION OF CARBON-MONOXIDE - APPLICATIONS TO HOMOGENEOUS CATALYSIS BY METAL-CARBONYLS OF THE WATER GAS SHIFT AND RELATED REACTIONS. Adv. Organomet. Chem. 1988, 28, 139-217.
    [79] Cable, J. W.; Sheline, R. K., BOND HYBRIDIZATION AND STRUCTURE IN THE METAL CARBONYLS. Chem. Rev. 1956, 56 (1), 1-26.
    [80] Aubke, F.; Wang, C., CARBON-MONOXIDE AS A SIGMA-DONOR LIGAND IN COORDINATION CHEMISTRY. Coord. Chem. Rev. 1994, 137, 483-524.
    [81] Brunet, J. J.; Chauvin, R.; Diallo, O.; Kindela, F.; Leglaye, P.; Neibecker, D., Coordination chemistry of mononuclear iron carbonyl complexes. Coord. Chem. Rev. 1998, 178, 331-351.
    [82] Georgakaki, I. P.; Thomson, L. M.; Lyon, E. J.; Hall, M. B.; Darensbourg, M. Y., Fundamental properties of small molecule models of Fe-only hydrogenase:computations relative to the definition of an entatic state in the active site. Coord. Chem. Rev. 2003, 238, 255-266.
    [83] Bouwman, E.; Reedijk, J., Structural and functional models related to the nickel hydrogenases. Coord. Chem. Rev. 2005, 249 (15-16), 1555-1581.
    [84] Bruschi, M.; Zampella, G.; Fantucci, P.; De Gioia, L., DFT investigations of models related to the active site of [NiFe] and [Fe] hydrogenases. Coord. Chem. Rev. 2005, 249 (15-16), 1620-1640.
    [85] Capon, J. F.; Gloaguen, F.; Schollhammer, P.; Talarmin, J., Catalysis of the electrochemical H-2 evolution by di-iron sub-site models. Coord. Chem. Rev. 2005, 249 (15-16), 1664-1676.
    [86] Liu, X. M.; Ibrahim, S. K.; Tard, C.; Pickett, C. J., Iron-only hydrogenase: Synthetic, structural and reactivity studies of model compounds. Coord. Chem. Rev. 2005, 249 (15-16), 1641-1652.
    [87] Sun, L. C.; Akermark, B.; Ott, S., Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production. Coord. Chem. Rev. 2005, 249 (15-16), 1653-1663.
    [88] Darensbourg, M. Y.; Lyon, E. J.; Smee, J. J., The bio-organometallic chemistry of active site iron in hydrogenases. Coord. Chem. Rev. 2000, 206, 533-561.
    [89] Capon, J. F.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J., Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coord. Chem. Rev. 2009, 253 (9-10), 1476-1494.
    [90] Marr, A. C.; Spencer, D. J. E.; Schroder, M., Structural mimics for the active site of [NiFe] hydrogenase. Coord. Chem. Rev. 2001, 219, 1055-1074.
    [91] Tard, C.; Pickett, C. J., Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases. Chem. Rev. 2009, 109 (6), 2245-2274.
    [92] Halcrow, M. A.; Christou, G., BIOMIMETIC CHEMISTRY OF NICKEL. Chem. Rev. 1994, 94 (8), 2421-2481.
    [93] Nguyen, D. H.; Hsu, H. F.; Millar, M.; Koch, S. A.; Achim, C.; Bominaar, E. L.; Munck, E., Nickel(II) thiolate complex with carbon monoxide and its Fe(II) analog: Synthetic models for CO adducts of nickel-iron-containing enzymes. J. Am. Chem. Soc. 1996, 118 (37), 8963-8964.
    [94] Hsu, H. F.; Koch, S. A.; Popescu, C. V.; Munck, E., Chemistry of iron thiolatecomplexes with CN- and CO. Models for the [Fe(CO)(CN)(2)] structural unit in Ni-Fe hydrogenase enzymes. J. Am. Chem. Soc. 1997, 119 (35), 8371-8372.
    [95] Jiang, J. F.; Koch, S. A., Two-dimensional materials based on trans-[Fe-II(CN)(4)(CO)(2)](2-) building blocks; first structural evidence for a hydrated metal carbonyl ligation. Chem. Commun. 2002, (16), 1724-1725.
    [96] Lai, C. H.; Lee, W. Z.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, D. J.; Darensbourg, M. Y., Responses of the Fe(CN)(2)(CO) unit to electronic changes as related to its role in [NiFe]hydrogenase. J. Am. Chem. Soc. 1998, 120 (39), 10103-10114.
    [97] Liaw, W. F.; Lee, J. H.; Gau, H. B.; Chen, C. H.; Jung, S. J.; Hung, C. H.; Chen, W. Y.; Hu, C. H.; Lee, G. H., Six-coordinate and five-coordinate Fe-II(CN)(2)(CO)(x) thiolate complexes (x=1, 2): Synthetic advances for iron sites of [NiFe] hydrogenases. J. Am. Chem. Soc. 2002, 124 (8), 1680-1688.
    [98] Chen, C. H.; Chang, Y. S.; Yang, C. Y.; Chen, T. N.; Lee, C. M.; Liaw, W. F., Preparative and structural studies on iron(II)-thiolate cyanocarbonyls: relevance to the [NiFe]/[Fe]-hydrogenases. Dalton Transactions 2004, (1), 137-143.
