一些重要基因多态性与严重创伤患者并发症风险性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     严重创伤是青年人首要死亡原因,已成为世界第三大常见死亡原因。在第一时间获救的严重创伤患者往往在伤后并发脓毒症和多器官衰竭等严重并发症,并最终死亡。创伤后并发症发病率高、死亡率高、治疗费用高的“三高现象”,对人类健康和社会经济发展已构成巨大的负面影响,因而是目前全球范围内危重病医学领域内亟待解决的重大科学问题。虽然目前脓毒症的治疗方法众多,但是脓毒症的治疗水平并无明显的提高。其关键问题在于目前脓毒症的治疗都是在脓毒症发生后。由于缺乏能早期判断脓毒症风险性的预警诊断方法,因而难以在脓毒症发生前或发生即刻进行预防或早期治疗。
     细胞因子是脓毒症病理过程中重要的效应分子,直接反映机体的免疫应答类型;而模式识别受体是脓毒症发生早期,机体识别病原菌分子,并做出迅速免疫应答的第一道防线。因此,本研究拟从细胞因子和模式识别受体入手,选择一些脓毒症相关的重要基因及多态性位点,通过生物信息学预测、体外功能验证和临床关联研究,明确其功能意义和临床预警诊断价值,从而探寻脓毒症早期诊断方法,以达到减少或减轻危重病人并发脓毒症,进一步提高临床危重病人的救治水平的目的。
     材料与方法:
     1.样本:本研究共收集656例样本,分别采自348例健康志愿者和308例严重创伤患者。所有人均为居住在重庆的中国汉族人,相互间无血缘关系。348例健康志愿者中男性219例,女性129例,平均年龄为25岁(18-53岁),均为志愿献血者。308例严重创伤患者样本(男性242例、女性46例),于2005年1月至2008年1月间从大坪医院和重庆市急救中心收集。患者纳入标准为:(1)创伤后24小时内;(2)ISS评分≥16分或AIS评分≥3分;(3)年龄≥16岁且≤70岁,性别不限;(4)存活时间超过1周。其平均年龄38.5岁,平均创伤严重程度评分(Injury severity score,ISS)为25.5分。
     2.基因测序与生物信息学分析:为筛查中国汉族人群中IL-6基因启动子区SNPs分布情况,取27例中国汉族健康人DNA样本,对IL-6基因启动子区-2996~+53bp区域(参考序列Y00081.1)进行双向直接测序。将测序结果构建重叠群,进行多重比对,寻找SNPs位点。利用在线生物信息学软件(http://125.itba.mi.cnr.it/genebin/wwwrepeat.pl和http://motif.genome.ad.jp/)对测序发现的-572C/G进行分析,观察其是位于重复序列内,还是位于重要的表达调节部位或其附近,以及碱基改变是否会影响转录因子结合位点变化,从理论上初步分析其生物学意义。
     3.报告基因实验:为进一步明确-572C/G对IL-6启动子活性的影响,用PCR方法以野生型DNA样本为模版,扩增IL-6启动子-1728~+36bp片段,构建pGL3BH-CC质粒。通过定点突变,构建pGL3BH-GG质粒。将两种质粒转染至U-937和K-562细胞系中,通过化学发光检测仪观察碱基改变对启动子活性的影响。
     4.基因芯片制备:为建立高通量基因分型技术平台,根据选择的9个细胞因子和13个SNP位点,分别设计一对PCR扩增引物和两条杂交探针。按设计的芯片矩阵将探针点制在芯片上,并与多重PCR产物杂交。待玻片晾干后用ScanArray 3000扫描仪扫描,ImaGene软件分析扫描结果。通过改变PCR条件、杂交温度优化实验条件。
     5.基因分型:分别采用RFLP-PCR(CD14/-159、-1145,MD-2/-1625、IL-6/-572)和SNP芯片(13个细胞因子SNPs)进行基因分型,芯片分型结果用ScanArray 3000扫描仪扫描,ImaGene软件分析。基因分型结果均通过随机抽取10例样本测序确认。
     6.细胞因子表达水平检测:取严重创伤患者入院后第一天全血,100ng/ml LPS刺激4小时后,离心收集血浆。用ELISA方法检测血浆细胞因子表达水平。
     7.临床关联研究:脓毒症诊断标准:(1)有病原菌培养证据;(2)体温高于38.5℃或低于36.5℃;(3)白细胞计数高于10×109/L或低于4×109/L。根据患者呼吸功能(氧合指数)、肾功能(血浆肌酐浓度)、肝功能(血浆胆红素浓度)、心血管功能(血压调整后心率)、凝血功能(血小板计数)和中枢神经系统(格拉斯哥评分)等变化计数器官功能障碍评分。创伤ISS评分采用简明损伤定级标准(1998版)。
     8.统计分析:各SNP的等位基因型频率由基因计数获得。H-W平衡采用卡方检验计算。组间荧光素酶活性通过单因素方差分析比较。多态性与MODS评分、细胞因子表达水平间的关系采用单因素方差方法统计。等位计量效应采用线性回归分析统计,并用年龄、性别及ISS评分校正。显性及隐性遗传模式下各基因型与脓毒症发生率之间的关系采用卡方检验方法统计。等位计量效应采用多重Logister回归分析计算,并对年龄、性别及ISS评分校正。检验效能通过在线软件Power and Sample Size Program software (http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize)计算。
     结果:
     1.通过对中国汉族重庆人群IL-6启动子区SNP筛查,发现中国汉族人群中IL-6启动子区仅含有-572C/G多态性位点,发生频率为23.8%。未发现在西方人群中普遍存在的-597和-174位点多态性。生物信息学分析显示IL-6 -572位点不位于重复序列内,且可能引起转录因子结合位点改变。通过报告基因实验和血浆IL-6表达水平检测,发现含-572C的质粒转录活性明显高于-572G质粒,携带-572G个体血浆IL-6表达水平明显低于-572C个体,且呈等位剂量效应关系。临床关联研究证实携带IL-6/-572G突变等位基因的创伤病人脓毒症发生率明显低于IL-6/-572C携带者。-572G位点与创伤病人的MODS评分降低有一定关系,但各基因型组间无明显差异。
     2.研制出检测13个细胞因子SNP(IL-1α-889C/T,IL-1β-1470G/C、-511C/T、-31C/T,IL-4 -589T/C,IL-6 -572C/G,IL-8 -251T/A,IL-10 -1082A/G、-819T/C、-592A/C,TNF-α-308G/A,TNF-β252G/A,IFN-γ874A/T)的SNP芯片,重复性达到96%以上,准确率达到100%。通过分析各基因型与细胞因子水平、脓毒症发生率和MODS评分间关系,筛选出8个与三者关系最为密切的多态性位点(IL-1β-1470G/C、-511C/T、-31C/T, IL-4 -589T/C, IL-6 -572C/G, IL-8 -252T/A, IL-10 -819T/C, TNF-α-308G/A)。各患者所含这8个SNPs中高反应性基因型的数量越多,则其脓毒症发生率越高,同时MODS评分也越高。
     3.通过对105例严重创伤患者进行基因分型,发现CD14/-1145、-159和MD-2/-1625多态性发生频率分别为42.9%、47.6%和22.4%,均为高频SNP位点,且与健康人群中发生频率相似。CD14/-1145A、-159C携带者创伤病人MODS评分和脓毒症发生率低于野生型等位基因携带者,且两个位点具有协同效应。同时,证实MD2/-1625G突变等位基因携带者创伤病人MOD评分和脓毒症发生率明显高于野生型等位基因携带者。
     结论:
     1.中国汉族人群中IL-6基因启动子区仅存在-572C/G多态性位点,未发现西方人群中存在的-597和-174多态性位点。IL-6/-572C→G变异能明显降低启动子活性、抑制IL-6基因转录,为功能性多态性位点。
     2.成功研制出检测9个细胞因子基因、13个SNPs位点的SNP芯片。
     3.利用SNP芯片,筛选出能预测严重创伤患者并发症风险性的8个细胞因子多态性位点(IL-1β-1470G/C、-511C/T、-31C/T, IL-4 -589T/C, IL-6 -572C/G, IL-8 -252T/A, IL-10 -819T/C, TNF-α-308G/A),以及各多态性位点间协同效应与并发症风险程度的关系。
     4.利用临床关联研究,进一步明确模式识别受体CD14 -159、-1145和MD-2 -1625对于判断严重创伤患者并发症风险性也具有重要意义。
Background:
     Major trauma is the leading cause of death in young adults and the third most common cause of death overall. Victims of severe injuries who survive the initial hours are likely to develop sepsis and sepsis-associated multiple organ dysfunction syndrome (MODS), which remains a worldwide problem that is the leading cause of intensive care unit mortality. The pathogenesis underlying sepsis and MODS has been demonstrated to be overwhelming immune inflammatory response, which might be preventable and controllable if being effectively managed at the early stage. To this end, it might be pivotal to find an effective way for evaluation of the risk for the sepsis and MODS in major trauma patients.
     Cytokines are critical determinants for the magnitude of immune inflammatory response, which might profoundly affect the inflammatory response to trauma and predispose trauma patients to susceptibility or resistance to sepsis and MODS. While pattern recognition receptors (PRRs), which have been shown to be elevated after injury or hemorrhagic shock, are considered as important mechanism for that injury primes the innate immune system and leads to overwhelming proinflammatory response when bacteria and their products enter into body. Therefore, SNPs of some important cytokines and PRRs were selected. Their functionality and clinical relevance were analyzed through bioinformatic studies, in vitro functional studies and clinical association studies.
     Materials and Methods:
     1. Study population. A total of 656 unrelated adult Chinese, comprising 348 healthy blood donors and 308 patients with major trauma, were recruited in this study. All of them are Han Chinese and live in the Chongqing district. The 348 healthy blood donors consisted of 219 men and 129 women, with a median age of 25 yrs (range, 18–53 yrs). The 308 trauma patients, 242 men and 46 women, were consecutively admitted to the Department of Trauma Surgery in the Daping Hospital and the Chongqing Emergency Medical Center, Chongqing, China, between January 1, 2005, and January 1, 2008. They were enrolled in the study if they met the following criteria: 1) between 16 and 70 yrs of age, 2) expected Injury Severity Score of 16, and 3) probability of survival of 1 wk (sepsis or multiple organ dysfunction usually occur 1 wk after trauma). Their average age was 38.5 and median ISS was 25.5.
     2. Sequencing of the IL-6 Promoter and bioinformatic analysis. According to distribution of IL-6 promoter SNPs in the International HapMap Project SNP database, a 3-kb sequence from position -2996 to +53 of the IL-6 gene was sequenced for discovery of SNPs (refer to GenBank, Accession No. Y00081.1). Human genetic DNA samples were collected from 27 unrelated, healthy Han Chinese subjects. Overlapping primer sets were designed on the basis of size and overlap of polymerase chain reaction amplicons by use of Primer 3.0. SNPs were found through conting construction and multiple assemble. Then, IL-6 -572C/G was analyzed using online bioinformatics tools (http://125.itba.mi.cnr. it/genebin/wwwrepeat.pl and http://motif.genome.ad.jp/) to predict its potential functions.
     3. Report assay. In order to further validate the effect of -572C/G on IL-6 promoter activities, the wildtype IL-6 gene promoter, a sequence of -1728~+36bp, was amplificated. pGL3BH-CC plasmid was constructed and Site-Directed mutated to pGL3BH-GG plasmid. After transfection of the both plasmids into U-937 and K-562 cell lines, luciferase activity was measured using the Luciferase Assay System.
     4. Preparation of allele-specific oligonucleotide array. Allele-specific oligonucleotides(ASOs) were designed with Oligo 6 and synthesized using an Expedite 8909 nucleic acid synthesizer with a 5-terminal (CH2)6–NH2 modification and purified by perfusion chromatography on a BioCAD Sprint system. The ASOs were diluted to 100μmol/L with 3×SSC and were spotted on aldehyde coated glass slides using a Cartesian Pixsys 7500. The slides were stored at -4°C until use. Before use, the slides were washed in 0.2% SDS for 3 min and pure water for 2 min, and dried in the air.
