姜油的化学成分分析与姜辣素的分离纯化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生姜(Zingiber officinale Roscoe)根茎中含有挥发性的精油和非挥发性的姜辣素物质,其中精油呈现出生姜的芳香气味,而姜辣素则呈现出生姜的辛辣风味,同时,也是生姜中主要药理活性成分。为加快对生姜姜油的开发利用,本文在对生姜根茎精油和姜辣素组织化学定位基础上,研究了姜油化学成分的GC/MS测定方法,建立了用HSCCC技术分离纯化姜辣素标准样品的新方法,并探讨了生姜不同品种、不同器官、不同生长期、不同栽培因素等对姜油含量及化学成分的影响。主要研究结果如下:
     1.通过对多种染色剂进行试验比较,确定NADI试剂可作为生姜精油和姜辣素组织化学定位的特异性染色剂。该试剂可使精油呈棕红色,姜辣素呈天蓝色。通过光镜观察及透射电镜观察,确定姜精油和姜辣素混合存在于同一种类型的油细胞中,油细胞在生姜根茎中不同程度地分布于韧皮部和木质部的薄壁细胞中。
     2.姜油无需衍生化处理,即可用GC/MS联用技术测定其中的挥发性精油和非挥发性姜辣素成分。用GC/MS联用技术在莱芜大姜的姜油中共分析出77种化学成分,其中精油成分50种,姜辣素成分27种。精油相对含量为59.31%,主要为萜类及其氧化物,且以倍半萜为主(50.15%),其中主要成分为α-姜烯(22.29%)、β-倍半水芹烯(8.58%)、α-法尼烯(3.93%)、β-没药烯(3.87%)、α-姜黄烯(2.63%);姜辣素的相对含量为40.69%,其中主要成分为6-姜酚(9.38%)、6-姜烯酚(7.59%)及姜辣素类的分解产物姜油酮(9.24%)。在莱芜大姜中发现3种为新的姜辣素化合物,分别为6-异姜酚、Z-10-异姜烯酚和E-10-异姜烯酚。
     3.不同提取方法姜油得率及化学成分差异较大,新收获的莱芜大姜根茎采用水蒸气蒸馏法、乙醇浸提法和超临界CO2萃取法的姜油提取率分别为0.95%、3.75%和4.67%;水蒸气蒸馏所得精油主要是呈现芳香性气味的倍半萜类化合物(63.46%)和单萜类化合物(34.91%);乙醇浸提所得浸膏主要是呈现辛辣味的姜辣素类化合物(86.41%),其中主要为6-姜酚(16.86%)、6-姜烯酚(16.58%)和姜油酮(17.68%);超临界CO2萃取所得油树脂中挥发性的芳香味化合物和非挥发性的姜辣素类化合物的相对含量分别为59.31%和40.69%,具有浓郁的芳香气味和强烈的辛辣味。
     4.老姜的姜油含量比鲜姜高,虽然主要化学成分相同,但其相对含量相差较大。老姜中α-姜黄烯和姜辣素的相对含量分别比鲜姜高3.60%和3.89%。老姜的芳香性气味比鲜姜淡,但其辛辣味较强,具有更高的营养保健价值。
     5.生姜植株的根、根茎韧皮部、根茎木质部和周皮等部位中均含有丰富的姜油成分,含量分别达2.1±0.1%、4.64±0.13%、4.62±0.17%和0.94±0.04%,因而,在生产中无需脱皮即可提取生姜姜油;生姜地上茎和叶片的超临界CO2提取物中含姜油成分极低,其中姜辣素含量仅占9.52%、2.28%,提取姜油的利用价值不大。
     6.不同品种生姜姜油的化学成分差异较小,仅各组分的相对含量差异显著。其中姜油含量和姜辣素相对含量较高的生姜品种有:莱芜大姜、日本大姜、山农1号、山农2号、安丘大姜。姜油含量和姜辣素相对含量较低的生姜品种有:房州姜、金时姜和安丘小姜。
     7.不同生长期生姜姜油成分没有显著差异,但各组分相对含量变化较大。生姜姜油含量及姜辣素相对含量均从发芽期到收获期呈逐渐上升趋势,分别由初始的1.86±0.09%和32.7%上升至收获时的4.56±0.15%和40.11%,说明随着生姜的生长,次生代谢物——姜油被不断地合成,并贮存于根茎的油细胞中。
     8.生姜幼苗期采用不同有色膜遮光对生姜姜油含量有一定影响。其中绿膜、红膜和白膜对生姜的姜油含量和成分影响不大,适用于生姜遮光栽培,但蓝膜使姜油含量和姜辣素相对含量明显减少,分别降至3.85±0.11%和33.68%,不适于生产中应用。
     9.用HSCCC技术可以快速地从生姜乙醇浸提物中大量分离纯化高纯度的6-姜酚、8-姜酚和10-姜酚。从200 mg生姜粗提物中在170 min内即可分离纯化6-姜酚30.2 mg、8-姜酚40.5 mg和10-姜酚50.5 mg,其纯度分别达到99.9%、99.9%和92.4%。分离制备的纯品可以用于生理活性实验及分析检测用标样。
Ginger (Zingiber officinale Roscoe) rhizome contains the volatile essential oil responsible for the distinct aroma and the nonvolatile pungent compounds responsible for the pungent aroma and mainly pharmacologically active components in ginger. In order to promote the development and utilization of ginger oil, this paper studied the histochemical localization method of ginger essential oil and pungent compounds; the GC/MS analytical method for the determination of the chemical compositions of ginger oil; a novel HSCCC method for the separation and purification of major gingerols reference substances from ginger and effects of the growing development of ginger, cultivars, cultivated factors, different organs on the content and chemical compositions of ginger oil. The main results were as follows:
     1. NADI reagent can be used for histochemical localization staining of essential oils and gingerols by comparing the number of stains. And the essential oil was stained red brown, but gingerols was stained azure by NADI reagent. The essential oil and gingerols existed in the same type of oil cells and the number of points in the rhizomeby light microscope and transmission electron microscopy. They both were stored and accumulated in parenchyma cells of phloem and xylem.
     2. GC / MS technology can be applied to determinate the chemical compositions of the volatile essential oil and non-volatile gingerols in ginger oil without derivatization. The analysis resulted in 77 compounds in ginger oil from Zingiber officinale Rosc. var. Laiwudajiang, in which contained non-volatile ginger pungent compounds (40.69%) and abundant volatile compounds (59.31%). The volatile compounds were mainlyα- zingiberene (22.29%),β-sesquiphellandrene (8.58%),α-farnesene(3.93%),β-bisobolene (3.87%),α-curcumene (2.63%), which was mostly consisted of sesquiterpene hydrocarbons (50.15%). The pungent compounds of ginger were mainly 6-gingerol (9.38%), 6-shogaols (7.59%), zingerone (9.24%) produced by thermal degradation of the gingerols or shogaols. This analysis resulted in the detection of 3 hitherto unknown natural compounds from ginger var. Laiwudajiang, which were 6-isogingerol, Z-10-isoshogaol and E-10-isoshogaol, respectively.
     3. There were significant differences in ginger oil extraction rate and chemical components among different extraction methods. The ginger oil extraction rate by steam distillation, ethanol leaching and supercritical carbon dioxide was 0.95%,3.75% and 4.67%,respectively. The ginger essential oil obtained by steam distillation was mainly the sesquiterpenoids (63.46%) and the monoterpenoids (34.91%) responsible for the distinct aroma; The ginger concrete obtained by ethanol leaching was mainly the pungent compounds (86.41%) responsible for the pungent aroma, 6-gingerol (16.86%), 6-shogaol (16.58%) and zingerone (17.68%) among them; The ginger oleoresin obtained from supercritical carbon dioxide contained abundant non-volatile ginger pungent compounds (40.69%) and abundant volatile aromatic compounds (59.31%), and presented intensely the aroma and pungency of ginger.
     4. Ginger oil content of seed-ginger were more higher than that of fresh ginger. And the chemical components in both were the same, however, the relative content of chemical components was a significant difference. The relative content ofα-curcumene and pungent principles in seed-ginger was 3.60%, 3.89% higher than that in fresh ginger, respectively. The seed-ginger had a lighter fragrance than fresh ginger, but had a strong pungent taste and higher value of nutition and health care.