    [99] Chiou, T. W.; Liaw, W. F., Nickel-thiolate and iron-thiolate cyanocarbonyl complexes: Modeling the nickel and iron sites of [NiFe] hydrogenase. Comptes Rendus Chimie 2008, 11 (8), 818-833.
    [100] Sellmann, D. L., F.; Geipel, F.; Heinemann, F. W.; Moll, M., A Trinuclear [NiFe] Cluster Exhibiting Structural and Functional Key Features of [NiFe] Hydrogenases Angew. Chem. Int. Ed. 2004, 43, 3141-3144.
    [101] Perra, A.; Davies, E. S.; Hyde, J. R.; Wang, Q.; McMaster, J.; Schroder, M., Electrocatalytic production of hydrogen by a synthetic model of [NiFe] hydrogenases. Chem. Commun. 2006, (10), 1103-1105.
    [102] Barton, B. E.; Whaley, C. M.; Rauchfuss, T. B.; Gray, D. L., Nickela?’Iron Dithiolato Hydrides Relevant to the [NiFe]-Hydrogenase Active Site. J. Am. Chem. Soc. 2009, 131 (20), 6942-6943.
    [103] Lauderbach, F.; Prakash, R.; Gotz, A. W.; Munoz, M.; Heinemann, F. W.; Nickel, U.; Hess, B. A.; Sellmann, D., Alternative synthesis, density functional calculations and proton reactivity study of a trinuclear [NiFe] hydrogenase model compound. European Journal of Inorganic Chemistry 2007, (21), 3385-3393.
    [104] Li, Z. L.; Ohki, Y.; Tatsumi, K., Dithlolato-bridged dinuclear iron-nickel complexes [Fe(CO)(2)(CN)(2)(mu-SCH2CH2CH2S)Ni(S2CNR2)](-) - Modelingthe active site of [NiFe] hydrogenase. J. Am. Chem. Soc. 2005, 127 (25), 8950-8951.
    [105] Sellmann, D.; Geipel, F.; Moll, M., [Ni(NHPnPr(3))('S-3')], the first nickel thiolate complex modeling the nickel cysteinate site and reactivity of [NiFe] hydrogenase. Angew. Chem.-Int. Edit. Engl. 2000, 39 (3), 561-563.
    [106] DuBois, M. R.; DuBois, D. L., The role of pendant bases in molecular catalysts for H-2 oxidation and production. Comptes Rendus Chimie 2008, 11 (8), 805-817.
    [107] DuBois, M. R.; DuBois, D. L., The roles of the first and second coordination spheres in the design of molecular catalysts for H-2 production and oxidation. Chem. Soc. Rev. 2009, 38 (1), 62-72.
    [108] Reihlen, H.; Gruhl, A.; Hessling, G. v.,über den photochemischen und oxydativen Abbau von Carbonylen. Justus Liebig's Annalen der Chemie 1929, 472 (1), 268-287.
    [109] Dahl, L. F.; Wei, C.-H., Structure and Nature of Bonding of [C2H5SFe(CO)3]2. Inorg. Chem. 2002, 2 (2), 328-333.
    [110] Hieber, W.; Spacu, P.,über Metallcarbonyle. XXVI. Einwirkung organischer Schwefelverbindungen auf die Carbonyle von Eisen und Kobalt. Z. Anorg. Allg. Chem. 1937, 233 (4), 353-364.
    [111] Hieber, W.; Scharfenberg, C., Einwirkung organischer Schwefelverbindungen auf die Carbonyle des Eisens (XXXI. Mitteil.über Metallcarbonyle). Berichte der deutschen chemischen Gesellschaft (A and B Series) 1940, 73 (9), 1012-1021.
    [112] Hieber, W.; Gruber, J., Zur Kenntnis der Eisencarbonylchalkogenide. Z. Anorg. Allg. Chem. 1958, 296 (1-6), 91-103.
    [113] Hieber, W.; Beck, W.,über Tricarbonyleisenverbindungen des Typs.Z. Anorg. Allg. Chem. 1960, 305 (5-6), 265-273.
    [114] Apfel, U. P.; Halpin, Y.; Gorls, H.; Vos, J. G.; Schweizer, B.; Linti, G.; Weigand, W. G., Synthesis and characterization of hydroxy-functionalized models for the active site in Fe-only-hydrogenases. Chemistry & Biodiversity 2007, 4 (9), 2138-2148.
    [115] Seyferth, D.; Henderson, R. S.; Song, L. C., Chemistry of .mu.-dithio- bis(tricarbonyliron), a mimic of organic disulfides. 1. Formation of di-.mu.- thiolate-bis(tricarbonyliron) dianion. Organometallics 1982, 1 (1), 125-133.
    [116] Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B., First Generation Analogues of the Binuclear Site in the Fe-Only Hydrogenases: Fe2(μ-SR)2(CO)4(CN)22. J. Am.Chem. Soc. 1999, 121 (41), 9736-9737.
    [117] Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y., Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase. Angew. Chem.-Int. Edit. 1999, 38 (21), 3178-3180.
    [118] Le Cloirec, A.; Best, S. P.; Borg, S.; Davies, S. C.; Evans, D. J.; Hughes, D. L.; Pickett, C. J., A di-iron dithiolate possessing structural elements of the carbonyl/cyanide sub-site of the H-centre of Fe-only hydrogenase. Chem. Commun. 1999, (22), 2285-2286.