     5. Genotyping. Genotyping was performed through RFLP-PCR (CD14/-159, -1145, MD-2/-1625 and IL-6/-572) and SNP array (13 cytokine gene polymorphisms) respectively. The results were confirmed by resequencing random ten samples.
     6. Plasma cytokines’level assay. The whole blood collected from the healthy blood donors and trauma patients within 24 hrs after admission were mixed 1:1 with Roswell Park Memorial Institute 1640 culture medium, and incubated with 100ng/ml lipopolysaccharide in a sample mixer at 37°C for 4 hrs. The cytokines’levels in the supernatants were determined with enzyme-linked immunosorbent assay according to the manufacturer’s instructions.
     7. Clinical evaluation. The patients with major trauma were prospectively monitored after admission by physicians who did not know the genotypes. Sepsis was defined if patients met all the following criteria: clinical evidence of infection, body temperature of 38.5°C or 36.5°C, and leukocyte count of 10×109/L or 4×109/L. When patients were diagnosed with sepsis, assessments of respiratory (PaO2/FIO2 ratio), hepatic (serum bilirubin), renal (serum creatinine), cardiovascular (pressure-adjusted heart rate), hematologic (platelet count), and central nervous (Glasgow Coma Scale) systems were made and calculated multiple organ dysfunction scores. ISS was performed according to the abbreviated injury scale 1998.
     8. Statistical analysis. Allele frequencies for each SNP were determined by gene counting. Genotype distribution was tested for departure from Hardy-Weinberg equilibrium using chisquare analyses. Luciferase activities were compared using one-way analysis of variance. The association between SNPs and MODS or plasma cytokines’levels was determined using one-way analysis of variance. We performed linear regression analysis to quantify the allele-dose effect. The association of genotypes with sepsis morbidity was determined by chi-square analysis. Odds ratios with 95% confidence intervals were calculated by multiple logistic regression analyses to estimate the relative risk of sepsis. The power was calculated by PS: Power and Sample Size Calculation software (http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize). Results were considered to be significant at P<0.05. All statistical analyses were carried out using SPSS Version 11.0.
     Results:
     1. Only one variant (C-572G) was identified in IL-6 promoter in Chinese Han population, with a frequency of 27.8%. The C/G variation at position -572 could reduce transcriptional activity of the IL-6 promoter as shown in both U-937 and K-562 cell lines and was associated with IL-6 production by peripheral leukocytes in response to ex vivo lipopolysaccharide stimulation in an allele dose–dependent effect. Moreover, the -572 polymorphism was associated with lower risk of sepsis in major trauma patients.
     2. Nine key cytokine genes and 13 SNPs (IL-1α-889C/T,IL-1β-1470G/C、-511C/T、-31C/T,IL-4 -589T/C,IL-6 -572C/G,IL-8 -251T/A,IL-10 -1082A/G、-819T/C、-592A/C,TNF-α-308G/A , TNF-β252G/A , IFN-γ874A/T) were selected. Allele-specific oligonucleotide array was developed successfully and used for genotyping in 308 patients with major trauma. 8 SNPs (IL-1β-1470G/C、-511C/T、-31C/T, IL-4 -589T/C, IL-6 -572C/G, IL-8 -252T/A, IL-10 -819T/C, TNF-α-308G/A ) were selected out of the 13 SNPs according to their significant relationship with respective cytokine levels, sepsis morbidity and MODS scores. The number of hyper-responsive alleles of the 8 SNPs a patient has is significantly correlated with his risk of developing sepsis and MODS.
     3. Trauma patients carrying CD14/–1145 A or–159 C allele had lower multiple organ dysfunction score and sepsis morbidity rate when compared with those with–1145 G or–159 T allele. In addition, both polymorphisms were in strong linkage disequilibrium, and had a marked synergistic effect. While patients who possessed the MD-2/1625 G allele were more likely to experience complications with organ dysfunction and sepsis after major trauma.
     Conclusions:
     1. -572C/G is the only SNP found in IL-6 gene promoter in Chinese Han population. -597 and -174 poymorphisms, common SNPs in Caucasian population, are not exit in Chinese Han population. IL-6/-572C→G variation could reduce promoter activity and inhibit IL-6 gene transcription, showing a functional SNP.
     2. Allele-specific oligonucleotide array was successfully developed for genotyping 13 SNPs in 9 cytokine genes.
     3. Using SNP array, 8 SNPs out of the 13 SNPs (IL-1β/-1470G, IL-1β/-511C, IL-1β/-31T, IL-4/-589C, IL-6/-572C, IL-8/-252T, IL-10/-819T and TNFα/-308A) are shown to be well associated with the development of sepsis and MODS in trauma patients.
     4. CD14-159T/C, -1145G/A and MD-2 -1625C/G might be used as risk determinants for sepsis and MODS in trauma patients.
引文
1. Kishimoto, T., Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther, 2006. 8 Suppl 2: p. S2.
    2. Remick, D.G., et al., Role of interleukin-6 in mortality from and physiologic response to sepsis. Infect Immun, 2005. 73(5): p. 2751-7.
    3. Lipsky, P.E., Interleukin-6 and rheumatic diseases. Arthritis Res Ther, 2006. 8 Suppl 2: p. S4.
    4. Moller, B. and P.M. Villiger, Inhibition of IL-1, IL-6, and TNF-alpha in immune-mediated inflammatory diseases. Springer Semin Immunopathol, 2006. 27(4): p. 391-408.
    5. Smolen, J.S. and R.N. Maini, Interleukin-6: a new therapeutic target. Arthritis Res Ther, 2006. 8 Suppl 2: p. S5.
    6. Geppert, A., et al., Plasma concentrations of interleukin-6, organ failure, vasopressor support, and successful coronary revascularization in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction. Crit Care Med, 2006. 34(8): p. 2035-42.