     5. Root, ligament, xylem and periderm contained abundant ginger oil, and the content of ginger oil was 2.1±0.1%, 4.64±0.13%, 4.6 2±0.17%, 0.94±0.04%, respectively. Ginger oil can be extracted without peeling ginger in processing. Extracts with SEF-CO2 from stem and leaf have little chemical compounds of ginger oil and can make use of little value from extrating ginger oil.
     6. There were non-significant differences between different ginger cultivars. However, the relative content of chemical composition was significant differences. The following ginger cultivars were contained more higher the content of ginger oil and the relative content of pungent principles: laiwedajiang, ribendajiang, shannongyihao, shannongrehao, anqiudajiang. The following ginger cultivars were contained more lower the content of ginger oil and the relative content of pungent principles: fangzhoujiang, jingshijiang, anqiuxiaojiang.
     7. There were non-significant differences between chemical compounds of ginger oil during different growth times. But the relative content of chemical composition was significant differences. The content of ginger oil and the relative content of pungent priciples were a gradual upward trend from 1.86±0.09% and 32.7% to 4.56±0.15% and 40.11% from germinating stage to harvesting stage, espectively. The results indicated that the second metabolites (ginger oil) were continuously synthesized and stored in the rhizomes of ginger.
     8. Green film, red film and white film in ginger cultivation had non-significant effect on the content of ginger oil and chemical components of ginger oil, and can be applied to ginger cultivation. However, blue film was unsuitable for ginger cultivation due to making ginger oil content (3.85±0.11%) and the relative content of pungent priciples (33.68%) a significant decrease.
     9. High-speed counter-current chromatography can be applied to the separation and purification of 6-gingerol,8-gingerol and 10-gingerol from a crude extract of ginger. The experiment yielded 30.2 mg of 6-gingerol, 40.5 mg of 8-gingerol, 50.5 mg of 10-gingerol from 200mg of crude extract in one-step separation. And the purity of these compounds was 99.9%, 99.9% and 99.2%, respectively, as determined by high-performance liquid chromatography (HPLC). Gingerols may be used for in vitro and in vivo studies and as reference substances for analytical purposes
引文
陈耕夫,郭晓玲,孟青.干姜化学成分分析.氨基酸和生物资源, 2002, 24 (2): 5~7
    陈燕,蔡同一,付力,单际修.用改进的高效液相色谱法(HPLC)测定姜中姜辣素.食品科学, 2001, 22 (4): 60~63
    陈燕,倪元颖,蔡同一,生姜提取物精油与姜油树脂的研究进展.食品科学, 2000, 21 (8) : 6~81
    陈燕.生姜油树脂的提取、分析及其功能特性的研究.北京:中国农业大学食品学院.博士论文, 2001
    郭振德,张相年,张镜澄.超临界CO2萃取姜油的组成研究.色谱,1995, 13(3):156~160
    韩菊,魏福祥,王改珍.生姜中姜酚的性能研究.食品科技, 2004, 4: 63~65
    韩延,刘国顺,刘艳英,苏新宏,周世.不同生长期香料烟香气成分的变化动态研究.中国烟草科学, 2003, (2): 41~45
    何文珊,严玉霞.生姜的化学成分及生物活性研究概况.中药材,2001,24(5):376~379
    洪森荣,尹明华.光质对野葛叶片愈伤组织的诱导及其可溶性蛋白含量的影响,安徽农业科学, 2007, 35 (9) : 2560 ,2563
    胡永狮,杜青云,汤秋华.气相色谱-质谱法测定姜黄挥发油化学成分,色谱,1998,16(6):528~529
    黄雪松,张宁.结晶姜酚的制取与鉴定.食品与发酵工业, 2005, 31 (10):48~50
    黄雪松.一些加工条件对姜酚稳定性的影响.食品工业科技,2006, 2: 92~94
    姜洪芳,张玖,张卫明.生姜辛辣部位的高效液相色谱(HPLC)指纹图谱研究.中国野生植物资源, 2003, 22 (5) :56~58
    姜子涛,李荣.姜辣素化学及其研究进展.食品研究与开发, 1998, (01):7~10
    李计萍,王跃生,马华.干姜与生姜主要化学成分的比较研究.中国中药杂志2001, 11 (26): 748~751
    李薇,李昶红,银董红.超临界二氧化碳萃取生姜净油.精细化工, 2004, 21 (4):812~824.