    [119] Lawrence, J. D.; Li, H. X.; Rauchfuss, T. B.; Benard, M.; Rohmer, M. M., Diiron azadithiolates as models for the iron-only hydrogenase active site: Synthesis, structure, and stereoelectronics. Angew. Chem.-Int. Edit. Engl. 2001, 40 (9), 1768-1771.
    [120] Li, H.; Rauchfuss, T. B., Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense To Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases. J. Am. Chem. Soc. 2002, 124 (5), 726-727.
    [121] Tard, C.; Liu, X. M.; Ibrahim, S. K.; Bruschi, M.; De Gioia, L.; Davies, S. C.; Yang, X.; Wang, L. S.; Sawers, G.; Pickett, C. J., Synthesis of the H-cluster framework of iron-only hydrogenase. Nature 2005, 433 (7026), 610-613.
    [122] Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y., H/D Exchange Reactions in Dinuclear Iron Thiolates as Activity Assay Models of Fe-H2ase. J. Am. Chem. Soc. 2001, 123 (39), 9710-9711.
    [123] Lawrence, J. D.; Rauchfuss, T. B.; Wilson, S. R., New class of diiron dithiolates related to the Fe-only hydrogenase active site: Synthesis and characterization of [Fe-2(SR)(2)(CNMe)(7)](2+). Inorg. Chem. 2002, 41 (24), 6193-6195.
    [124] Boyke, C. A.; Rauchfuss, T. B.; Wilson, S. R.; Rohmer, M. M.; Benard, M., [Fe-2(SR)(2)(mu-CO)(CNMe)(6)](2+) and analogues: A new class of diiron dithiolates as structural models for the H-ox(Air) air state of the Fe-only hydrogenase. J. Am. Chem. Soc. 2004, 126 (46), 15151-15160.
    [125] van der Vlugt, J. I.; Rauchfuss, T. B.; Whaley, C. M.; Wilson, S. R., Characterization of a Diferrous Terminal Hydride Mechanistically Relevant to the Fe-Only Hydrogenases. J. Am. Chem. Soc. 2005, 127 (46), 16012-16013.
    [126] Ezzaher, S.; Capon, J. F.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J., Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic. Inorg. Chem. 2007, 46 (9),3426-3428.
    [127] Wolpher, H.; Borgstrom, M.; Hammarstrom, L.; Bergquist, J.; Sundstrom, V.; Stenbjorn, S.; Sun, L. C.; Akermark, B., Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorg. Chem. Commun. 2003, 6 (8), 989-991.
    [128] Ott, S.; Kritikos, M.; Akermark, B.; Sun, L. C., Synthesis and structure of a biomimetic model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer. Angew. Chem.-Int. Edit. Engl. 2003, 42 (28), 3285-3288.
    [129] Li, X. Q.; Wang, M.; Zhang, S. P.; Pan, J. X.; Na, Y.; Liu, J. H.; Akermark, B.; Sun, L. C., Noncovalent assembly of a metalloporphyrin and an iron hydrogenase active-site model: Photo-induced electron transfer and hydrogen generation. J. Phys. Chem. B 2008, 112 (27), 8198-8202.
    [130] Song, L. C.; Wang, L. X.; Tang, M. Y.; Li, C. G.; Song, H. B.; Hu, Q. M., Synthesis, Structure, and Photoinduced Catalysis of [FeFe]-Hydrogenase Active Site Models Covalently Linked to a Porphyrin or Metalloporphyrin Moiety. Organometallics 2009, 28 (13), 3834-3841.
    [131] Song, L. C.; Tang, M. Y.; Su, F. H.; Hu, Q. M., A biomimetic model for the active site of iron-only hydrogenases covalently bonded to a porphyrin photosensitizer. Angew. Chem.-Int. Edit. Engl. 2006, 45 (7), 1130-1133.
    [132] Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Mejia-Rodriguez, R.; Chiang, C. Y.; Darensbourg, M. Y., Catalysis of H2/D2 Scrambling and Other H/D Exchange Processes by [Fe]-Hydrogenase Model Complexes. Inorg. Chem. 2002, 41 (15), 3917-3928.
    [133] Georgakaki, I. P.; Miller, M. L.; Darensbourg, M. Y., Requirements for Functional Models of the Iron Hydrogenase Active Site: D2/H2O Exchange Activity in {(μ-SMe)(μ-pdt)[Fe(CO)2(PMe3)]2+}[BF4-]. Inorg. Chem. 2003, 42 (8), 2489-2494.
    [134] Zhao, X.; Chiang, C. Y.; Miller, M. L.; Rampersad, M. V.; Darensbourg, M. Y., Activation of Alkenes and H2 by [Fe]-H2ase Model Complexes. J. Am. Chem. Soc. 2003, 125 (2), 518-524.
    [135] Gloaguen, F.; Lawrence, J. D.; Rauchfuss, T. B., Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate. J. Am. Chem. Soc. 2001, 123 (38), 9476-9477.
    [136] Chong, D. S.; Georgakaki, I. P.; Mejia-Rodriguez, R.; Samabria-Chinchilla, J.; Soriaga, M. P.; Darensbourg, M. Y., Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships. Dalton Trans. 2003, (21), 4158-4163.