    7. Vandenbroeck, K. and A. Goris, Cytokine gene polymorphisms in multifactorial diseases: gateways to novel targets for immunotherapy? Trends Pharmacol Sci, 2003. 24(6): p. 284-9.
    8. Arcaroli, J., M.B. Fessler, and E. Abraham, Genetic polymorphisms and sepsis. Shock, 2005. 24(4): p. 300-12.
    9. Bennermo, M., et al., Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin Chem, 2004. 50(11): p. 2136-40.
    10. Terry, C.F., V. Loukaci, and F.R. Green, Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem, 2000. 275(24): p. 18138-44.
    11. Schluter, B., et al., Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and outcome of sepsis. Crit Care Med, 2002. 30(1): p. 32-7.
    12. Chapman, C.M., et al., Association of an allelic variant of interleukin-6 withsubclinical carotid atherosclerosis in an Australian community population. Eur Heart J, 2003. 24(16): p. 1494-9.
    13. Balding, J., et al., The IL-6 G-174C polymorphism may be associated with ischaemic stroke in patients without a history of hypertension. Ir J Med Sci, 2004. 173(4): p. 200-3.
    14. Cavet, J., et al., Interferon-gamma and interleukin-6 gene polymorphisms associate with graft-versus-host disease in HLA-matched sibling bone marrow transplantation. Blood, 2001. 98(5): p. 1594-600.
    15. Fernandez-Real, J.M., et al., Interleukin-6 gene polymorphism and lipid abnormalities in healthy subjects. J Clin Endocrinol Metab, 2000. 85(3): p. 1334-9.
    16. Cozen, W., et al., IL-6 levels and genotype are associated with risk of young adult Hodgkin lymphoma. Blood, 2004. 103(8): p. 3216-21.
    17. Hulkkonen, J., et al., Elevated interleukin-6 plasma levels are regulated by the promoter region polymorphism of the IL-6 gene in primary Sjogren's syndrome and correlate with the clinical manifestations of the disease. Rheumatology (Oxford), 2001. 40(6): p. 656-61.
    18. Hefler, L.A., et al., Interleukin-1 and interleukin-6 gene polymorphisms and the risk of breast cancer in caucasian women. Clin Cancer Res, 2005. 11(16): p. 5718-21.
    19. Holla, L.I., et al., Analysis of the interleukin-6 gene promoter polymorphisms in Czech patients with chronic periodontitis. J Periodontol, 2004. 75(1): p. 30-6.
    20. Illig, T., et al., Significant association of the interleukin-6 gene polymorphisms C-174G and A-598G with type 2 diabetes. J Clin Endocrinol Metab, 2004. 89(10): p. 5053-8.
    21. Fife, M.S., et al., Novel IL-6 haplotypes and disease association. Genes Immun, 2005. 6(4): p. 367-70.
    22. Sutherland, A.M., et al., The association of interleukin 6 haplotype clades with mortality in critically ill adults. Arch Intern Med, 2005. 165(1): p. 75-82.
    23. Karahan, Z.C., et al., TNF-alpha -308G/A and IL-6 -174 G/C polymorphisms in the Turkish pediatric stroke patients. Thromb Res, 2005. 115(5): p. 393-8.
    24. Bednarczuk, T., et al., Association of G-174C polymorphism of the interleukin-6 gene promoter with Graves' ophthalmopathy. Autoimmunity, 2004. 37(3): p. 223-6.
    25. Kelberman, D., et al., Effect of Interleukin-6 promoter polymorphisms in survivors of myocardial infarction and matched controls in the North and South of Europe. The HIFMECH Study. Thromb Haemost, 2004. 92(5): p. 1122-8.
    26. Bhanoori, M., et al., The interleukin-6 -174G/C promoter polymorphism is not associated with endometriosis in South Indian women. J Soc Gynecol Investig, 2005. 12(5): p. 365-9.
    27. Fan, L.Y., et al., Genetic association of cytokines polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. World J Gastroenterol, 2005. 11(18): p. 2768-72.
    28. Li, Y., et al., [Study of serum Hcy and polymorphisms of Hcy metabolic enzymes in 192 families affected by congenital heart disease]. Beijing Da Xue Xue Bao, 2005. 37(1): p. 75-80.
    29. Dionigi, R., et al., Sepsis score and complement factor B for monitoring severely septic surgical patients and for predicting their survival. Eur Surg Res, 1985. 17(5): p. 269-80.
    30. Kruglyak, L. and D.A. Nickerson, Variation is the spice of life. Nat Genet, 2001. 27(3): p. 234-6.
    31. Colhoun, H.M., P.M. McKeigue, and G. Davey Smith, Problems of reporting genetic associations with complex outcomes. Lancet, 2003. 361(9360): p. 865-72.
    32. Morgan, L., et al., The interleukin-6 gene -174G>C and -572G>C promoter polymorphisms are related to cerebral aneurysms. J Neurol Neurosurg Psychiatry, 2006. 77(8): p. 915-7.
    33. Brull, D.J., et al., Interleukin-6 gene -174g>c and -572g>c promoter polymorphisms are strong predictors of plasma interleukin-6 levels after coronary artery bypass surgery. Arterioscler Thromb Vasc Biol, 2001. 21(9): p. 1458-63.
    34. Palmieri, M., et al., Interaction of the nuclear protein CBF1 with the kappaB site of the IL-6 gene promoter. Nucleic Acids Res, 1999. 27(13): p. 2785-91.
    35. Hadjigeorgiou, G.M., et al., IL-1RN and IL-1B gene polymorphisms and cerebral hemorrhagic events after traumatic brain injury. Neurology, 2005. 65(7): p. 1077-82.
    36. Majetschak, M., et al., Alterations in leukocyte function following surgical trauma: differentiation of distinct reaction types and association with tumor necrosis factorgene polymorphisms. Clin Diagn Lab Immunol, 2005. 12(2): p. 296-303.