    梁洁,史庆龙,节菁,葛发欢.超临界CO2萃取食用姜油的研究.广州食品工业科技,2000,16(1):23~25
    林茂,阚建全.鲜姜和干姜精油成分的GC-MS研究.食品科学, 2008, 29 (1) : 283~285.
    柳乃奎,黄雪松.聚酞胺柱层析分离姜酚类物质的效果.工艺技术,2005,26(1):99~102
    孟青,冯毅凡,郭晓玲,陈耕夫,蔡健聪.干姜超临界CO2提取物质量控制的研究.中国中药杂志, 2005, 10 (30): 750-752
    邱琴,张国英,刘辛欣,丁玉萍,刘廷礼.超临界CO2流体萃取法与水蒸气蒸馏法提取干姜姜片挥发油化学成分的比较,上海中医药杂志,2005,39(3):55~57
    沈校军,姚雷,黄健.柠檬马鞭草在不同生长期精油含有率及组分变化的研究.上海交通大学学报(农业科学版), 2004,22(1): 22~26
    谢宝东,王华田.光质和光照时间对银杏叶片黄酮、内酯含量的影响.京林业大学学报(自然科学版), 2006, 30 (2): 51~54
    徐凯,郭延平,张上隆,戴文圣,符庆.不同光质膜对草莓果实品质的影响.园艺学报, 2007, 34 (3) : 585~590
    杨军,余德顺,代明权.超临界CO2萃取不同部位姜油的组成研究.食品科学, 2003, 24 (11) : 79~81.
    余珍,巫华美,丁靖莲.生姜的挥发性化学成分.云南植物研究. 1998, 20 (1): 113~118.
    曾凡逵,黄雪松,李爱军.超临界二氧化碳萃取姜油树脂与溶剂浸提的比较.食品科学,2006, 27 (6) : 155~158.
    张瑞华,战琨友,徐坤.有色膜覆盖对姜叶片色素含量及光合作用的影响.园艺学报, 2007, 34 (6): 1465~1470
    张瑞华.光质与生姜生长发育及光能利用特性的关系.山东农业大学,博士论文, 2008
    张卫明,姜红芳,张玖.不同居群生姜呈香部位的气相色谱指纹图谱研究.中国野生植物资源,2003 ,22 (5) :53~55
    张雪红,李华昌.高效液相色谱法分离生姜中的6-姜酚.化工技术与开发,2004, 33 (2): 36~37
    张雪红,李华昌.高效液相色谱法测定生姜中的6-姜酚.分析试验室,2005, 3 (24): 8~9
    张雪红,李华昌.高效液相色谱法分离生姜中的6-姜酚.化工技术与开发, 2004, 4 (33): 36~38
    张泽岑,王能彬.光质对茶树花青素含量的影响.四川农业大学学报, 2002, 20 (4): 337~339,382
    赵德婉.生姜优质丰产栽培原理与技术.北京:中国农业出版社, 2002
    赵峰,王少敏,高华君,孙山.套袋对红富士苹果果实芳香成分的影响.果树学报, 2006, 23 (3) : 322~325
    周晓东.超临界CO2萃取生姜特性组分-姜油的研究.精细与专用化学品,2004,12(9):13~15
    朱茂田,马力.姜辣素的分离和纯化工艺研究.食品工业科技,2006, 6: 130~131
    左安连,姚雷.香桃木不同生长期及干鲜叶精油成分分析.上海交通大学学报(农业科学版),2006,24 (4): 349~355
    Ali B H, Blunden G, Tanira M O, NemmarA. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food and Chemical Toxicology, 2008,46 (2): 409~420
    Azian M N, Kamal A M, Azlina M N. Changes of cell structure in ginger during processing. Journal of Food Engineering 2004, 62 (4): 359~364
    Azian Noor, M., Sazalina, M. S., Haira Rizan, M. R..Essential oil and active ingredients extraction from ginger plants.Annual Progress Report. Centre of Lipids Engineering and Applied Research., 2001
    Balachandran S, Kentish S E, Mawson R. The effects of both preparation method and season on the supercritical extraction of ginger. Separation and Purification Technology, 2006, 48 (2): 94~105
    Baldermann S, Reinhard, K?hler, Fleischmann P.Application of high-speed counter-current chromatography for the isolation of 9′-cis-neoxanthin from fresh spinach. Journal of Chromatography A, 2007, 1151(1~2): 183~186
    Balladin D A, Headley O, Chang-yen I, Duncan E J, McGaw D R. Comparison of the histology of (I) fresh, (II) solar dried and (III) solar dried/steam distilled ginger (Zingiber officinale Roscoe) rhizome tissue prior to the extraction of its pungent principles. Journal of Renewable Energy, 1999, 17 (2): 207~211
    Balladin D A, Headley O,Chang-Yen I, Mcgaw D R, High pressure liquid chromatographic analysis of the main pungent principles of solar dried West Indian ginger ( Zingiber officinale Roscoe). Renewable Energy, 1998, 13 (4): 531~536
