基于双三氮唑柔性配体的配位聚合物的构筑及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配位聚合物功能材料的研究重点和方向已经从合成、结构表征变为性能方面的研究,主要表现在研究结构与性能的构效关系及开发性能更加优良的金属-有机晶体材料。合理运用晶体工程原理和方法,对金属-有机骨架结构可以实现功能上的分子裁剪和组装,使其具有更加新颖的拓扑结构和优良的性能,是现代配位化学功能性材料发展的趋势之一,成为广大科学工作者关注的焦点。目前,该研究课题的核心任务是如何选择及设计合适的构筑单元并采用相关的晶体工程策略来构筑具有预期结构与功能的晶体材料,真正实现它们在应用方面的价值。本论文致力于获得具有新颖结构和良好性能的配位聚合物材料,利用两个柔性的双三氮唑配体为基本的结构构筑模块,通过选择特定的过渡金属离子,并辅以不同芳香羧酸配体调控整个框架结构,得到32个具有新颖结构和特定功能的配位聚合物,并且系统地研究和分析了这些配位聚合物的合成条件及规律,分析了网络拓扑结构及类型,探索了其结构与性能间的构效关系。
     本论文主要分为以下四个部分:
     1.利用长柔性配体4,4’-双(1,2,4-三氮唑-1-甲基)联苯(btmb)作为主配体,刚性芳香羧酸配体作为辅助配体与金属离子自组装,在水热条件下构筑了6个三维配位聚合物。其中聚合物1是一个6-连接的三维自穿插mab网络,表明btmb用于构建特殊部分结构具有很大的潜力。同时分析了pH值、金属离子对聚合物结构的影响,并讨论了结构与催化性能之间的关系,推测了可能的催化反应机理。
     2.基于配体btmb,我们选用Cd(Ⅱ)作为中心金属离子,选用不同的无机阴离子(Γ,NO3-,NCS-,CH3COO-或CΓ),在水热和常温溶剂挥发的条件下得到了6个一维、二维镉配位聚合物,并且对btmb的构象进行了分析,探讨了无机阴离子对配位聚合物结构及荧光性能的影响。
     3.选用1,4-双(1,2,4-三氮唑-1-甲基)-2,3,5,6-四甲基苯(btmx)和不同构型的羧酸组成混合配体体系,与金属锌和镉离子在水热条件下反应得到了系列6个锌和4个镉聚合物。结果表明,合理的引入芳香羧酸可调控聚合物结构,并产生穿插和缠绕等奇特的网络部分。此外,配位聚合物15与19,17与20具有相同的主配体和辅助配体,但是具有不同的金属离子,结果导致了不同结构产生,说明金属离子类型也对结构也有调控作用。这些配位聚合物都表现出良好的热稳定性和较强的荧光,意味着它们可以用作潜在的荧光材料。
     4.为了丰富配体btmx的配位化学行为,其与金属铜、钴离子在水热或常温条件下,在不同的辅助羧酸配体的作用下,合成了系列结构不同的一维、二维、三维配位聚合物,其中6个铜和4个钴聚合物,并研究了两个具有相同原料但结构截然不同的铜聚合物的催化性能,进一步讨论了结构对催化性能的影响。
The research focus and direction of coordination polymers as functional materials has transformed from the synthesis and structure characterizations to function, which is mainly embodied in two aspects:study the relationship of structures and properties and explore advanced crystalline metal-organic materials with more superior properties. Employment of the principle and method of crystal engineering can realize the modification and assembling of the metal-organic architectures, which is beneficial to obtain novel topological frameworks with special functions. So it becomes one of the development trends of modern coordination chemisty, which attracts much interest of chemists. At present, how to get the crystalline materials with espected structures and excellent properties is the core task in crystal engineering. It demonstrates that choosing and designing suitable building blocks should be the key factor in constructing the target products. In this paper, with the aim of preparing novel metal-organic materials with intriguing structures and good properties, we select two flexible bis(triazole) ligands as building blocks, and obtain 32 new coordination polymers under the specific transition metal ions and auxiliary polycarboxylate ligands. The coordination behavior of the ligands, synthetic conditions, rules and the topological types has been discussed. In addition, we explore the relationships between the structures and properties.
     This work includes the following four parts:
     1. The combination of a long flexible ligand 4.4'-bis(l,2,4-triazol-l-ylmethyl)biphenyl (btmb) and auxiliary polycarboxylate ligands in the presence of metal ions affords six three-dimensional (3D) coordination polymers under hydrothermal conditions. Complex 1 presents a 6-connected self-penetrating mab framework, which indicates that the existence of the long flexible ligand btmb favors the formation of peculiar motifs. The effect of pH values, metal ions on the structures of complexes was analysed. Furthermore, the relationship between structures and catalytic properties was also discussed, and a plausible reaction mechanism for the present oxidative coupling reaction was proposed.
     2. Six novel Cd(II) coordination polymers have been synthesized by the reactions of btmb with Cd(II) salts in the presence of different anions (I-, NO3-, NCS-, CH3COO- or Cl-) under appropriate reaction conditions. These complexes exhibit one-dimensional (1D), two-dimensional (2D) structures. We have made a comparison of conformation of btmb in these Cd(II) polymers, and discussed the influence of inorganic anions on the structures and photoluminescent properties of complexes.
     3. Under hydrothermal conditions, the mixed ligands of l,4-bis(l,2,4-triazol-l-ylmethyl)-2,3,5,6-tetramethylbenzene (btmx) with different polycarboxylate ligands in the presence of Zn(II) or Cd(II) ions give six Zn(II) coordination polymers and four Cd(II) coordination polymers. The results reveal that polycarboxylate ligands have a great influence on the architectures of coordination polymers and can be used as a tool to tune structures. Besides, complexes 15 and 19, 17 and 20 contain the same main ligand and auxiliary ligand but different metal ions, respectively, which finally lead to the different structures, indicating the structures of complexes can be modulated by the kinds of metal ions. These complexes display good thermal stability and intense fluorescence, which shows that they can be used as potential flourescent materials.
     4. In order to enrich the coordination chemistry of ligand btmx, the reactions of ligand btmx and Cu(II) or Co(II) ions with the help of polycarboxylate ligands afford six Cu(II) coordination polymers and four Co(II) coordination polymers. We investigate the catalytic properties of two different Cu(II) complexes with the same raw materials, and discuss the influence of structures on the catalytic properties.
引文
[1]孟庆金,戴安邦编,配位化学的创始与现代化[M],北京:高等教育出版社,1998.
    [2]孙为银编著,配位化学,北京:化学工业出版社[M],2004.
    [3]Dhar S, Reddy P A N, Chakravarty A R. Intramolecular nucleophilic activation promoting efficient hydrolytic cleavage of DNA by (aqua)bis-(dipyridoquinoxaline)copper(II) complex[J], Dalton Trans.,2004,697-698.
    [4]徐志固编.现在配位化学[M].北京:化学工业出版社,1987.
    [5]洪茂春,陈荣,梁文平主编,21世纪的无机化学[M],北京:科学出版社,2005.
    [6]Bruser H J, Schwarzenbach D, Petter W, et al. The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O[J]. Inorg. Chem.,1977,16:2704-2710.
    [7]Wells A F. Three Dimensional Nets and Polyhedra[M]. New York,1977.
    [8]Hosking B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J. Am. Chem. Soc.,1989,111:5962-5964.
    [9]Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38:1477-1504.
    [10]Queen W L, Brown C M, Britt D K, et al. Site-Specific CO2 Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network[J]. J. Phys. Chem. C,2011,115,24915-24919.