    37. Danai, P.A., et al., Seasonal variation in the epidemiology of sepsis. Crit Care Med, 2007. 35(2): p. 410-5.
    38. Dombrovskiy, V.Y., et al., Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med, 2007. 35(5): p. 1244-50.
    39. Turner, D.M., et al., An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet, 1997. 24(1): p. 1-8.
    40. Pravica, V., et al., In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet, 1999. 26(1): p. 1-3.
    41. Tagore, A., et al., Interleukin-10 (IL-10) genotypes in inflammatory bowel disease. Tissue Antigens, 1999. 54(4): p. 386-90.
    42. Perrey, C., et al., Genotyping for polymorphisms in interferon-gamma, interleukin-10, transforming growth factor-beta 1 and tumour necrosis factor-alpha genes: a technical report. Transpl Immunol, 1998. 6(3): p. 193-7.
    43. Wilson, A.G., et al., Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A, 1997. 94(7): p. 3195-9.
    44. Hutchinson, I.V., et al., Cytokine genotypes in allograft rejection: guidelines for immunosuppression. Transplant Proc, 1998. 30(8): p. 3991-2.
    45. Lausevic, Z., et al., Predicting multiple organ failure in patients with severe trauma. Can J Surg, 2008. 51(2): p. 97-102.
    46. Lenz, A., G.A. Franklin, and W.G. Cheadle, Systemic inflammation after trauma. Injury, 2007. 38(12): p. 1336-45.
    47. Imahara, S.D. and G.E. O'Keefe, Genetic determinants of the inflammatory response. Curr Opin Crit Care, 2004. 10(5): p. 318-24.
    48. Reid, C.L., et al., Genetic variation in proinflammatory and anti-inflammatory cytokine production in multiple organ dysfunction syndrome. Crit Care Med, 2002. 30(10): p. 2216-21.
    49. McDaniel, D.O., et al., Molecular analysis of inflammatory markers in trauma patientsat risk of postinjury complications. J Trauma, 2007. 63(1): p. 147-57; discussion 157-8.
    50. Holmes, C.L., J.A. Russell, and K.R. Walley, Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest, 2003. 124(3): p. 1103-15.
    51. Reich, D.E. and E.S. Lander, On the allelic spectrum of human disease. Trends Genet, 2001. 17(9): p. 502-10.
    52. Hildebrand, F., et al., Association of IL-8-251A/T polymorphism with incidence of Acute Respiratory Distress Syndrome (ARDS) and IL-8 synthesis after multiple trauma. Cytokine, 2007. 37(3): p. 192-9.
    53. Schroeder, O., et al., The -1082 interleukin-10 polymorphism is associated with acute respiratory failure after major trauma: a prospective cohort study. Surgery, 2008. 143(2): p. 233-42.
    54. Akkad, D.A., et al., Sex specifically associated promoter polymorphism in multiple sclerosis affects interleukin 4 expression levels. Genes Immun, 2007. 8(8): p. 703-6.
    55. Amim, L.H., et al., Role of IFN-gamma +874 T/A single nucleotide polymorphism in the tuberculosis outcome among Brazilians subjects. Mol Biol Rep, 2007.
    56. Bown, M.J., et al., The interleukin-10-1082 'A' allele and abdominal aortic aneurysms. J Vasc Surg, 2007. 46(4): p. 687-93.
    57. Farkas, G., Jr., et al., Relevance of transforming growth factor-beta1, interleukin-8, and tumor necrosis factor-alpha polymorphisms in patients with chronic pancreatitis. Eur Cytokine Netw, 2007. 18(1): p. 31-7.
    58. Gatti, L.L., et al., Interleukin-6 polymorphisms, Helicobacter pylori infection in adult Brazilian patients with chronic gastritis and gastric adenocarcinoma. Arch Med Res, 2007. 38(5): p. 551-5.
    59. Genc, M.R., et al., TNFA-308G>A polymorphism influences the TNF-alpha response to altered vaginal flora. Eur J Obstet Gynecol Reprod Biol, 2007. 134(2): p. 188-91.
    60. Gu, W., et al., Identification of interleukin-6 promoter polymorphisms in the Chinese Han population and their functional significance. Crit Care Med, 2008. 36(5): p. 1437-43.
    61. Gueant-Rodriguez, R.M., et al., Association of tumor necrosis factor-alpha -308G>Apolymorphism with IgE-mediated allergy to betalactams in an Italian population. Pharmacogenomics J, 2008. 8(2): p. 162-8.
    62. Hatta, K., et al., Association of transforming growth factor-beta1 gene polymorphism in the development of Epstein-Barr virus-related hematologic diseases. Haematologica, 2007. 92(11): p. 1470-4.
    63. Lind, H., A. Haugen, and S. Zienolddiny, Differential binding of proteins to the IL1B -31 T/C polymorphism in lung epithelial cells. Cytokine, 2007. 38(1): p. 43-8.
    64. Matos, G.I., et al., IFNG +874T/A polymorphism is not associated with American tegumentary leishmaniasis susceptibility but can influence Leishmania induced IFN-gamma production. BMC Infect Dis, 2007. 7: p. 33.
    65. Messer, G., et al., Polymorphic structure of the tumor necrosis factor (TNF) locus: an NcoI polymorphism in the first intron of the human TNF-beta gene correlates with a variant amino acid in position 26 and a reduced level of TNF-beta production. J Exp Med, 1991. 173(1): p. 209-19.
    66. Pyo, C.W., et al., Polymorphisms of IL-1B, IL-1RN, IL-2, IL-4, IL-6, IL-10, and IFN-gamma genes in the Korean population. Hum Immunol, 2003. 64(10): p. 979-89.
    67. Tseng, F.C., et al., Polymorphisms in cytokine genes and risk of Helicobacter pylori infection among Jamaican children. Helicobacter, 2006. 11(5): p. 425-30.
    68. Wen, A.Q., et al., Effects of haplotypes in the interleukin 1beta promoter on lipopolysaccharide-induced interleukin 1beta expression. Shock, 2006. 26(1): p. 25-30.
    69. Kwok, P.Y., High-throughput genotyping assay approaches. Pharmacogenomics, 2000. 1(1): p. 95-100.
    70. Tsuchihashi, Z. and N.C. Dracopoli, Progress in high throughput SNP genotyping methods. Pharmacogenomics J, 2002. 2(2): p. 103-10.