    Bartley J P , Jacobs A L. Effects of drying on flavor compounds in Australian grown ginger ( Zingiber officinale). Journal of the Science of Food and Agriculture , 2000 ,80 (2) : 209~215
    Bhattarai, S., Tran, V.H. and Duke, C.C. The stability of gingerol and shogaol in aqueous solutions. J. Pharm. Sci., 2001, 90 (10): 1658~1663.
    Bode A. M., Ma W. Y., Surh Y. J., Dong Z.. Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [6]-gingerol. Cancer Research, 2001,61(3), 850~853.
    Caissard J C, Meekijjironenroj A, Baudino S, Anstett M C. Localization of production and emission of pollinator attractant on whole leaves of Chamaerops Humilis (Arecaceae). American Journal of Botany, 2004, 91(8):1190~1199
    Chen C.C., Ho C T. Gas chromatographic analysis of thermal degradation products of gingerol compounds in steam-distilled oil from ginger (Zingiber officinale Roscoe). Journal of Chromatography A, 1987, 387: 499~504
    Connell, D.W. and McLachlan, R. Natural pungent compounds. IV. Examination of the gingerols, shogaols, paradols and related compounds by thin layer and gas chromatography. The Journal of Chromatography,1972, 67 (1): 29~35.
    David R, Carde JP. Coloration différentielle des pseudophylles dePin maritime au moyen du réactif de Nadi. Comptes Rendus de l’Academie des Sciences, Paris, Serie D ,1964,258:1338–1340.
    Ensiyeh J, Sakineh MA. Comparing ginger and vitamin B6 for the treatment of nausea and vomiting in pregnancy: a randomised controlled trial. Midwifery. 2008, 11 (2): 1~5
    Ficker C., Smith M. L., Akpagana K., Gbeassor M., Zhang J., Durst T., Assabgui R., Arnason J. T.. Bioassay-guided isolation and identification of antifungal compounds from ginger. Phytotherapy Research, 2003, 17 (8): 897~902.
    Frighetto R. T. S., Welendorf R. M., Nigro E. N., Frighetto N., Siani A. C.. Isolation of ursolic acid from apple peels by high speed counte-current chromatography. Food Chemistry, 2008, 106 (2): 767~771.
    Govindarajan, V.S. Ginger chemistry, technology and quality evaluation: Part-I, CRC Critical Reviews in Food Science & Nutrition. 1982, 17 (1): 1~96.
    Harvey D. J. The mass spectra of the trimethylsilyl derivatives of ginger constituents. Biological Mass Spectrometry, 1981,8(11): 546~552
    He X. G., Bernart M. B., Lian L. Z., Lin L. Z.. High-performance liquid chromatography–electrospray mass spectrometric analysis of pungent constituents of ginger. Journal of Chromatography A, 1998, 796 (2): 327~334.
    Hibino T., Yuzurihara M., Terawaki K., Kanno H., Kase Y., & Takeda A.. Goshuyuto, a traditional Japanese medicine for migraine, inhibits platelet aggregation in Guinea-pig whole blood. Journal of Pharmacological Sciences, 2008, 108, 89~94.
    Hiserodt R.D., Franzblau S.G., Rosen R.T.. Isolation of 6-, 8-, and 10-Gingerol from Ginger Rhizome by HPLC and Preliminary Evaluation of Inhibition of Mycobacterium avium and Mycobacterium tuberculosis. Journal of Agricaltural and Food Chemistry, 1998, 46(7): 2504~2508.