    [11]Morris W, Leung B, Furukawa H. A Combined Experimental-Computational Investigation of Carbon Dioxide Capture in a Series of Isoreticular Zeolitic Imidazolate Frameworks[J]. J. Am. Chem. Soc.,2010,132:11006-11008.
    [12]Kanoo P, Mostafa G, Matsuda R, et al. A pillared-bilayer porous coordination polymer with a 1D channel and a 2D interlayer space, showing unique gas and vapor sorption[J]. Chem. Commun.,2011,47:8106-8108.
    [13]Sculley J, Yuan D Q, Zhou H C. The current status of hydrogen storage in metal-organic frameworks—updated[J]. Energy Environ. Sci.,2008,1:222-235.
    [14]Liu T F, Lii J, Cao R. Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor Ligands[J]. CrystEngComm,2010,12:660-670.
    [15]Furukawa H, Ko N, Go Y B. Ultrahigh Porosity in Metal-Organic Frameworks [J]. Science, 2010,329:424-428.
    [16]Zhang X L, Guo C P, Yang Q Y, et al. Formation of two (6,3) networks showing structural diversity, Borromean topology and conformational chirality in the same crystal[J]. Chem. Commun.,2007, 4242-4244.
    [17]Stephenson A, Ward M D, et al. A triple helix of double helicates:three hierarchical levels of self-assembly in a single structure[J]. Chem. Commun. DOI:10.1039/c2cc30197k.
    [18]Shimomura S, Yanai N, Matsuda R, et al. Impact of Metal-Ion Dependence on the Porous and Electronic Properties of TCNQ-Dianion-Based Porous Coordination Polymers[J]. Inorg. Chem.,2011,50:172-177.
    [19]Liu T F, Zhang W J, Sun W H, et al. Conjugated Ligands Modulated Sandwich Structures and Luminescence Properties of Lanthanide Metal-Organic Frameworks[J]. Inorg. Chem. 2011,50:5242-5248.
    [20]Sun Y G, Jiang B, Cui T F, et al. Solvothermal synthesis, crystal structure, and properties of lanthanide organic frameworks based on thiophene-2,5-dicarboxylic acid[J]. Dalton Trans., 2011,40:11581-11590.
    [21]Xie L H, Wang Y, Liu X M, et al. Crystallographic studies into the role of exposed rare earth metal ion for guest sorption[J]. CrystEngComm,2011,13:5849-5857.
    [22]Han Z B, Li B Y, Ji J W, et al. A 3D chiral porous in(Ⅲ) coordination polymer with PtS topological net[J]. Dalton Trans.,2011,40:9154-9158.
    [23]Notash B, Safari N, Khavasi H R. Anion-Directed Self-Assembly in Coordination Networks: Architectural Control via Cooperative Noncovalent Interactions[J]. Inorg. Chem.,2010,49: 11415-11420.
    [24]Cui F J, Li S G, Jia C D, et al. Anion-Dependent Formation of Helicates versus Mesocates of Triple-Stranded M2L3 (M= Fe2+, Cu2+) Complexes[J]. Inorg. Chem.,2012,51:179-187.
    [25]Xiao J, Liu B Y, Wei G, et al. Solvent Induced Diverse Dimensional Coordination Assemblies of Cupric Benzotriazole-5-carboxylate:Syntheses, Crystal Structures, and Magnetic Properties[J]. Inorg. Chem.,2011,50:11032-11038.
    [26]Ding B, Liu Y Y, Huang Y Q, et al. Structural Variations Influenced by Ligand Conformation and Counteranions in Copper(II) Complexes with Flexible Bis-Triazole Ligand[J]. Cryst. Growth Des.2009,9:593-601.
    [27]Zhou Y F, Lou B Y, Yuan D Q, et al. pH-value-controlled assembly of photoluminescent zinc coordination polymers[J]. Inorg. Chim. Acta,2005,358:3057-3064.
    [28]Li B L, Zhu X, Zhou J H, et al. Syntheses and structures of five cadmium(II) coordination polymers from 1,2-bis(1,2,4-triazol-1-yl)ethane[J]. Polyhedron,2004,23:3133-3141.
    [29]Liu Y Y, Yi L, Ding B, et al. Various metal-organic frameworks from 1D,2D to 3D with l,6-bis(l,2,4-triazol-l-yl)hexane[J]. Inorg. Chem. Commun.,2007,10:517-519.
    [30]Li B L, Peng Y F, Li B Z et al. Supramolecular isomers in the same crystal:a new type of entanglement involving ribbons of rings and 2D (4,4) networks polycatenated in a 3D architecture[J]. Chem. Commun.,2005,2333-2335.
    [31]Jin J, Wang W Y, Liu Y H, et al. A precise hexagonal octadecanuclear Ag macrocycle with significant luminescent properties [J]. Chem. Commun.,2011,47:7461-7463.
    [32]arman S, Furukawa H, Blacque O, et al. Azulene based metal-organic frameworks for strong adsorption of H2[J]. Chem. Commun.,2010,46,7981-7983.
    [33]Deng H X, Doonan C J, Furukawa H, et al. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks[J]. Science,2010,327,846-850.
    [34]Lin Q P, Wu T, Zheng S T, et al. A chiral tetragonal magnesium-carboxylate framework with nanotubularChannels[J].Chem.Comm,2011,47:11852-11854.
    [35]Yan Y, Blake A J, Lewis W, et al. Modifying Cage Structures in Metal-Organic Polyhedral Frameworks for H2 Storage[J]. Chem. Eur.J.,2011,17:11162-11170.
    [36]Argent S P, Greenaway A, Maria del Carmen Gimenez-Lopez, et al. High-Nuclearity Metal-Organic Nanospheres:A Cd66 Ball[J]. J. Am. Chem. Soc.,2012,134:55-58.
    [37]Ma L F, Li C P, Wang LY,et al. Coll and ZnII oordination Frameworks with Benzene-l,2,3-tricarboxylate Tecton and Flexible Dipyridyl Co-Ligand:A New Type of Entangled Architecture and a Unique 4-Connected Topological Network[J]. Cryst. Growth Des.,2011,11:3309-3312.
    [38]Liu J, Tan Y X, Wang F, et al. Homochiral assembly of polycatenated bilayers with mixing achiral ligands[J]. CrystEngComm.,2012,14,789-791.
    [39]Yang J, Li B, Ma J F, et al. An unusual ten-connected self-penetrating metal-organic framework based on tetranuclear cobalt clusters[J]. Chem. Commun.,2010,46:8383-8385.
    [40]Luo F, Yang Y T, Che Y X, et al. An unusual metal-organic framework showing both rotaxane-and cantenane-like motifs[J]. CrystEngComm,2008,10,981-982.
    [41]Lin X, Jia J H, Zhao X B, et al. High H2 Adsorption by Coordination-Framework Materials[J]. Angew. Chem. Int. Ed.,2006,45:7358-7364.
    [42]Liu Q K, Ma J P, Dong Y B. Adsorption and Separation of Reactive Aromatic Isomers and Generation and Stabilization of Their Radicals within Cadmium(II)-Triazole Metal-Organic Confined Space in a Single-Crystal-to-Single-Crystal Fashion[J]. J. Am. Chem. Soc.,2010, 132:7005-7017.
    [43]Song F J, Wang C, Lin W B. A chiral m etal-organic framework for sequential asymmetric catalysis[J]. Chem. Commun.,2011,47:8256-8258.