    [137] Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y., The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H2 Production Electrocatalysts: Iron Hydrogenase Model Complexes. J. Am. Chem. Soc. 2004, 126 (38), 12004-12014.
    [138] Liu, T. B.; Wang, M.; Shi, Z.; Cui, H. G.; Dong, W. B.; Chen, J. S.; Akermark, B.; Sun, L. C., Synthesis, structures and electrochemical properties of nitro- and amino-functionalized diiron azadithiolates as active site models of Fe-only hydrogenases. Chemistry-a European Journal 2004, 10 (18), 4474-4479.
    [139] Ott, S.; Kritikos, M.; Akermark, B.; Sun, L. C.; Lomoth, R., A biomimetic pathway for hydrogen evolution from a model of the iron hydrogenase active site. Angew. Chem.-Int. Edit. Engl. 2004, 43 (8), 1006-1009.
    [140] Vijaikanth, V.; Capon, J. F.; Gloaguen, F.; Schollhammer, P.; Talarmin, J., Chemically modified electrode based on an organometallic model of the [FeFe] hydrogenase active center. Electrochem. Commun. 2005, 7 (4), 427-430.
    [141] Thomas, C. M.; Rudiger, O.; Liu, T.; Carson, C. E.; Hall, M. B.; Darensbourg, M. Y., Synthesis of Carboxylic Acid-Modified [FeFe]-Hydrogenase Model Complexes Amenable to Surface Immobilization. Organometallics 2007, 26 (16), 3976-3984.
    [142] Ibrahim, S. K.; Liu, X. M.; Tard, C.; Pickett, C. J., Electropolymeric materials incorporating subsite structures related to iron-only hydrogenase: active ester functionalised poly(pyrroles) for covalent binding of {2Fe3S}-carbonyl/cyanide assemblies. Chem. Commun. 2007, (15), 1535-1537.
    [143] Na, Y.; Wang, M.; Pan, J.; Zhang, P.; ?…kermark, B. r.; Sun, L., Visible Light-Driven Electron Transfer and Hydrogen Generation Catalyzed by Bioinspired [2Fe2S] Complexes. Inorg. Chem. 2008, 47 (7), 2805-2810.
    [144] Na, Y.; Wang, M.; Pan, J. X.; Zhang, P.; Akermark, B.; Sun, L. C., Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorg. Chem. 2008, 47 (7), 2805-2810.
    [145] Olsen, M. T.; Barton, B. E.; Rauchfuss, T. B., Hydrogen Activation by Biomimetic Diiron Dithiolates. Inorg. Chem. 2009.
    [146] Lyon, E. J.; Shima, S.; Boecher, R.; Thauer, R. K.; Grevels, F. W.; Bill, E.; Roseboom, W.; Albracht, S. P. J., Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H-2-Forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J. Am. Chem. Soc. 2004, 126 (43), 14239-14248.
    [147] Wang, X. F.; Li, Z. M.; Zeng, X. R.; Luo, Q. Y.; Evans, D. J.; Pickett, C. J.; Liu, X. M., The iron centre of the cluster-free hydrogenase (Hmd): low-spin Fe(II) or low-spin Fe(0)? Chem. Commun. 2008, (30), 3555-3557.
    [148] Obrist, B. V.; Chen, D. F.; Ahrens, A.; Schunemann, V.; Scopelliti, R.; Hu, X. L., An Iron Carbonyl Pyridonate Complex Related to the Active Site of the [Fe]-Hydrogenase (Hmd). Inorg. Chem. 2009, 48 (8), 3514-3516.
    [149] Royer, A. M.; Rauchfuss, T. B.; Gray, D. L., Oxidative Addition of Thioesters to Iron(0): Active-Site Models for Hmd, Nature’s Third Hydrogenase. Organometallics 2009, 3618-3620.
    [150] Liaw, W.-F.; Lee, N.-H.; Chen, C.-H.; Lee, C.-M.; Lee, G.-H.; Peng, S.-M., Dinuclear and Mononuclear Iron(II)−Thiolate Complexes with Mixed CO/CN- Ligands:  Synthetic Advances for Iron Sites of [Fe]-Only Hydrogenases. J. Am. Chem. Soc. 2000, 122 (3), 488-494.
    [151] Smith, J. M.; Lachicotte, R. J.; Holland, P. L., Three-Coordinate, 12-Electron Organometallic Complexes of Iron(II) Supported by a Bulky ?2-Diketiminate Ligand: Synthesis and Insertion of CO To Give Square-Pyramidal Complexes. Organometallics 2002, 21 (22), 4808-4814.
    [152] Song, L. C., Investigations on butterfly Fe/S cluster S-centered anions (mu-S-)(2)Fe-2(CO)(6), (mu-S-)(mu-RS)Fe-2(CO)(6), and related species. Acc. Chem. Res. 2005, 38 (1), 21-28.
    [153] Capon, J. F.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J., Organometallic Diiron Complex Chemistry Related to the [2Fe](H) Subsite of [FeFe]H(2)ase. Eur. J. Inorg. Chem. 2008, (30), 4671-4681.
    [154] Gloaguen, F.; Rauchfuss, T. B., Small molecule mimics of hydrogenases: hydrides and redox. Chem. Soc. Rev. 2009, 38 (1), 100-108.