    Ito Y.. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. Journal of Chromatography A, 2005, 1065 (2): 145~168.
    Jolad S D, Lantz R C, Che G J, et al.. Commercially processed dry ginger (Zingiber officinale): Composition and effects on LPS-stimulated PGE2 production. Phytochemistry, 2005, 66 (13): 1614~1635
    Jolad S D, Lantz R C, Solyom A M,.Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry, 2004, 65, (13): 1937~195
    Katiyar S. K., Agarwal R., Mukhta H.. Inhibition of Tumor Promotion in SENCAR Mouse Skin by Ethanol Extract of Zingiber officinale Rhizome. Cancer Research, 1996,56 (5): 1023~1030.
    Kikuzaki H, Kobayashi M, Nakatani N. Diarylheptanoids from rhizomes of Zingiber officinale. Pytochem., 1991, 30 (11): 3647~3651
    Kikuzaki H, Nakatani N., Cyclic diarylheptanoids from Rhizomes of Zingiber officinale. Pytochem., 1996, 43 (1): 273~277
    ikuzaki H., Tsai S.M., Nakatani N.Gingerdiol related compounds from the rhizomes of Zingiber officinale. Phytochemistry, 1992, 31 (5): 1783~1786
    Kim E C, Min J K.6-gingerol,a pungent ingredient of ginger,inhibits angiogenesis in vitro and in vivo. Biochem Biophys Res Commun, 2005, 335 (2): 300~308
    Kim S. O., Chun K. S., Kundu J. K., Surh Y. J.. Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kappaB and p38 MAPK in mouse skin. BioFactors(Oxford, England), 2004, 21 (1~4): 27~31.
    Kim S. O., Kundu J. K., Shin Y. K., Park J.H., Cho M. H., Kim T. Y., Surh Y. J.. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol ester-stimulated mouse skin. Oncogene, 2005, 24 (15): 2558~2567.
    Kimso, Shun K S ,jundu J K.Inhibitory effects of 6-gingerol on PMA-induced COX-2 expression and activation of NF-kappaB and p38 MAPK in mouse skin. Biofactor, 2004, 21 (4): 27~31
    Kuras M, Stefanowska-wronka M, Lynch JM, Zobel AM. Cytochemical Localization of Phenolic Compounds in Columella Cells of the Root Cap in Seeds of Brassica napus-Changes in the Localization of Phenolic Compounds during Germination, Annals of Botany , 1999, 84 (2): 135~143
    Lam R. Y., Woo A. Y., Leung P. S., Cheng C. H.. Antioxidant actions of phenolic compounds found in dietary plants on low-density lipoprotein and erythrocytes in vitro. Journal of the American College of Nutrition, 2007, 26 (3): 233~242.
    Lei L., Yang F.Q., Zhang T.Y., Tu.P.F., Wu L.J., Ito Y. Preparative isolation and purification of acteoside and 2’-acetyl acteoside from Cistanches salsa (C.A. Mey.) G. Beck by high-speed counter-current chromatograph. Journal of Chromatography A, 2001, 912 (1): 181~185
    Lewinsohn E, Dudai N, Tadmor Y, Katzir I, Ravid U, Putievsky E, Joel D M. Histochemical localization of citral accumulation in lemongrass leaves (Cymbopogon citratus (DC.) Stapf.,Poaceae). Annals of Botany, 1998, 81 (1): 35~39
    Li L., Tsao R, Yang R, Li C, Young J C, Zhu H.Isolation and purification of phenylethanoid glycosides from Cistanche deserticola by high-speed counter-current chromatography. Food Chemistry, 2008, 108( 2): 702~710
    Li L., Tsao R., Yang R., Liu C.M., Young J. C., Zhu H.H.. Isolation and purification of phenylethanoid glycosides from Cistanche deserticola by high-speed counter-current chromatography. Food Chemistry, 2008, 108 (3): 702~710.
    Liu Y S, Roof S, Ye Z B, Barry C, Tuinen A, Vrebalov J, Bowler C, Giovannoni J. Manipulation of light signal transduction as a meansof modifying fruit nutritional quality in tomato. Proceedings of the NationalAcademy of Sciences of the United States of America, 2004, 101 (26): 9897~9902.