    [44]Cui Y J, Yue Y F, Qian G D, et al. Luminescent Functional Metal-Organic Frameworks[J]. Chem. Rev.,2012,112:1126-1162.
    [45]Yan X H, Li Y F, Wang Q, et al. Two-to One-Dimensional:Radii-Dependent Self-Assembly Crystal Structures and Luminescent Properties of Lanthanide Coordination Polymers with an Amide Type Semirigid Bridging Ligand[J]. Cryst. Growth Des.,2011,11:4205-4212.
    [1](a) Han S S, Goddard III W A, Lithium-Doped Metal-Organic Frameworks for Reversible H2 Storage at Ambient Temperature[J]. J. Am. Soc. Chem.,2007,129:8422-8423. (b) Kaczorowski T, Justyniak I, Lipinska T, et al. Metal complexes of cinchonine as chiral building blocks:a strategy for the construction of nanotubular architectures and helical coordination polymers[J]. J. Am. Chem. Soc.,2009,131:5393-5395. (c) Eddaoudi M, Moler D B, Li H, et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Acc. Chem. Res., 2001,34:319-330. (d) Fang Q R, Zhu G S, Xue M, et al. A Metal-Organic Framework with the Zeolite MTN Topology Containing Large Cages of Volume 2.5 nm3[J]. Angew. Chem. Int. Ed.,2005,44:3845-3848. (e) Yamauchi Y, Yoshizawa M, Fujita M. Engineering Stacks of Aromatic Rings by the Interpenetration of Self-Assembled Coordination Cages[J]. J. Am. Chem. Soc,2008,130:5832-5833. (f) Cui H G. Two Metal-Organic Frameworks with Unique High-Connected Binodal Network Topologies:Synthesis, Structures, and Catalytic Properties[J]. CrystEngComm,2012. DOI:10.1039/C2CE25264C. (g) Zhang F W, Li Z F, Ge T Z, et al. Four Novel Frameworks Built by Imidazole-Based Dicarboxylate Ligands: Hydro(Solvo)thermal Synthesis, Crystal Structures, and Properties[J]. Inorg. Chem.2010,49: 3776-3788.
    [2](a) Wu Z S, Hsu J T, Hsieh C C, et al. Assembly and disassembly of a Znio high-nuclearity circular helicatew[J]. Chem. Commun.,2012,48,3436-3438. (b) Gschwind Fabienne, Fromm K M. Effect of Increasing Ligand Length on the Structure of Silver Complexes[J]. DOI: 10.1039/C2CE25110H. (c) Li G B, He J R, Pan M, et al. Construction of 0D to 3D cadmium complexes from different pyridyl diimide ligands[J]. Dalton Trans.,2012,41,4626-4633. (d) Chen B, Ma S, Zapata F, et al. Rationally Designed Micropores within a Metal-Organic Framework for Selective Sorption of Gas Molecules[J]. Inorg. Chem.,2007,46:1233-1236. (e) Chen S M, Lu C Z, Zhang Q Z, et al. Temperature-Controlled Solvothermal Syntheses, Structures and Characterizations of a Novel Class of Zn Complexes Constructed from 1,4-Bis[2-(5-phenyloxazolyl)]benzene[J]. Eur. J. Inorg. Chem.,2005,423-427. (f) Cho S H, Ma B, Nguyen S T, et al. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation[J]. Chem. Commun.,2006,2563-2565.
    [3](a) Ye B H, Ding B B, Weng Y Q, et al. Multidimensional Networks Constructed with Isomeric Benzenedicarboxylates and 2,2'-Biimidazole Based on Mono-, Bi-, and Trinuclear Units[J]. Cryst. Growth Des.,2005,5:801-806. (b) Zhu S R, Zhang H, Zhao Y M, et al. Synthesis, structures and luminescence of three coordination polymers constructed from rigid 1,3,5-benzenetricarboxylic acid and flexible bis(imidazol-1-ylmethyl)-benzene[J]. J. Mol. Struct.,2008,892:420-426. (c) Su Z, Xu J, Fan J, et al. Synthesis, Crystal Structure, and Photoluminescence of Coordination Polymers with Mixed Ligands and Diverse Topologies[J]. Cryst. Growth Des.,2009,9:2801-2811. (d) Du M, Jiang X J, Zhao X J. Molecular Tectonics of Mixed-Ligand Metal-Organic Frameworks:Positional Isomeric Effect, Metal-Directed Assembly, and Structural Diversification[J]. Inorg. Chem.,2007,46:3984-3995.
    [4](a) Mu Y J, Song Y J, Wang C, et al. Syntheses, structures and luminescence of a series of Cd(Ⅱ)-containing coordination polymers constructed from a long flexible bis-triazole ligand. Inorg. Chim. Acta,2010,365:167-176. (b) Ren C, Liu P, Wang Y Y, et al. Structural Investigation of Coordination Polymers Constructed from a Conformational Bis-triazole Ligand and V-Shaped Bridging Carboxylate Anions:Hydrothermal Syntheses, Crystal Structures, and Property Studies[J]. Eur. J. Inorg. Chem.,2010,5545-5555. (c) Meng X R, Song Y L, Hou H W, et al. Hydrothermal Syntheses, Crystal Structures, and Characteristics of a Series of Cd-btx Coordination Polymers (btx= 1,4-Bis(triazol-1-ylmethyl)benzene) [J]. Inorg. Chem.,2004,43:3528-3536. (d) Ren C, Hou L, Liu B, et al. Distinct structures of coordination polymers incorporating flexible triazole-based ligand:topological diversities, crystal structures and property studies[J]. Dalton Trans.,2011,40:793-804.
    [5](a) Yang E C, Liu Z Y, Shi X J, et al. Two 3D Triazolate-Tricarboxylate-Bridged CuⅡ/Ⅰ Frameworks by One-Pot Hydrothermal Synthesis Exhibiting Spin-Canted Antiferromagnetism and Strong Antiferromagnetic Couplings[J]. Inorg. Chem.,2010,49: 7969-7975. (b) Wang X L, Bi Y F, Lin H Y, et al. Three Novel Cd(Ⅱ) Metal-Organic Frameworks Constructed from Mixed Ligands of Dipyrido[3,2-d:2',3'-f]quinoxaline and Benzene-dicarboxylate:From a 1-D Ribbon,2-D Layered Network, to a 3-D Architecture[J]. Cryst. Growth Des.,2007,7:1086-1091.
    [6]Sheldrick, G. M. A short history of SHELX[J]. Acta Crystallogr.,2008, A64:112-122.
    [7]Zhang E P, Hou H W, Han H Y, et al. Syntheses, crystal structures of a series of copper(Ⅱ) complexes and their catalytic activities in the green oxidative coupling of 2,6-dimethylphenol[J]. J. Organomet. Chem.,2008,693:1927-1937.
    [8](a) Bai H Y, Ma J F, Yang J, et al. Eight Two-Dimensional and Three-Dimensional Metal-Organic Frameworks Based on a Flexible Tetrakis(imidazole) Ligand:Synthesis, Topological Structures, and Photoluminescent Properties[J]. Cryst. Growth Des.,2010,10: 1946-1959. (b) Yang W B, Lin X, Blake A J, et al. Self-Assembly of Metal-Organic Coordination Polymers Constructed from a Bent Dicarboxylate Ligand:Diversity of Coordination Modes, Structures, and Gas Adsorption[J]. Inorg. Chem.,2009,48: 11067-11078. (c) Goswami A, Sengupta S, Mondal R. Construction of helical networks by using multiple V-shaped mixed ligand systems[J].CrystEngComm,2012,14,561-572.