    71. Gonzales, J.R., et al., Single-nucleotide polymorphisms in the IL-4 and IL-13 promoter region in aggressive periodontitis. J Clin Periodontol, 2007. 34(6): p. 473-9.
    72. Ma, P., et al., Genomic polymorphism within interleukin-1 family cytokines influences the outcome of septic patients. Crit Care Med, 2002. 30(5): p. 1046-50.
    73. Mira, J.P., et al., Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. Jama, 1999. 282(6): p.561-8.
    74. O'Keefe, G.E., D.L. Hybki, and R.S. Munford, The G-->A single nucleotide polymorphism at the -308 position in the tumor necrosis factor-alpha promoter increases the risk for severe sepsis after trauma. J Trauma, 2002. 52(5): p. 817-25; discussion 825-6.
    75. Watanabe, E., et al., Extremely high interleukin-6 blood levels and outcome in the critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphisms. Crit Care Med, 2005. 33(1): p. 89-97; discussion 242-3.
    76. Yea, S.S., et al., Interleukin-4 C-590T polymorphism is associated with protection against nasal polyps in a Korean population. Am J Rhinol, 2006. 20(5): p. 550-3.
    77. Tsarev, V.N. and E.N. Nikolaeva, [The allelic polymorhism of IL-1alpha and IL-beta genes in patients with chronic inflammatory periodontal diseases]. Vestn Ross Akad Med Nauk, 2007(3): p. 43-7.
    78. Waterer, G.W., et al., Septic shock and respiratory failure in community-acquired pneumonia have different TNF polymorphism associations. Am J Respir Crit Care Med, 2001. 163(7): p. 1599-604.
    79. Medzhitov, R. and C. Janeway, Jr., Innate immune recognition: mechanisms and pathways. Immunol Rev, 2000. 173: p. 89-97.
    80. Beutler, B., et al., Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol, 2006. 24: p. 353-89.
    81. Dobrovolskaia, M.A. and S.N. Vogel, Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect, 2002. 4(9): p. 903-14.
    82. da Silva Correia, J., et al., Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J Biol Chem, 2001. 276(24): p. 21129-35.
    83. Fitzgerald, K.A., D.C. Rowe, and D.T. Golenbock, Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes Infect, 2004. 6(15): p. 1361-7.
    84. Lee, J.D., et al., Glycosyl-phosphatidylinositol-anchored or integral membrane forms of CD14 mediate identical cellular responses to endotoxin. Proc Natl Acad Sci U S A, 1993. 90(21): p. 9930-4.
    85. Nagai, Y., et al., Essential role of MD-2 in LPS responsiveness and TLR4 distribution.Nat Immunol, 2002. 3(7): p. 667-72.
    86. Shimazu, R., et al., MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med, 1999. 189(11): p. 1777-82.
    87. Sadee, W. and Z. Dai, Pharmacogenetics/genomics and personalized medicine. Hum Mol Genet, 2005. 14 Spec No. 2: p. R207-14.
    88. LeVan, T.D., et al., Polymorphisms in the CD14 gene associated with pulmonary function in farmers. Am J Respir Crit Care Med, 2005. 171(7): p. 773-9.
    89. Miller, S.I., R.K. Ernst, and M.W. Bader, LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol, 2005. 3(1): p. 36-46.
    90. Arbour, N.C., et al., TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet, 2000. 25(2): p. 187-91.
    91. Tal, G., et al., Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis, 2004. 189(11): p. 2057-63.
    92. Ben-Ali, M., et al., Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol, 2004. 11(3): p. 625-6.
    93. Sutherland, A.M., K.R. Walley, and J.A. Russell, Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med, 2005. 33(3): p. 638-44.
    94. Gibot, S., et al., Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit Care Med, 2002. 30(5): p. 969-73.
    95. Agnese, D.M., et al., Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis, 2002. 186(10): p. 1522-5.
    96. Nakada, T.A., et al., Influence of toll-like receptor 4, CD14, tumor necrosis factor, and interleukine-10 gene polymorphisms on clinical outcome in Japanese critically ill patients. J Surg Res, 2005. 129(2): p. 322-8.
    97. Hubacek, J.A., et al., The common functional C(-159)T polymorphism within the promoter region of the lipopolysaccharide receptor CD14 is not associated with sepsis development or mortality. Genes Immun, 2000. 1(6): p. 405-7.
    98. Marshall, J.C., et al., Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med, 1995. 23(10): p. 1638-52.
    99. Medicine), A.A.f.t.A.o.A., The abbreviated injury scale: 1998 revision (AIS-98). 1998.
    100. Dziarski, R. and D. Gupta, Peptidoglycan recognition in innate immunity. J Endotoxin Res, 2005. 11(5): p. 304-10.
    101. Triantafilou, M. and K. Triantafilou, The dynamics of LPS recognition: complex orchestration of multiple receptors. J Endotoxin Res, 2005. 11(1): p. 5-11.
    102. Ulevitch, R.J., Toll gates for pathogen selection. Nature, 1999. 401(6755): p. 755-6.
    103. Koch, W., et al., CD14 gene -159C/T polymorphism is not associated with coronary artery disease and myocardial infarction. Am Heart J, 2002. 143(6): p. 971-6.
    104. Koppelman, G.H., et al., Association of a promoter polymorphism of the CD14 gene and atopy. Am J Respir Crit Care Med, 2001. 163(4): p. 965-9.
    105. Hubacek, J.A., et al., C(-260)-->T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction. Circulation, 1999. 99(25): p. 3218-20.
    106. Zee, R.Y., et al., A prospective evaluation of the CD14 C(-260)T gene polymorphism and the risk of myocardial infarction. Atherosclerosis, 2001. 154(3): p. 699-702.
    107. Hung, J., et al., Promoter polymorphism of the gene for CD14 receptor is not associated with sub-clinical carotid atherosclerosis in a community population. Eur J Cardiovasc Prev Rehabil, 2004. 11(4): p. 344-9.