    [155] Ghirardi, M. L.; King, P. W.; Posewitz, M. C.; Maness, P. C.; Fedorov, A.; Kim, K.; Cohen, J.; Schulten, K.; Seibert, M., Approaches to developing biological H-2-photoproducing organisms and processes. Biochem. Soc. Trans. 2005, 33, 70-72.
    [156] Grapperhaus, C. A.; Darensbourg, M. Y., Oxygen Capture by Sulfur in Nickel Thiolates. Acc. Chem. Res. 1998, 31 (8), 451-459.
    [157] Farmer, P. J.; Verpeaux, J. N.; Amatore, C.; Darensbourg, M. Y.; Musie, G., REDUCTION-PROMOTED SULFUR-OXYGEN BOND-CLEAVAGE IN A NICKEL SULFENATE AS A MODEL FOR THE ACTIVATION OF [NIFE] HYDROGENASE. J. Am. Chem. Soc. 1994, 116 (20), 9355-9356.
    [158] Seefeldt, L. C.; Arp, D. J., OXYGEN EFFECTS ON THE NICKEL-CONTAINING AND IRON-CONTAINING HYDROGENASE FROM AZOTOBACTER-VINELANDII. Biochemistry 1989, 28 (4), 1588-1596.
    [159] Vanderzwaan, J. W.; Coremans, J.; Bouwens, E. C. M.; Albracht, S. P. J., EFFECT OF O-17(2) AND (CO)-C-13 ON EPR-SPECTRA OF NICKEL IN HYDROGENASE FROM CHROMATIUM-VINOSUM. Biochimica Et Biophysica Acta 1990, 1041 (2), 101-110.
    [160] Coremans, J.; Vanderzwaan, J. W.; Albracht, S. P. J., DISTINCT REDOX BEHAVIOR OF PROSTHETIC GROUPS IN READY AND UNREADY HYDROGENASE FROM CHROMATIUM-VINOSUM. Biochimica Et Biophysica Acta 1992, 1119 (2), 157-168.
    [161] Seyferth, D.; Womack, G. B.; Gallagher, M. K.; Cowie, M.; Hames, B. W.; Fackler, J. P.; Mazany, A. M., Novel anionic rearrangements in hexacarbonyldiiron complexes of chelating organosulfur ligands. Organometallics 1987, 6 (2), 283-294.
    [162] Dong, W. B.; Wang, M.; Liu, T. B.; Liu, X. Y.; Jin, K.; Sun, L. C., Preparation, structures and electrochemical property of phosphine substituted diiron azadithiolates relevant to the active site of Fe-only hydrogenases. J. Inorg. Biochem. 2007, 101, 506-513.
    [163] Barton, B. E.; Rauchfuss, T. B., Terminal hydride in [FeFe]-hydrogenase model has lower potential for H-2 production than the isomeric bridging hydride. Inorg. Chem. 2008, 47 (7), 2261-2263.
    [164] Tye, J. W.; Darensbourg, M. Y.; Hall, M. B., The reaction of electrophiles with models of iron-iron hydrogenase: A switch in regioselectivity. Theochem-J. Mol. Struct. 2006, 771 (1-3), 123-128.
    [165] Kurtz, D. M., Oxo- and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit. Chem. Rev. 1990, 90 (4), 585-606.
    [166] Tshuva, E. Y.; Lippard, S. J., Synthetic Models for Non-HemeCarboxylate-Bridged Diiron Metalloproteins:  Strategies and Tactics. Chem. Rev. 2004, 104 (2), 987-1012.
    [167] Messelh?user, J.; Gutensohn, K. U.; Lorenz, I.-P.; Hiller, W., Insertionsreaktionen von ethen und kohlenmonoxid in die S---S-bindung des nido-clusters [(CO)3FeS]2 und synthese und struktur des 1,2-ethansulfenatothiolato-komplexes [(CO)3(O). J. Organomet. Chem. 1987, 321 (3), 377-388.
    [168] Windhager, J.; Seidel, R. A.; Apfel, U. P.; Goerls, H.; Linti, G.; Weigand, W., Oxidation of Diiron and Triiron Sulfurdithiolato Complexes: Mimics for the Active Site of [FeFe]-Hydrogenase. Chem. Biodiversity 2008, 5 (10), 2023-2041.
    [169] SMART V5.632 Program for Data Collection on Area Detectors; BRUKER AXS Inc.: Madison, WI. SMART V5.632 Program for Data Collection on Area Detectors; BRUKER AXS Inc.: Madison, WI.
    [170] FRAMBO:FRAME Buffer Operation Version 41.05 Program for Data Collection on Area Detectors; BRUKER AXS Inc.: Madison, WI. FRAMBO:FRAME Buffer Operation Version 41.05 Program for Data Collection on Area Detectors; BRUKER AXS Inc.: Madison, WI.
    [171] SAINT V6.63 Program for Reduction of Area Detector Data; BRUCKER AXS Inc.: Madison, WI. SAINT V6.63 Program for Reduction of Area Detector Data; BRUCKER AXS Inc.: Madison, WI.
    [172] Sheldrick, G. M. SADABS Program for Absorption Correction of Area Detector Frames; Brucker AXS.: Madison, WI. Sheldrick, G. M. SADABS Program for Absorption Correction of Area Detector Frames; Brucker AXS.: Madison, WI.