    [9]Gao E Q, Xu Y X, Yan C H. Two square grid coordination polymers with manganese(Ⅱ) and 1,4-bis(imidazole-1-ylmethyl)benzene[J]. CrystEngComm,2004,6:298-302.
    [10](a) Martin D P, Supkowski R M, LaDuca R L. A Three-Dimensional Mixed-Ligand Coordination Polymer Featuring Strongly Antiferromagnetically Coupled Dinuclear Copper Paddlewheels Linked into a 6-Connected Self-Penetrated Network[J]. Cryst. Growth Des. 2008,8:3518-3520. (b) Ma L F, Wang L Y, Wang Y Y, et al. Self-Assembly of a Series of Cobalt(Ⅱ) Coordination Polymers Constructed from H2tbip and Dipyridyl-Based Ligands[J], Inorg. Chem.,2009,48:915-924.
    [1](a) Yang G S, Lan Y Q, Zang H Y, et al. Two eight-connected self-penetrating porous metal-organic frameworks:configurational isomers caused by different linking modes between terephthalate and binuclear nickel building units[J]. CrystEngComm,2009,11: 274-277. (b) Blatov V A, Carlucci L, Ciani G, et al. Interpenetrating metal-organic and inorganic 3-D networks:a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database[J]. CrystEngComm,2004,6:378-395.
    [12]Eugenio C, Monica G M, Guillermo M E. Combination of Magnetic Susceptibility and Electron Paramagnetic Resonance to Monitor the 1D to 2D Solid State Transformation in Flexible Metal-Organic Frameworks of Co(II) and Zn(II) with 1,4-Bis(triazol-1-ylmethyl)benzene[J].Inorg. Chem.,2012.DOI:10.1021/ic300276q.
    [13](a) Peng Y, Tian C B, Zhang H B, et al. Synthesis, structure and magnetic study of a novel mixed-valent CoⅡ10CoⅡI4 shield constructed by mixed pyridine-alcoholate ligands[J]. Dalton Trans.,2012. DOI:10.1039/C2DT12487D. (b) Yu Q, Li C P, Zhang Z H, et al. Mixed-ligand complexes with trans-l-(2-pyridyl)-2-(4-pyridyl)ethylene terminal and different aromatic polycarboxyl linkers:Synergistic modulation of metallosupramolecular architectures via coordinative and secondary interactions[J]. Polyhedron,2009,28:2347-2354.
    [14]Escuer A., Vlahopoulou G, Perlepes S P, Trinuclear, Tetranuclear, and Polymeric CuⅡ Complexes from the First Use of 2-Pyridylcyanoxime in Transition Metal Chemistry: Synthetic, Structural, and Magnetic Studies[J]. Inorg. Chem.,2011,50,2468-2478.
    [15]Yang E C, Feng W, Wang J Y, et al. Crystal structure, thermal stability and theoretical investigation on four 1,3-bis(1,2,4-triazol-1-y1)propane-based copper(Ⅱ) complexes[J]. Inorg. Chim. Acta,2010,363:308-316.
    [16]Wen L L, Wang F, Feng J, et al. Structures, Photoluminescence, and Photocatalytic Properties of Six New Metal-Organic Frameworks Based on Aromatic Polycarboxylate Acids and Rigid Imidazole-Based Synthons[J]. Cryst. Growth Des.,2009,9:3581-3589.
    [17]Yan Y, Wu C D, He X, et al. Hydrothermal Synthesis of Three Novel Multidimensional Metal-Organic Frameworks with Unusual Units and Mixed Ligands[J]. Cryst. Growth Des., 2005,5:821-827.
    [18](a) Tannenbaum R. Three-Dimensional Coordination Polymers of Ruthenium(B+) with 1,4-Diisocyanobenzene Ligands and Their Catalytic Activity[J]. Chem. Mater.1994,6, 550-555. (b) Kondo M, Shimamura M, Noro S, et al. Microporous Materials Constructed from the Interpenetrated Coordination Networks. Structures and Methane Adsorption Properties[J]. Chem. Mater.,2000,12:1288-1299. (c) Han H Y, Zhang S J, Hou H W, et al. Fe(Cu)-Containing Coordination Polymers:Syntheses, Crystal Structures, and Applications as Benzyl Alcohol Oxidation Catalysts[J]. Eur. J. Inorg. Chem.,2006,1594-1600. (d) Xiao B, Hou H W, Fan Y T. Catalytic applications of CuⅡ-containing MOFs based on N-heterocyclic ligand in the oxidative coupling of 2,6-dimethylphenol[J]. J. Organomet. Chem.,2007,692: 2014-2020.
    [19](a) Liu Y, Pang Q H, Meng X G, et al. Oxidative coupling of 2,6-dimethylphenol catalyzed by copper(II) complexes in aqueous solution[J]. J. Appl. Polym. Sci.,2010,118:2043-2049. (b) Sadeghi F, Tremblay A Y, Kruczek B J. Synthesis and characterization of emulsion polymerized mixed matrix aluminum silicate/poly(2,6-dimethyl 1,4-phenylene oxide) films[J]. Appl. Polym. Sci.,2008,109:1454-1060. (c) Li X H, Meng X G, Pang Q H, et al. Metal complexes catalyzed oxidative coupling of 2,6-dimethylphenol in micellar mediaOriginal Research Article[J]. J. Mol. Catal. A:Chem.,2010,328:88-92. (d) Sakar D, Cankurtaran O, Karaman F. Determination of transition points and thermodynamic interaction parameters of poly(2,6-dimethyl-1,4-phenylene oxide)[J]. Plast. Rubber Compos.,2008,37:276-280.
    [20](a) Boldron C, AromI G, Challa G, et al. Selective oxidative para C-C dimerization of 2,6-dimethylphenol[J]. Chem. Commun.,2005,5808-5810. (b) Saito K, Tago T, Masuyama T, et al. Oxidative Polymerization of 2,6-Dimethylphenol To Form Poly(2,6-dimethyl-1,4-phenyleneoxide) in Water[J]. Angew. Chem., Int. Ed.,2004,43: 730-733. (c) Baesjou P J, Driessen W L, Challa G, et al. Ab Initio Calculations on 2,6-Dimethylphenol and 4-(2,6-Dimethylphenoxy)-2,6-dimethylphenol. Evidence of an Important Role for the Phenoxonium Cation in the Copper-Catalyzed Oxidative Phenol Coupling Reaction[J]. J. Am. Chem. Soc.,997,119:12590-12594. (d) Gao J, Reibenspies J H, Martell A E. Oxidative coupling polymerization of 2,6-dimethylphenol catalyzed by macrocyclic tetracopper(II) complexes[J]. Inorg. Chim. Acta,2002,338:157-164.
    [21]Maurya M R, Jain I, Titinchi S J J, Coordination polymers based on bridging methylene group as catalysts for the liquid phase hydroxylation of phenol[J]. Appl. Catal. A:Gen.,2003, 249:139-149.
    [22]Guieu S J A, Lanfredi A M M, Massera C, et al. New N,O-containing ligands for the biomimetic copper-catalyzed polymerization of 2,6-dimethylphenol [J]. Catal. Today,2004,96: 259-264.
    [1]Schramm P, Leineweber A, Lissner F, et al. Metal Dependence of Network Dimensionality in 1,2,4-Diazaphospholide Coordination Polymers[J]. Chem. Eur. J.,2010.16: 2982-2985.
    [2]Li S L, Tan K, Lan Y Q, et al. pH-Dependent Binary Metal-Organic Compounds Assembled from Different Helical Units:Structural Variation and Supramolecular Isomers[J]. Cryst. Growth Des.,2010,10:1699-1705.