    Ma J P, Jin X L, Yang L, Liu Z L. Diarylheptanoids from the rhizomes of Zingiber officinale. Phytochem., 2004, 65 (8): 1137~1143
    Mace M. E., Stipanovic R. D., Bell A. A., Histochemical Localization of Desoxyhemigossypol, a Phytoalexin in vertillium dahliae infected cotton stems. New Phytol, 1989, 111 (2): 229~232
    Mahady G B, Pendland S L.Ginger and the gingerols inhibit the growth of Cag A+ strains of Helicobater pylori .Anticancer Res. 2003, 23 (5A): 3699~3702
    Mangalakumari C K,Ninan C A, Mathew A G. Histochemical studies on the localization of significant constituents of ginger Zingiber officinale. Journal of plantation crops, 1984, 12: 146~151
    Masuda Y., Kikuzaki H, Hisamot M, Nakatan N. Antioxidant properties of gingerol related compounds from ginger. BioFactors, 2004, 21 (1~4): 293~296
    McKenna D. J., Jones K., Hughes K.. Botanical Medicines: The Desk Reference for Major Herbal Supplements, New York: Haworth Press (2nd edn), 2002: 411~412
    Minghetti P., Sosa S., Cilurzo F., Casiraghi A., Alberti E., Tubaro A., Loggia R. D., Montanari L.. Evaluation of the topical anti-inflammatory activity of ginger dry extracts from solutions and plasters. Planta Medica, 2007, 73 (15): 1525~1530.
    Mueller WC,Greenwood AW. The ultrastructure of phenolic storing cells fixed with caffeine. Journal of Experimental Botany, 1978, 29 (3): 757~764
    Mulas G., Gardner Z., Craker L.E. Effect of light quality on growth and essential oil composition in rosemary, ISHS Acta Horticulturae 723 International Symposium on the Labiatae: Advances in Production, Biotechnology and Utilisation, 2006, 1 (11): 69~72
    Mustafa, T., Srivastava, K.C. and Jensen, K.B. Drug Development Report (9) : Pharmacology of ginger, Zingiber officinale. J Drug Dev, 1993, 6 (1): 25~39.
    Nie H., Meng L. Z, Zhang H, Zhang J. Y., Yin Z., & Huang X. S.. Analysis of antiplatelet aggregation components of Rhizoma Zingiberis using chicken thrombocyte extract and high performance liquid chromatography. Chinese Medical Journal (English), 2008,121 (13): 1226~1229.
    Nigam M C, Nigam I C, Levi L, Handa K L. Essential oils and their constituents: XXII Detection of new trace components in oil of ginger. Can. J. Chem., 1964, 42 (11): 2610–2615
    Oka F., Oka H., Ito Y.. Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography. Journal of Chromatography A, 1991, 538 (1): 99~108.
    Onyenekwe P. C., Hashimoto Seiji. The composition of the essential oil of dried Nigerian ginger (Zingiber officinale Roscoe). European Food Research and Technology , 1999, 209 (6): 407~410
    Onyenekwe P. C., Ogbadu G. H., Hashimoto S. The effect of gamma radiation on the microflora and essential oil of Ashanti pepper (Piper guineense) berries. Postharvest Biology and Technology, 1997, 10(2): 161~167
    Onyenekwe P.C. , Hashimoto S.. The composition of the essential oil of dried Nigerian ginger (Zingiber officinale Roscoe). Eur Food Res Technol, 1999, 209 :407~410
    Pino, J. A. Marbot, R. Rosado, A. Batista, A. Chemical Composition of the Essential Oil of Zingiber officinale Roscoe L. from Cuba. Journal of Essential Oil Research. 2004, 16 (3): 186~188
    Pongrojpaw D,Chiamchanya C. The efficency of ginger in prevention of post operative nausea and voniting outpatient gynecological laparoscopy. J Med Assoc Thai, 2003,86 (3): 244~250
    Reverchon E., Supercritical fluid extraction and fractionation of essential oils and related products. The Journal of Supercritical Fluids, 1997,10 (1): 1~37
    Sajjad K. M., Salma K., Deepak M., Shivananda B.G.. Antioxidant activity of a new diarylheptanoid from Zingiber officinale. Pharmacognosy Magazine, 2006, 2(8): 254~257.