    [173] Sheldrick, G. (1997) SHELXS-97 Program for Crystal Structure Solution; Institüt für Anorganische Chemie der Universit?t G?ttingen: G?ttingen, Germany. Sheldrick, G. (1997) SHELXS-97 Program for Crystal Structure Solution; Institüt für Anorganische Chemie der Universit?t G?ttingen: G?ttingen, Germany.
    [174] Sheldrick, G. (1997) SHELXL-97 Program for Crystal Structure Refinement; Institüt für Anorganische Chemie der Universit?t G?ttingen: G?ttingen, Germany. Sheldrick, G. (1997) SHELXL-97 Program for Crystal Structure Refinement; Institüt für Anorganische Chemie der Universit?t G?ttingen: G?ttingen, Germany.
    [175] Barbour, L. J., X-Seed -- A Software Tool for Supramolecular Crystallography. Journal of Supramolecular Chemistry 2001, 1 (4-6), 189-191.
    [176] Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
    [177] Hay, P. J.; Wadt, W. R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics 1985, 82 (1), 270-283.
    [178] Wadt, W. R.; Hay, P. J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics 1985, 82 (1), 284-298.
    [179] Marc Couty, M. B. H., Basis sets for transition metals: Optimized outer functions. J. Comput. Chem. 1996, 17 (11), 1359-1370.
    [180] Dunning, J. T. H., Gaussian Basis Functions for Use in Molecular Calculations. I. Contraction of (9s5p) Atomic Basis Sets for the First-Row Atoms. The Journal of Chemical Physics 1970, 53 (7), 2823-2833.
    [181] Dunning, J., T. H.; Hay, P. J., In Methods of Electronic Structure Theory; Schaefer, H. F., III , Ed.; Plenum Press: New York, 1977, 3.
    [182] Capon, J. F.; Ezzaher, S.; Gloaguen, F.; Petillon, F. Y.; Schollhammer, P.; Talarmin, J.; Davin, T. J.; McGrady, J. E.; Muir, K. W., Electrochemical and theoretical investigations of the reduction of [Fe-2(CO)(5)L{mu-SCH2XCH2S}] complexes related to [FeFe] hydrogenase. New J. Chem. 2007, 31 (12), 2052-2064.
    [183] Li, P.; Wang, M.; He, C. J.; Li, G. H.; Liu, X. Y.; Chen, C. N.; Akermark, B.; Sun, L. C., Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: Crystal structures of [(mu-S2C3H6)Fe-2(CO)(6-n)L-n] (L = PMe2Ph, n=1, 2; PPh3 P(OEt)(3), n=1). Eur. J. Inorg. Chem. 2005, (12), 2506-2513.
    [184] Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y., Coordination Sphere Flexibility of Active-Site Models for Fe-Only Hydrogenase: Studies in Intra- and Intermolecular Diatomic Ligand Exchange. J. Am. Chem. Soc. 2001, 123 (14), 3268-3278.
    [185] Singleton, M. L.; Jenkins, R. M.; Klemashevich, C. L.; Darensbourg, M. Y., The effect of bridgehead steric bulk on the ground state and intramolecular exchange processes of ([mu]-SCH2CR2CH2S)[Fe(CO)3][Fe(CO)2L] complexes. Comptes Rendus Chimie 2008, 11 (8), 861-874.
    [186] Tye, J. W.; Darensbourg, M. Y.; Hall, M. B., De Novo Design of SyntheticDi-Iron(I) Complexes as Structural Models of the Reduced Form of Iron-Iron Hydrogenase. Inorg. Chem. 2006, 45 (4), 1552-1559.
    [187] Liu, T.; Darensbourg, M. Y., A Mixed-Valent, Fe(II)Fe(I), Diiron Complex Reproduces the Unique Rotated State of the [FeFe]Hydrogenase Active Site. J. Am. Chem. Soc. 2007, 129 (22), 7008-7009.
    [188] Thomas, C. M.; Liu, T.; Hall, M. B.; Darensbourg, M. Y., Series of Mixed Valent Fe(II)Fe(I) Complexes That Model the Hox State of [FeFe]Hydrogenase: Redox Properties, Density-Functional Theory Investigation, and Reactivities with Extrinsic CO. Inorg. Chem. 2008, 47 (15), 7009-7024.
    [189] Justice, A. K.; Rauchfuss, T. B.; Wilson, S. R., Unsaturated, mixed-valence diiron dithiolate model for the H-ox state of the [FeFe] hydrogenase. Angew. Chem.-Int. Edit. Engl. 2007, 46 (32), 6152-6154.
    [190] Justice, A. K.; De Gioia, L.; Nilges, M. J.; Rauchfuss, T. B.; Wilson, S. R.; Zampella, G., Redox and Structural Properties of Mixed-Valence Models for the Active Site of the [FeFe]-Hydrogenase: Progress and Challenges. Inorg. Chem. 2008, 47 (16), 7405-7414.
    [191] Holm, R. H.; Donahue, J. P., A thermodynamic scale for oxygen atom transfer reactions. Polyhedron 1993, 12 (6), 571-589.
    [192] Borg, S. J.; Behrsing, T.; Best, S. P.; Razavet, M.; Liu, X. M.; Pickett, C. J., Electron transfer at a dithiolate-bridged diiron assembly: Electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2004, 126 (51), 16988-16999.
    [193] Seyferth, D.; Womack, G. G.; Song, L. C., Addition of alkynyllithium reagents to the sulfur-sulfur bond of (.mu.-dithio)bis(tricarbonyliron): equilibriums between open sulfur-centered and bridged carbon-centered anions. Organometallics 1983, 2 (6), 776-779.