    108. Hohda, S., et al., Association study of CD14 polymorphism with myocardial infarction in a Japanese population. Jpn Heart J, 2003. 44(5): p. 613-22.
    109. Yoon, H.J., et al., Association of the CD14 gene -159C polymorphism with progression of IgA nephropathy. J Med Genet, 2003. 40(2): p. 104-8.
    110. Eng, H.L., et al., Association of CD14 promoter gene polymorphism and Chlamydia pneumoniae infection. J Infect Dis, 2003. 188(1): p. 90-7.
    111. LeVan, T.D., et al., A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J Immunol, 2001. 167(10): p. 5838-44.
    112. Buckova, D., et al., Two CD14 promoter polymorphisms and atopic phenotypes in Czech patients with IgE-mediated allergy. Allergy, 2003. 58(10): p. 1023-6.
    113. Liang, X.H., et al., CD14 promoter polymorphisms have no functional significance and are not associated with atopic phenotypes. Pharmacogenet Genomics, 2006. 16(4): p. 229-36.
    114. Vercelli, D., et al., CD14: a bridge between innate immunity and adaptive IgE responses. J Endotoxin Res, 2001. 7(1): p. 45-8.
    115. Tan, C.Y., et al., Association of CD14 promoter polymorphisms and soluble CD14 levels in mite allergen sensitization of children in Taiwan. J Hum Genet, 2006. 51(1): p. 59-67.
    116. Kaczorowski, D.J., et al., Early events in the recognition of danger signals after tissue injury. J Leukoc Biol, 2008. 83(3): p. 546-52.
    117. Phan, H.H., et al., CD14-dependent modulation of NF-kappaB alternative splicing in the lung after burn injury. Gene, 2006. 371(1): p. 121-9.
    118. Carrillo, E.H., et al., Early elevation of soluble CD14 may help identify trauma patients at high risk for infection. J Trauma, 2001. 50(5): p. 810-6.
    119. Heesen, M., et al., The -260 C-->T promoter polymorphism of the lipopolysaccharide receptor CD14 and severe sepsis in trauma patients. Intensive Care Med, 2002. 28(8): p. 1161-3.
    120. Vives-Pi, M., et al., Evidence of expression of endotoxin receptors CD14, toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clin Exp Immunol, 2003. 133(2): p. 208-18.
    121. Schromm, A.B., et al., Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J Exp Med, 2001. 194(1): p. 79-88.
    122. Visintin, A., et al., Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc Natl Acad Sci U S A, 2001. 98(21): p. 12156-61.
    123. Kleinpell, R., Advances in treating patients with severe sepsis. Role of drotrecogin alfa (activated). Crit Care Nurse, 2003. 23(3): p. 16-29; quiz 67-8.
    124. Sorensen, T.I., et al., Genetic and environmental influences on premature death in adult adoptees. N Engl J Med, 1988. 318(12): p. 727-32.
    125. Kumar, A., J. Short, and J.E. Parrillo, Genetic factors in septic shock. Jama, 1999.282(6): p. 579-81.
    126. Tabrizi, A.R., et al., Genetic markers in sepsis. J Am Coll Surg, 2001. 192(1): p. 106-17; quiz 145-6.
    127. Emonts, M., et al., Host genetic determinants of Neisseria meningitidis infections. Lancet Infect Dis, 2003. 3(9): p. 565-77.
    128. Lin, M.T. and T.E. Albertson, Genomic polymorphisms in sepsis. Crit Care Med, 2004. 32(2): p. 569-79.
    129. Opal, S.M., Endotoxin and cytokine detection systems as biomarkers for sepsis-induced renal injury. Contrib Nephrol, 2007. 156: p. 220-6.
    130. Juszczynski, P., et al., Human leukocyte antigens class II and tumor necrosis factor genetic polymorphisms are independent predictors of non-Hodgkin lymphoma outcome. Blood, 2002. 100(8): p. 3037-40.
    131. Skoog, T., et al., A common functional polymorphism (C-->A substitution at position -863) in the promoter region of the tumour necrosis factor-alpha (TNF-alpha) gene associated with reduced circulating levels of TNF-alpha. Hum Mol Genet, 1999. 8(8): p. 1443-9.
    132. Stuber, F., et al., -308 tumor necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. J Inflamm, 1995. 46(1): p. 42-50.
    133. Brinkman, B.M., et al., Relevance of the tumor necrosis factor alpha (TNF alpha) -308 promoter polymorphism in TNF alpha gene regulation. J Inflamm, 1995. 46(1): p. 32-41.
    134. Appoloni, O., et al., Association of tumor necrosis factor-2 allele with plasma tumor necrosis factor-alpha levels and mortality from septic shock. Am J Med, 2001. 110(6): p. 486-8.
    135. Jaber, B.L., et al., Cytokine gene promoter polymorphisms and mortality in acute renal failure. Cytokine, 2004. 25(5): p. 212-9.
    136. Gordon, A.C., et al., TNF and TNFR polymorphisms in severe sepsis and septic shock: a prospective multicentre study. Genes Immun, 2004. 5(8): p. 631-40.
    137. Balding, J., et al., Genomic polymorphic profiles in an Irish population with meningococcaemia: is it possible to predict severity and outcome of disease? GenesImmun, 2003. 4(8): p. 533-40.
    138. Calvano, J.E., et al., Influence of the TNF-alpha and TNF-beta polymorphisms upon infectious risk and outcome in surgical intensive care patients. Surg Infect (Larchmt), 2003. 4(2): p. 163-9.
    139. Majetschak, M., et al., Tumor necrosis factor gene polymorphisms, leukocyte function, and sepsis susceptibility in blunt trauma patients. Clin Diagn Lab Immunol, 2002. 9(6): p. 1205-11.
    140. Tang, G.J., et al., Tumor necrosis factor gene polymorphism and septic shock in surgical infection. Crit Care Med, 2000. 28(8): p. 2733-6.