    [3]Hsu Y F, Hsu W, Wu C J, et al. Roles of halide anions in the structural diversity of Zn(II) complexes containing the flexible N,N'-di(4-pyridyl)adipoamide ligand[J]. CrystEngComm, 2010,10:12702-12710.
    [4]Yao Q X, Sun J L, Li K, et al. A series of isostructural mesoporous metal-organic frameworks obtained by ion-exchange induced single-crystal to single-crystal transformation[J]. Dalton Trans.,2012, Advance Article. DOI:10.1039/C2DT12088G.
    [5]Masaru K, Takashi F, Daisaku Y, et al. Anion influence on the coordination polymer structures of silver(Ⅰ) complexes with 2-methylisothiazol-3(2H)-one[J]. CrystEngComm,2008, 10:1460-1466.
    [6]Sakamoto H, Matsuda R, Bureekaew S, et al. A Porous Coordination Polymer with Accessible Metal Site and Its Complementary Coordination Action[J]. Chem. Eur. J.,2009,15: 4985-4989.
    [7]Heo J, Jeon Y M, Mirkin C A. Reversible Interconversion of Homochiral Triangular Macrocycles and Helical Coordination Polymers[J]. J. Am. Chem. Soc.,2007,129: 7712-7713.
    [8]Li H H, Shi W, Zhao K N, et al. A Robust Porous Metal-Organic Framework with a New Topology That Demonstrates Pronounced Porosity and High-Efficiency Sorption/Selectivity Properties of Small Molecules[J]. Chem. Eur. J.2012, DOI:10.1002/chem.201103687
    [9]Wang X L, Qin C, Wang N B, Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting[J]. Angew. Chem. Int. Ed.,2005,44: 5824-5827.
    [10]Wu H Y, Wang R X, Yang W T, et al.3-Fold-Interpenetrated Uranium-Organic Frameworks: New Strategy for Rationally Constructing Three-Dimensional Uranyl Organic Materials[J]. Inorg. Chem.,2012,51,3103-3107.
    [11]Zhu Q L, Sheng T L, Tan C H, et al. Formation of Zn(II) and Cd(II) Coordination Polymers Assembled by Triazine-Based Polycarboxylate and in-Situ-Generated Pyridine-4-thiolate or Dipyridylsulfide Ligands:Observation of an Unusual Luminescence Thermochromism[J]. Inorg. Chem.,2011,50,7618-7624.
    [12]Natarajan R, Savitha G, Dominiak P, et al. Corundum, Diamond, and PtS Metal-Organic Frameworks with a Difference:Self-Assembly of a Unique Pair of 3-Connecting D2d-Symmetric 3,3',5,5'-Tetrakis(4-pyridyl)bimesityl[J]. Angew. Chem. Int. Ed.,2005,44:2115-2119.
    [13]Sun D, Ma S, Ke Y, et al. An Interweaving MOF with High Hydrogen Uptake[J]. J. Am. Chem. Soc.,2006,128:3896-3897.
    [14]Wang Y, Huang Y Q, Liu G X, et al. New Metal-Organic Frameworks with Large Cavities: Selective Sorption and Desorption of Solvent MolecuIes[J]. Chem. Eur. J.,2007,13: 7523-7531.
    [15]LU X Q, Qiao Y Q, He J R, et al. Triple-Stranded Helical and Plywood-Like Arrays:Two Uncommon Framework Isomers Based on the Common One-Dimensional Chain Structures. Cryst. Growth Des.,2006,6:1910-1914.
    [16]Zhu H F, Fan J, Okamura T, et al. Metal-Organic Architectures of Silver(I),Cadmium(II), and Copper(II) with a Flexible Tricarboxylate Ligand[J]. Inorg. Chem.,2006,45:3941-3948.
    [17]Liu X G, Wang L Y, Zhu X, et al. Structural Versatility of Eight Zinc(II) Coordination Polymers Constructed with a Long Flexible Ligand l,4-Bis(l,2,4-triazol-l-yl)butane[J]. Cryst. Growth Des.,2009,9:3997-4005.
    [18]Wang Y Q, Sun Q, Gao E Q. Novel three-dimensional framework based on Co(II)-azide chains and a tetrapyridyl ligand[J]. Inorg.Chem. Comm.2012,15,8-11.
    [19]van Albada G A, Guijt R C, Haasnoot J G, et al. Two Examples of Novel and Unusual Double-Layered, Two-Dimensional Cu(II) Compounds with Bridging l,3-Bis(l,2,4-triazol-l-yl)propane[J]. Eur. J. Inorg. Chem.,2000,121-126.
    [20]Hu J Y, Li J P, Zhao J A, et al. Construction of several d10 metal coordination polymers based on aromatic polycarboxylate and flexible triazole-based ligand[J]. Inorg. Chim. Acta., 2009,362:5023-5030.
    [21]Li B L, Wang X Y, Zhu X, et al. Synthesis, crystal structure and magnetic behavior of two cobalt coordination polymers with l,2-bis(l,2,4-triazol-l-yl)ethane and dicyanamide[J]. Polyhedron,2007,26:5219-5224.
    [22]Zhu X, Liu X G, Li B L, et al. Solvent-controlled assembly of supramolecular isomers:2D (4,4) network, 1D ribbons of ring, and both 2D (4,4) networks and 1D ribbons of rings polycatenated in a 3D array [J]. CrystEngComm,2009,11:997-1000.
    [23]Liu Y Y, Yi L, Ding B,et al. Various metal-organic frameworks from 1D,2D to 3D with l,6-bis(l,2,4-triazol-1-yl)hexane[J]. Inorg. Chem. Commun.,2007,10:517-519.
    [24]Tian L, Chen Z. Synthesis, crystal structure and characterization of two Cu(II) complexes assembled with flexible bistriazole butane[J]. Inorg. Chem. Commun.,2011,14:1302-1305.
    [25]Li B Z, Peng Y F, Liu X G, et al. Syntheses, structures and characteristic of three copper(II) coordination polymers with flexible ligand l,4-bis(1,2,4-triazol-1-ylmethyl)benzene[J]. J. Mol. Struct.,2005,741:235-240.
    [26]Peng Y F, Ge H Y, Li B Z, et al. Three Supramolecular Isomers of Square Grid Networks from the Assembly of a Flexible Spacer and Co(NCS)2: Structures and Polymer Transformation [J]. Cryst. Growth Des.,2006,6:994-998.
    [27]Kan W Q, Ma J F, Liu B, et al. A series of coordination polymers based on 5,50-(ethane-l,2-diyl)-bis(oxy)-diisophthalic acid and structurally related N-donor ligands: syntheses, structures and properties[J]. CrystEngComm,2012,14,286-299.
    [28]Wang X L, Qin C, Wang E B, et al. An unusual polyoxometalate-encapsulating 3D polyrotaxane framework formed by molecular squares threading on a twofold interpenetrated diamondoid skeleton[J]. Chem. Commun.,2007,4245-247.
    [29]Ni T J, Shao M, Zhu S R, et al. Lotus-Root-like One-Dimensional Polymetallocages with Drastic Void Adaptability Constructed from 4,4'-Bis(l,2,4-triazol-l-ylmethyl)biphenyl and Zn(II) or Co(II) and Their Fluorescein Encapsulation Properties[J]. Cryst. Growth Des.,2010, 10:943-95
    [30]Ren C, Liu P, Wang Y Y, et al. Structural Investigation of Coordination Polymers Constructed from a Conformational Bis-triazole Ligand and V-Shaped Bridging Carboxylate Anions:Hydrothermal Syntheses, Crystal Structures, and Property Studies. Eur. J. Inorg. Chem.,2010,5545-5555.