    [194] Seyferth, D.; Henderson, R. S., Selenium-selenium bond reactions of micro -(diselenium)bis(tricarbonyliron), an inorganic mimic of organic diselenides. J. Organomet. Chem. 1980, 204 (3), 333-43.
    [195] Seyferth, D.; Brewer, K. S.; Wood, T. G.; Cowie, M.; Hilts, R. W., Synthesis and reactions of the [(.mu.-Ph2P)Fe2(CO)6]- anion. Organometallics 1992, 11 (7), 2570-2579.
    [196] Gao, S.; Fan, J. L.; Sun, S.; Peng, X. J.; Zhao, X.; Hou, J., Selenium-bridged diiron hexacarbonyl complexes as biomimetic models for the active site of Fe-Fe hydrogenases. Dalton Trans. 2008, (16), 2128-2135.
    [197] Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y., Coordination Sphere Flexibility of Active-Site Models for Fe-Only Hydrogenase:  Studies in Intra- and Intermolecular Diatomic Ligand Exchange. J. Am. Chem. Soc. 2001, 123 (14), 3268-3278.
    [198] Darensbourg, M. Y.; Lyon, E. J.; Zhao, X.; Georgakaki, I. P., The organometallic active site of [Fe]hydrogenase: Models and entatic states. Proceedings of the National Academy of Sciences of the United States of America 2003, 100 (7), 3683-3688.
    [199] Georgakaki, I. P.; Thomson, L. M.; Lyon, E. J.; Hall, M. B.; Darensbourg, M. Y., Fundamental properties of small molecule models of Fe-only hydrogenase: computations relative to the definition of an entatic state in the active site. Coord. Chem. Rev. 2003, 238-239, 255-266.
    [200] Tye, J. W.; Darensbourg, M. Y.; Hall, M. B., De Novo Design of Synthetic Di-Iron(I) Complexes as Structural Models of the Reduced Form of Iron−Iron Hydrogenase. Inorg. Chem. 2006, 45 (4), 1552-1559.
    [201] Li, H.; Rauchfuss, T. B., Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense To Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases. J. Am. Chem. Soc. 2002, 124 (5), 726-727.
    [202] Wang, Z.; Liu, J.-H.; He, C.-J.; Jiang, S.; Akermark, B.; Sun, L.-C., Azadithiolates cofactor of the iron-only hydrogenase and its PR3-monosubstituted derivatives: Synthesis, structure, electrochemistry and protonation. J. Organomet. Chem. 2007, 692 (24), 5501-5507.
    [203] Jochen Windhager, M. R., Silvio Br?utigam, Helmar G?rls, Wolfgang Weigand,, Reactions of 1,2,4-Trithiolane, 1,2,5-Trithiepane, 1,2,5-Trithiocane and 1,2,6-Trithionane with Nonacarbonyldiiron: Structural Determination and Electrochemical Investigation13. Eur. J. Inorg. Chem. 2007, 2007 (18), 2748-2760.
    [204] Song, L.-C.; Yang, Z.-Y.; Bian, H.-Z.; Liu, Y.; Wang, H.-T.; Liu, X.-F.; Hu, Q.-M., Diiron Oxadithiolate Type Models for the Active Site of Iron-Only Hydrogenases and Biomimetic Hydrogen Evolution Catalyzed by Fe2(-SCH2OCH2S-)(CO)6. Organometallics 2005, 24 (25), 6126-6135.
    [205] Song, L.-C.; Yang, Z.-Y.; Hua, Y.-J.; Wang, H.-T.; Liu, Y.; Hu, Q.-M., Diiron Thiadithiolates as Active Site Models for the Iron-Only Hydrogenases:  Synthesis, Structures, and Catalytic H2 Production. Organometallics 2007, 26 (8),2106-2110.
    [206] Jochen Windhager, H. G., Holm Petzold, Grzegorz Mloston, Gerald Linti, Wolfgang Weigand,, Reactions of 1,2,4-Trithiolanes with Nonacarbonyldiiron: Sulfurdithiolatodiiron and -tetrairon Complexes as Mimics for the Active Site of [Fe-only] Hydrogenase13. Eur. J. Inorg. Chem. 2007, 2007 (28), 4462-4471.
    [207] Harb, M. K.; Niksch, T.; Windhager, J.; G?rls, H.; Holze, R.; Lockett, L. T.; Okumura, N.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; El-khateeb, M.; Weigand, W., Synthesis and Characterization of Diiron Diselenolato Complexes Including Iron Hydrogenase Models. Organometallics 2009, 28 (4), 1039-1048.
    [208] Tianbiao Liu; Bin Li; Michael L. Singleton; Michael B. Hall; Darensbourg, M. Y., J. Am. Chem. Soc.
    [209] Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y., Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase. Angew. Chem. Int. Ed. 1999, 38 (21), 3178-3180.
    [210] Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B., First Generation Analogues of the Binuclear Site in the Fe-Only Hydrogenases:  Fe2(SR)2(CO)4(CN)22. J. Am. Chem. Soc. 1999, 121 (41), 9736-9737.
    [211] Gloaguen, F.; Lawrence, J. D.; Schmidt, M.; Wilson, S. R.; Rauchfuss, T. B., Synthetic and Structural Studies on [Fe2(SR)2(CN)x(CO)6-x]x- as Active Site Models for Fe-Only Hydrogenases. J. Am. Chem. Soc. 2001, 123 (50), 12518-12527.