    Schwarz M., Hillebrand S., Habbe S, Degenhard A, Winterhalter P.Application of high-speed countercurrent chromatography to the large-scale isolation of anthocyanins. Biochemical Engineering Journal, 2003 ,14 ( 3): 179~189
    Serrato-Valenti G, Bisio A, Cornara L, Ciarallo G. Structural and histochemical investigation of the glandular trichomes of Salvia aurea L. leaves, and chemical analysis of the essential oil. Annals of Botany, 1997, 79 (3): 329~336
    Shi S., Zhang Y.P., Huang K. L., Liu S. Q., Zhao Y.,. Application of preparative high-speed counter-current chromatography for separation and purification of lignans from Taraxacum mongolicum. Food Chemistry, 2008, 108 (1): 402~406.
    Shukla Y., Singh M.. Cancer preventive properties of ginger: A brief review. Food and Chemical Toxicology, 2007,45 (5), 683~690.
    Smith, R. M., Robinson, J. M.. The essential oil of ginger from Fiji. Phytochemistry, 1981, 20 (2), 203–206.
    Sripramote M, Lekhyanada N. A randomized comparison of ginger and vitamin B6 in the treatment of nausea and vomiting of pregnacy.J Med Assoc Thai, 2003, 86 (9): 846~853
    Stefanowska M, Kuras M, Kacperska A.Low Temperature induced Modifications in Cell Ultrastructure and Localization of Phenolics in Winter Oilseed Rape (Brassica napus L. var. oleifera L.) Leaves. Annals of Botany, 2002; 90 (5): 637~645.
    Stuefer J F, Huber H. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia, 1998, 117: 1~8
    Thongson C, Davidson P M.Antimicrobial effect of Thai spices against listeria monocytogenes and Salmonella typhimurium DT104. J Food Prot, 2005, 68 (10): 2054~2058
    Variyar S ,Gholap A S , Thomas P. Effects ofγ-irradiation onthe volatile constituents of fresh ginger( Zingiber officinale Roscoe). Food Research International ,1997, 30 (1): 41~43
    Watson R, Wright C J, McBurney T. Influence of harvest date and light integral on the development of strawberry flavour compounds. Journal of Experimental Botany, 2002, 53 (377): 2121~2129.
    Wronka M, Kuras M, Tykarska T, Podstolski A, Zobel AM. Inhibition of the production of phenolic compounds in Brassica napus 2-amino-oxyacetic acid. Annals of Botany, 1995, 75 (3): 319~324
    Wu JiaJiu, Yang JuiSen. Effects of .gamma. Irradiation on the Volatile Compounds of ginger Rhizome (Zingiber officinale Roscoe). Journal of Agricultural and Food Chemistry., 1994, 42 (11): 2574–2577
    Yonel Y, Ohinata H, Yoshida R, Shimizu Y, Yokoyama C.extraction of ginger flavor with liquid or supercritical carbon dioxide. the journal of supercritical fluids, 1995, 8: 156~161
    Yu Y.J., Huang T.M., Yang B., Liu X., et al., Development of gas chromatography–mass spectrometry with microwave distillation and simultaneous solid-hase microextraction for rapid determination of volatile constituents in ginger. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43 (1): 24~31.
    Zaeoung S., Plubrukarn A., Keawpradub N. Cytotoxic and free radical scavenging activities of Zingiberaceous rhizomes. Songklanak Barin the Journal of Science. Technology. 2005 ,27(4 ): 799~812
    Zarate R, Yeoman M.Studies of the cellular localization of the phenolic pungent principle of ginger, Zingiber officinale Roscoe. New Phytologist, 1994, 126 (2): 295~300
    Zarate, R., Sukrasno. Application of two rapid techniques of column chromatography to separate the pungent principles of ginger. Zingiber officinale Roscoe. Journal Of Chromatography, 1992, 609 (1~2): 407~413.
    Zhang, X., Iwaoka, W.T., Huang, A.S., Nakamoto, S.T. and Wong, R.. Gingerol decreases after processing and storage of ginger. J. Food Sci., 1994,59 (6):1338~1343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700