    [31]Ren C, Hou L, Liu B, et al. Distinct structures of coordination polymers incorporating flexible triazole-based ligand:topological diversities, crystal structures and property studies. Dalton Trans.,2011,40,793-804.
    [32]Ren C, Zhang Y N, Shi W J. Structural diversity of coordination polymers assembled from adamantane dicarboxylates and conformational bis-triazole ligand. CrystEngComm,2011,13, 5179-5189.
    [33]G. M. Sheldrick, A short history of SHELX [J]. Acta Crystallogr.,2008, A64:112-122.
    [34]Chattopadhyay T, Banerjee A, Banu K S, et al. Cadmium-halide and mixed cadmium-halide-dicyanamide polymers mediated by ancillary 2-aminoalkyl-pyridine ligands: Synthesis, X-ray single crystal structures and luminescence property[J]. Polyhedron,2008,27: 2452-2458.
    [35]Xiao B, Hou H W, Fan Y T, et al. Impact of counteranion on the self-assembly of Cd(II)-containing MOFs:Syntheses, structures and photoluminescent properties[J]. Inorg. Chim. Acta.,2007,360:3019-3025.
    [36]Chu Z L, Zhu H B, Hu D H, et al. 1D Looped Chain, 1D Tube-like Chain, and 3D Inorganic-Organic Hybrid Coordination Polymers Assembled from l,6-Di(triazole-l-yl-methyl)-4-R-phenol and Cadmium(II) Thiocyanate[J]. Cryst. Growth Des.,2008,8:1599-1604.
    [37]Zhao W, Fan J, Okamura T a,et al. Syntheses, crystal structures and properties of novel zinc(II) complexes obtained by reactions of zinc(II) malonate with flexible multidentate ligands[J]. J. Solid State Chem.,2004,177:2358-2365.
    [38]Carlucci L, Ciani G, Maggini S, et al. Metal-organic coordination frameworks assembled with the long flexible ligand 4,4'-bis(imidazol-l-ylmethyl)biphenyl[J]. CrystEngComm,2008, 10:1191-1203.
    [39]Wang X L, Liu X J, Tian A X, et al. A novel 3D polyoxometalate-linked olypseudo-rotaxane framework by using semi-rigid bis(triazole) ligand[J]. Inorg. Chem. Commun.,2012,17: 71-74.
    [40]Li C Y, Liu C S, Li J R, et al. Metal Coordination Architectures of l,4-Bis(imidazol-l-ylmethyl)naphthalene:Syntheses, Crystal Structures, and Theoretical Investigations on the Coordination Properties of the Ligand[J]. Cryst. Growth Des.,2007,7: 286-295.
    [41]Zhao W, Zhu H F, Okamura T A, et al. Synthesis and crystal structure of blue luminescent cadmium(II) coordination networks with 4,4-bis(imidazol-l-ylmethyl)biphenyl from different solvent systems[J]. Supramol. Chem.,2003,15:345-352.
    [42]Chen W T, Wang M S, Liu X, et al. Investigations of Group 12 (IIB) Metal Halide/Pseudohalide-Bipy Systems:Syntheses, Structures, Properties, and TDDFT Calculations (Bipy= 2,2'-bipyridine or 4,4'-bipyridine)[J]. Cryst. Growth Des.,2006,6: 2289-2300.
    [43]Ikeda S, Kimachi S, Azumi T. Spectroscopic Study on Fluorescing Processes of (nd)10 Transition-Metal Complexes.1. ZnX2(phen) (X=Cl, Br, I; phen=1,10-Phenanthroline Monohydrate)[J]. J.Phys. Chem.,1996,100:10528-10530.
    [44]Bai H Y, Ma J F, Yang J, et al. Effect of Anions on the Self-Assembly of Cd(Ⅱ)-Containing Coordination Polymers Based on a Novel Flexible Tetrakis(imidazole) Ligand[J]. Cryst. Growth Des.,2010,10:995-1016.
    [45]Schmittel M, Lin H W. Luminescent Iridium Phenanthroline Crown Ether Complex for the Detection of Silver(I) Ions in Aqueous Media[J]. Inorg. Chem.,2007,46:9139-9145.
    [1](a) Cui Y J, Xu H, Yue Y F, et al. A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer[J]. J. Am. Chem. Soc,2012,134,3979-3982. (b) Yin Z, Wang Q X, Zeng M H, et al. Iodine Release and Recovery, Influence of Polyiodide Anions on Electrical Conductivity and Nonlinear Optical Activity in an Interdigitated and Interpenetrated Bipillared-Bilayer Metal-Organic Framework[J]. J. Am. Chem. Soc.,2012,134,4857-4863.
    [2](a) Wu H, Liu H Y, Liu B, et al. Two unprecedented 3D metal-organic polyrotaxane frameworks based on a new flexible tri(imidazole) ligand[J]. CrystEngComm.,2011,13: 3402-3407. (b) Chen H Y, Xiao D R, He J H, et al. A series of novel entangled coordination frameworks with inherent features of self-threading, polyrotaxane and polycatenane[J]. CrystEngComm.,2011,13:4988-5000. (c) Tian J, Motkuri R K, Thallapally P K, et al. Metal-Organic Framework Isomers with Diamondoid Networks Constructed of a Semirigid Tetrahedral Linker[J]. Cryst. Growth Des.,2010,10:5327-5333.
    [3]Zhao J P, Hu B W, Sanudo E C,et al. magnetism of azido-mediated Cull systems by Co-ligand modifica-tions[J]. Inorg. Chem.,2009,48:2482-2489.
    [4]Han L, Bu X H, Zhang Q C, et al. Solvothermal in Situ Ligand Synthesis through Disulfide Cleavage:3D (3,4)-Connected and 2D Square-Grid-Type Coordination Polymers[J]. Inorg. Chem.,2006,45:5736-5744.
    [5](a) Li Y W, Yang R T, Significantly Enhanced Hydrogen Storage in Metal-Organic Frameworks via Spillover[J]. J. Am. Chem. Soc.,2006,128:726-727.
    [6]Yang G P, Wang Y Y, Zhang W H, et al. A series of Zn(II) coordination complexes derived from isomeric phenylenediacetic acid and dipyridyl ligands:syntheses, crystal structures, and characterizations[J]. CrystEngComm.,2010,12:1509-1517.
    [7](a) Shao K Z, Zhao Y H, Lan Y Q, et al. Molecular tectonics of metal-organic frameworks based on ligand-modulated polynuclear zinc SBUs and aromatic multicarboxylic acids[J]. CrystEngComm.,2011,13:889-896. (b) Zhang L, Yao Y L, Che Y X, et al. Hydrothermal Synthesis of a Series of Interpenetrated Metal-Organic Frameworks Based on Long Multicarboxylate and Long Heterocyclic Aromatic Ligands[J]. Cryst. Growth Des.,2010,10: 528-533. (c) Wang S J, Xiong S S, Wang Z Y, et al. Rational Design of Zinc-Organic Coordination Polymers Directed by N-Donor Co-ligands[J]. Chem. Eur. J.,2011,17: 8630-8642.
    [8]Shimomura S, Yanai N, Matsuda R, et al. Impact of Metal-Ion Dependence on the Porous and Electronic Properties of TCNQ-Dianion-Based Porous Coordination Polymers[T]. Inorg. Chem.,2011,50:172-177.