    [212] Liu, T.; Darensbourg, M. Y., A Mixed-Valent, Fe(II)Fe(I), Diiron Complex Reproduces the Unique Rotated State of the [FeFe]Hydrogenase Active Site. J. Am. Chem. Soc. 2007, 129 (22), 7008-7009.
    [213] Singleton, M. L.; Bhuvanesh, N.; Reibenspies, J. H.; Darensbourg, M. Y., Synthetic support of de novo design: sterically bulky [FeFe]-hydrogenase models. . Angew. Chem. Int. Ed. 2008, 47 (49), 9492-9495.
    [214] Justice, A. K.; Rauchfuss, T. B.; Wilson, S. R., Unsaturated, mixed-valence diiron dithiolate model for the Hox state of the [FeFe] hydrogenase. Angew. Chem. Int. Ed. 2007, 46 (32), 6152-6154.
    [215] Lubitz, W.; Reijerse, E. J.; Messinger, J., Solar water-splitting into H-2 and O-2: design principles of photosystem II and hydrogenases. Energy Environ. Sci. 2008, 1 (1), 15-31.
    [216] Vogt, S.; Lyon, E. J.; Shima, S.; Thauer, R. K., The exchange activities of [Fe]hydrogenase (iron-sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. J. Biol. Inorg. Chem. 2008, 13 (1), 97-106.
    [217] Royer, A. M.; Rauchfuss, T. B.; Gray, D. L., Oxidative Addition of Thioesters to Iron(0): Active-Site Models for Hmd, Nature’s Third Hydrogenase. Organometallics 2009, ASAP.
    [218] Hieber, W.; Bader, G., Reactions and derivative of the iron carbonyl, II. New types of coal-oxide-compounds and iron halogenides. Ber. Dtsch. Chem. Ges. 1928, 61, 1717-1722.
    [219] Verhagen, J. A. W.; Lutz, M.; Spek, A. L.; Bouwman, E., Synthesis and Characterisation of New Nickel-Iron Complexes with an Coordination Environment around the Nickel Centre. Eur. J. Inorg. Chem. 2003, (21), 3968-3974.
    [220] Cohen, I. A.; Basolo, F., Kinetics of substitution reactions of dihalogenotetracarbonyliron (II) compounds with different reagents. J. Inorg. Nucl. Chem. 1966, 28 (2), 511-520.
    [221] Pankowski, M.; Bigorgne, M., Syntheses et isomerisation de complexes de la serie des derives halocarbonyle due fer: [FeX(CO)5-nLn]+, FeX2(CO)4-nLn et [FeX3(CO)3]- (L = PMe3; n = 1, 2, 3; X = Cl, Br, I). J. Organomet. Chem. 1977, 125 (2), 231-252.
    [222] Bellachioma, G.; Cardaci, G.; Macchioni, A.; Venturi, C.; Zuccaccia, C., Reductive elimination of halogens assisted by phosphine ligands in Fe(CO)4X2 complexes. J. Organomet. Chem. 2006, 691 (18), 3881-3888.
    [223] Haukka, M.; Kiviaho, J.; Ahlgren, M.; Pakkanen, T. A., Studies on Catalytically Active Ruthenium Carbonyl Bipyridine Systems. Synthesis and Structural Characterization of [Ru(bpy)(CO)2Cl2], [Ru(bpy)(CO)2Cl(C(O)- OCH3)], [Ru(bpy)(CO)2Cl]2, and [Ru(bpy)(CO)2ClH] (bpy = 2,2'-Bipyridine). Organometallics 1995, 14 (2), 825-833.
    [224] Parish, R. V., The Organic Chemistry of Iron, Vol. M?ssbauer Spectroscopy, 175-211.
    [225] Popescu, C. V., Mossbauer and EPR studies of the H-cluster of the iron-hydrogenases from C. pasteurianum and of synthetic complexes designed to model the iron sites of the [(2)iron](H)-subcluster and Mossbauer studies of the transcription factor FNR of Escherichia coli. Ph.D. Thesis, Department ofChemistry, Carnegie Mellon University 2000.
    [226] Guo, Y. S.; Wang, H. X.; Xiao, Y. M.; Vogt, S.; Thauer, R. K.; Shima, S.; Volkers, P. I.; Rauchfuss, T. B.; Pelmenschikov, V.; Case, D. A.; Alp, E. E.; Sturhahn, W.; Yoda, Y.; Cramer, S. P., Characterization of the Fe site in iron-sulfur cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS). Inorg. Chem. 2008, 47 (10), 3969-3977.
    [227] Royer, A. M.; Rauchfuss, T. B.; Wilson, S. R., Coordination chemistry of a model for the GP cofactor in the hmd hydrogenase: Hydrogen-bonding and hydrogen-transfer catalysis. Inorg. Chem. 2008, 47 (2), 395-397.
    [228] Addison, A. W. R., T. Nageswara; Reedijk, Jan; Rijn, Jacobus van; Verschoor, Gerrit C. , Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2-yl)-2,6- dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984, (7), 1349 -1356.
    [229] Rakowski DuBois, M.; DuBois, D. L., The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. . Chem. Soc. Rev. 2009, 38 (1), 62-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700