    [9](a) Su Z, Zhao Y, Chen M, et al. Anion-and auxiliary ligand-directed synthesis of cadmium(II) complexes with 3,5-di(1H-imidazol-1-yl)benzoate[J]. CrystEngComm.,2011,13:1539-1549. (b) Wang X L, Chen Y Q, Gao Q, et al. Coordination Behavior of 5,6-Substituted 1,10-Phenanthroline Derivatives and Structural Diversities by Coligands in the Construction of Lead(II) Complexes[J]. Cryst. Growth Des.,2010,10:2174-2184.
    [10](a) Qi Y, Che Y X, Zheng J M. Self-Penetrating and Interpenetrating 3D Metal-Organic Frameworks Constructed from the Rigid l,4-Bis(l-imidazolyl)-benzene Ligand and Aromatic Carboxylate[J]. Cryst. Growth Des.,2008,8:3602-3608. (b) Li Z X, Chu X, Cui G H, et al. Benzoate acid-dependent formation of a series of interpenetrating metal-organic frameworks based on the cobalt∩1,4-bis(imidazolyl)benzene coordination substrate[J]. CrystEngComm., 2011,13:1984-1989.
    [11]Zhou X H, Du X D, Li G N, et al. Coordination Polymers Assembled from 3,5-Pyrazoledicarboxylic Acid and Bis(triazolyl) Ligands:Chiral and Meso-Structures Induced by Ligand Flexibility and a Six-Connected Self-Catenated Network[J]. Cryst. Growth Des.,2009,9:4487-4496.
    [12]Sheldrick G M. A short history of SHELX[J]. Acta Crystallogr,2008, A64:112-122.
    [13]van der Made A W, van der Made R H, A convenient procedure for bromomethylation of aromatic compounds. Selective mono-, bis-, or trisbromomethylation[J]. J. Org. Chem.,1993, 58:1262-1263.
    [14]Liu H K, Sun W Y, Zhu H L, et al. A two-dimensional network constructed via 72-membered heart-shaped macrocycles, a copper(ll) complex with l,3,5-tris(imidazol-l-ylmethyl)-2,4,6-trimethylbenzene and diethylenetriamine ligands[J]. Inorg. Chim. Acta,1999,295:129-135.
    [15]Chen S S, Fan J, Okamura T, et al. Synthesis, Crystal Structure, and Photoluminescence of a Series of Zinc(II) Coordination Polymers with l,4-Di(lH-imidazol-4-yl)benzene and Varied Carboxylate Ligands[J]. Cryst. Growth Des.,2010,10:812-822.
    [16](a) Chen J, Li C P, Du M. Substituent effect of R-isophthalates (R=-H,-CH3,-OCH3,-tBu,-OH, and-NO2) on the construction of Cd coordination polymers incorporating a dipyridyl tecton 2,5-bis(3-pyridyl)-1,3,4-oxadiazole[J]. CrystEngComm.,2011,13:1885-1893. (b) Tang X L, Dou W, Zhou J A, et al. Metallomacrocycle or coordination polymer: Spacer-directed self-assembly of transition-metal complexes based on flexible bis(benzotriazole) ligands[J]. CrystEngComm.,2011,13:2890-2898.
    [17]Spek A L J. Single-crystal structure validation with the program PLATON[J]. Appl. Crystallogr.,2003,36:7-13.
    [18]Du M, Jiang X J, Zhao X J. Direction of unusual mixed-ligand metal-organic frameworks: a new type of 3-D polythreading involving 1-D and 2-D structural motifs and a 2-fold interpenetrating porous network[J]. Chem. Commun.,2005,5521-5523.
    [19]Lee J Y, Chen C Y, Lee H M, et al. Zinc Coordination Polymers with 2,6-Bis(imidazole-1-yl)pyridine and Benzenecarboxylate:Pseudo-Supramolecular Isomers with and without Interpenetration and Unprecedented Trinodal Topology[J]. Cryst. Growth Des.,2011,11:1230-1237.
    [20](a) Liu F Q, Tilley T D. Coordination Networks Based on Tetrahedral Silane Building Blocks: Influence of the Anion on Structures Adopted by Ag-Si(p-C6H4CN)4 Arrays[J]. Inorg. Chem.,1997,36:5090-5096. (b) Yang J, Ma J F. Liu Y Y, et al. Four-, and six-connected entangled frameworks based on flexible bis(imidazole) ligands and long dicarboxylate anions[J]. CrystEngComm.,2009,11:151-159.
    [21](a) Gao E Q, Wang Z M, Liao C S, et al. Topological isomerism in the formation of a novel three-dimensional metal-organic polycatenane [J]. New J. Chem.,2002,26:1096-1098. (b) Chesnut D J, Kusnetzow A, Birge R, et al. Ligand Influences on Copper Cyanide Solid-State Architecture:Flattened and Fused "Slinky", Corrugated Sheet, and Ribbon Motifs in the Copper-Cyanide-Triazolate-Organoamine Family[J]. Inorg. Chem.,1999,38:5484-5494.
    [22]Li Y W, Chen W L, Wang Y H, et al. Entangled zinc-ditetrazolate frameworks involving insitu ligand synthesis and topological modulation by various secondary N-donor ligands[J]. J. Solid State Chem.,2009,182:736-743.
    [23]Xiao D R, Sun D Z, Liu J L, et al. Sodium Congener of the Classical Lithium Methylchromate Dimer: Synthetic, X-ray Crystallographic, and Magnetic Studies of MegCr2[Na(OEt2)]4[J] Eur. J.Inorg. Chem.,2011,24:4656-659.
    [24](a) Liu G X, Huang Y Q, Chu Q, et al. Effect of N-Donor Ancillary Ligands on Supramolecular Architectures of a Series of Zinc(II) and Cadmium(II) Complexes with Flexible Tricarboxylate[J]. Cryst. Growth Des.,2008,8:3233-3245. (b) Zhang W H, Dong Z, Wang Y Y, et al. Synthesis, structural diversity and fluorescent characterisation of a series of d10 metal-organic frameworks (MOFs):reaction conditions, secondary ligand and metal effects[J]. Dalton Trans.,2011,40:2509-2521.
    [25](a) Xiao D R, Li Y G, Wang E B, et al. Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid,9-Fold Meso Helices, and 17-Fold Interwoven Helices[J]. Inorg. Chem.,2007,46:4158-4166. (b) Xiao D R, Wang E B, An H Y, et al. Syntheses and Structures of Three Unprecedented Metal-Ciprofloxacin Complexes with Helical Character[J]. Cryst. Growth Des.,2007,7:506-512.
    [26]Hua Q, Zhao Y, Xu G C, et al. Synthesis, Structures, and Properties of Zinc(II) and Cadmium(II) Complexes with l,2,4,5-Tetrakis(imidazol-l-ylmethyl)benzene and Multicarboxylate Ligands[J]. Cryst. Growth Des.,2010,10:2553-2562.
    [27](a) Li S L, Tan K, Lan Y Q, et al. pH-Dependent Binary Metal-Organic Compounds Assembled from Different Helical Units:Structural Variation and Supramolecular Isomers[J]. Cryst. Growth Des.,2010,10:1699-1705. (b) Chen W, Wang J Y, Chen C, et al. Photoluminescent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates[J]. Inorg. Chem.,2003,42:944-946.
    [28]Tekin E, Egbe D A M, Kranenburg J M, et al. Effect of Side Chain Length Variation on the Optical Properties of PPE-PPV Hybrid Polymers[J]. Chem. Mater.,2008,20:2727-2735.
    [1]Kan W Q, Ma J F, Liu Y Y, et al. A series of coordination polymers based on 5-(2-carboxybenzyloxy) isophthalic acid and bis(imidazole) ligands:syntheses, topological structures and photoluminescent properties[J]. CrystEngComm,2012,14:2316-2326.
    [2]Song P, Liu B, Li Y Q, et al. Two pillared-layer metal-organic frameworks constructed with Co(Ⅱ),1,2,4,5-benzenetetracarboxylate, and 4,4'-bipyridine:syntheses, crystal structures, and gas adsorption properties [J]. CrystEngComm,2012,14:2296-2301.
    [3]Wen Y Q, Sheng T Q, Zhu Q L, et al. Self assembly of a tren-derivative hydrogenated Schiff base with transition metal ions:syntheses, crystal structures and photoluminescent properties[J]. CrystEngComm,2012, DOI: 10.1039/C2CE06481B.
    [4]Sun X L, Song W C, Zang S Q, et al. Hierarchical assembly of a homochiral triple concentric helical system in a novel 3D supramolecular metal-organic framework: synthesis, crystal structure, and SHG properties[J]. Chem. Commun.,2012,48:2113-2115.
    [5]He Q F, Li D S, Zhao J, et al. Positional isomeric effect of phenylenediacetate on the construction CdⅡ coordination frameworks[J]. Inorg.Chem. Comm.2011,14:578-583.
    [6]Kopylovich M N, Mahmudov K T, Haukka M, et al. Water-Soluble Cobalt(Ⅱ) and Copper(Ⅱ) Complexes of 3-(5-Chloro-2-hydroxy-3-sulfophenylhydrazo)pentane-2,4-dione as Building Blocks for 3D Supramolecular Networks and Catalysts for TEMPO-Mediated Aerobic Oxidation of Benzylic Alcohols[J]. Eur. J. Inorg. Chem.2011,4175-4181.
    [7]Bi J H, Yao F H, Hu N L, et al. Oxidation of phenol by two tetraazamacrocyclic Cu(II) complexes catalysts[J]. Asian J. Chem.2011,23:5183-5184.
    [8]Wang Z, Martell A E, Motekaitis R J, et al. Dinuclear Fe(Ⅱ) macrocyclic complexes as catalysts for the oxidation of hydrocarbons by molecular oxygen[J]. Inorg. Chim. Acta.2000, 300-302:378-383.
    [9]Hill M S, Hitchcock P B. Synthesis of C2 and Cs symmetric zinc complexes supported by bis(phosphinimino)methyl ligands and their use in ring opening polymerisation catalysis[J]. Dalton Trans.2002,24:4694-4702.
    [10]Yang Y F, Zhou R X; Zhao S F, et al. Silica-supported poly-γ-aminopropylsilane Ni2+, Cu2+, Co2+ complexes:efficient catalysts for Heck vinylation reaction[J]. J. Mol. Catal. A:Chem. 2003,192:303-306.
    [11]Chen Y F, Q C T, S J. Fluoro-Substituted 2,6-Bis(imino)pyridyl Iron and Cobalt Complexes:High-Activity Ethylene Oligomerization Catalysts[J]. Organometallics.2003, 22:1231-1236.
    [12]Chollet G, Guillerez M G, Schulz E. Reusable catalysts for the asymmetric Diels-Alder reaction[J]. Chem-A Eur. J.2007,13:992-1000.
    [13]Yorimitsu H, Oshima K. Recent progress in asymmetric allylic substitutions catalyzed by chiral copper complexes[J]. Angew. Chem. Int. Edit.2005,44:4435-4439.
    [14]Gullotti M, Santagostini L. Pagliarin R, et al. Synthesis and characterization of new chiral octadentate nitrogen ligands and related copper (II) complexes as catalysts for stereoselective oxidation of catechols[J]. J. Mol. Catal. A:Chem.2005,235:271-284.
    [15]Bi J H. Tetraazamacrocyclic Schiff base Co(II) and Ni(II) complexes as catalysts for hydroxylation of phenol[J]. Asian J. Chem.2011,23:5171-5172.
    [16]Bi J H, Li Meng, Chen Y. Macrocyclic Cu(II) and Co(II) complexes as catalysts for hydroxylation of phenol with H2O2[J]. Asian J. Chem.2010,22:7389-7392.
    [17]Long Z, Wu B, Y P, et al. Synthesis and characterization of para-nitro substituted 2,6-bis(phenylimino)pyridyl Fe(II) and Co(II) complexes and their ethylene polymerization properties[J]. J. Organomet. Chem.2009,694:3793-3799.
    [18]Struzinski T H, Gohren L R, Roy M, et al. Modified cobalt(II) acetylacetonate complexes as catalysts for Negishi-type coupling reactions:influence of ligand electronic properties on catalyst activity[J]. Transit. Metal Chem.2009,34:637-640.
    [19]Sheldrick G M, A short history of SHELX[J]. Acta Crystallogr.,2008,A64:112-122.
    [20]Bai S Q, Koh L L, Andy Hor T S. Structures of Copper Complexes of the Hybrid [SNS] Ligand of Bis(2-(benzylthio)ethyl)amine and Facile Catalytic Formation of l-Benzyl-4-phenyl-lH-l,2,3-triazole through Click Reaction[J]. Inorg. Chem.2009,48: 1207-1213.
    [21]Lee B S, Yi M, Chu S Y, et al. Copper nitride nanoparticles supported on a superparamagnetic mesoporous microsphere for toxic-free click chemistry [J]. Chem. Commun.,2010,46:3935-3937.
    [22]Crowley J D, Gavey E L. Use of di-l,4-substituted-l,2,3-triazole "click" ligands to self-assemble dipalladium(II) coordinatively saturated, quadruply stranded helicate cages[J]. Dalton Trans.,2010,39:4035-4037.
    [23]Reddy K R, Rajgopal K, Kantam M L. Copper-alginates:a biopolymer supported Cu(II) catalyst for 1,3-dipolar cycloaddition of alkynes with azides and oxidative coupling of 2-naphthols and phenols in water[J]. Catal. Lett.,2007,114:36-40.
    [24]Yang E C, Ding B, Liu Z Y, et al. Structural Transformation from a Discrete Cu4Ⅱ Cluster to Two Extended Cu4(?)+Cu1(?) Chain-Based Three-Dimensional Frameworks by Changing the Spacer Functionality:Synthesis, Crystal Structures, and Magnetic Properties[J]. Cryst. Growth Des.2012.12,1185-1192.
    [25]Mario W, Zhou H C. Systematic investigations on magneto-structural correlations of copper(II) coordination polymers based on organic ligands with mixed carboxylic and nitrogen-based moieties[J]. Dalton Trans.,2012. DOI:10.1039/C2DT1 1965J.
    [26]Chen Z, Gao D L, Diao C H, et al. Syntheses, Structures Tuned by 4,4'-Bipyridine and Magnetic Properties of a Series of Transition Metal Compounds Containing o-Carboxylphenoxyacetate Acid[J]. Cryst. Growth Des.2012. DOI:10.1021/cg201197k.
    [27]He K H, Song W C, Li Y W, et al. A New 10-Connected Coordination Network with Pentanuclear Zinc Clusters as Secondary Building Units[J]. Cryst. Growth Des.2012. doi.org/10.1021/cg2014495.
    [28]Rostovtsev V V, Green L G, Fokin V V. et al. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes[J]. Angew. Chem.2002,114:2708-2711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700