    141. Treszl, A., et al., Genetic variants of TNF-[FC12]a, IL-1beta, IL-4 receptor [FC12]a-chain, IL-6 and IL-10 genes are not risk factors for sepsis in low-birth-weight infants. Biol Neonate, 2003. 83(4): p. 241-5.
    142. Zhang, D., et al., Association of two polymorphisms of tumor necrosis factor gene with acute severe pancreatitis. J Surg Res, 2003. 112(2): p. 138-43.
    143. Dianliang, Z., et al., Association of plasma levels of tumor necrosis factor (TNF)-alpha and its soluble receptors, two polymorphisms of the TNF gene, with acute severe pancreatitis and early septic shock due to it. Pancreas, 2003. 26(4): p. 339-43.
    144. Kahlke, V., et al., Are postoperative complications genetically determined by TNF-beta NcoI gene polymorphism? Surgery, 2004. 135(4): p. 365-73; discussion 374-5.
    145. Majetschak, M., et al., Relation of a TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg, 1999. 230(2): p. 207-14.
    146. Stuber, F., et al., A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med, 1996. 24(3): p. 381-4.
    147. Fang, X.M., et al., Comparison of two polymorphisms of the interleukin-1 gene family: interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis. Crit Care Med, 1999. 27(7): p. 1330-4.
    148. Riese, J., et al., Association of a TNFbeta gene polymorphism with complications after major abdominal operations. Shock, 2003. 19(1): p. 1-4.
    149. Wunderink, R.G. and G.W. Waterer, Genetics of sepsis and pneumonia. Curr Opin CritCare, 2003. 9(5): p. 384-9.
    150. Waterer, G.W., et al., Heat shock protein 70-2+1267 AA homozygotes have an increased risk of septic shock in adults with community-acquired pneumonia. Crit Care Med, 2003. 31(5): p. 1367-72.
    151. Schroeder, S., et al., Analysis of two human leukocyte antigen-linked polymorphic heat shock protein 70 genes in patients with severe sepsis. Crit Care Med, 1999. 27(7): p. 1265-70.
    152. Stuber, F., et al., GENOMIC POLYMORPHISMS OF INTERLEUKIN-1RA AND TUMOR NECROSIS FACTOR DEFINE AN EXTENDED HAPLOTYPE FOR RISK ASSESSMENT IN SEVERE SEPSIS. crit Care Med, 1998. 26: p. A29.
    153. Read, R.C., et al., Variation within genes encoding interleukin-1 and the interleukin-1 receptor antagonist influence the severity of meningococcal disease. Ann Intern Med, 2003. 138(7): p. 534-41.
    154. Zhang, D.L., et al., Association of polymorphisms of IL and CD14 genes with acute severe pancreatitis and septic shock. World J Gastroenterol, 2005. 11(28): p. 4409-13.
    155. Arnalich, F., et al., Interleukin-1 receptor antagonist gene polymorphism and mortality in patients with severe sepsis. Clin Exp Immunol, 2002. 127(2): p. 331-6.
    156. Westendorp, R.G., et al., Genetic influence on cytokine production and fatal meningococcal disease. Lancet, 1997. 349(9046): p. 170-3.
    157. Lio, D., et al., Interleukin-10 promoter polymorphism in sporadic Alzheimer's disease. Genes Immun, 2003. 4(3): p. 234-8.
    158. Gallagher, P.M., et al., Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax, 2003. 58(2): p. 154-6.
    159. Mok, C.C., et al., Interleukin-10 promoter polymorphisms in Southern Chinese patients with systemic lupus erythematosus. Arthritis Rheum, 1998. 41(6): p. 1090-5.
    160. Hu, R.C., et al., [Polymorphism of interleukin-10 gene promoter and its association with susceptibility to chronic obstructive pulmonary disease in Chinese Han people]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2003. 20(6): p. 504-7.
    161. Stanilova, S.A., et al., Interleukin-10-1082 promoter polymorphism in association with cytokine production and sepsis susceptibility. Intensive Care Med, 2006. 32(2): p. 260-6.
    162. Heesen, M., et al., The interleukin-6 G(-174)C polymorphism and the ex vivo interleukin-6 response to endotoxin in severely injured blunt trauma patients. Eur Cytokine Netw, 2002. 13(1): p. 72-7.
    163. Clark, M.F. and S.V. Baudouin, A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med, 2006. 32(11): p. 1706-12.
    164. Menges, T., et al., Sepsis syndrome and death in trauma patients are associated with variation in the gene encoding tumor necrosis factor. Crit Care Med, 2008. 36(5): p. 1456-62, e1-6.
    1. Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature JT - Nature 2001;409(6822):853-5.
    2. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet JT - Trends in genetics : TIG 2001;17(9):502-10.
    3. Pritchard LE, Kawaguchi Y, Reed PW, Copeman JB, Davies JL, Barnett AH.et al. Analysis of the CD3 gene region and type 1 diabetes: application of fluorescence- based technology to linkage disequilibrium mapping. Hum Mol Genet JT - Human molecular genetics 1995;4(2):197-202.
    4. Terwilliger JD, Haghighi F, Hiekkalinna TS, Goring HH. A bias-ed assessment of the use of SNPs in human complex traits. Curr Opin Genet Dev JT - Current opinion in genetics & development 2002;12(6):726-34.
    5. Pritchard JK, Cox NJ. The allelic architecture of human disease genes: common disease-common variant.or not?. Hum Mol Genet JT - Human molecular genetics 2002;11(20):2417-23.
    6. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet JT - Nature genetics 1995;11(3):241-7.
    7. Altmuller J, Palmer LJ, Fischer G, Scherb H, Wjst M. Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet JT - American journal of human genetics 2001;69(5):936-50.
    8. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet JT - American journal of human genetics 1993;52(3):506-16.
    9. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science JT - Science (New York, N.Y.) 1996;273(5281):1516-7.
    10. Bolos AM, Dean M, Lucas-Derse S, Ramsburg M, Brown GL, Goldman D. Population and pedigree studies reveal a lack of association between the dopamine D2 receptor gene and alcoholism. JAMA JT - JAMA : the journal of the American Medical Association 1990;264(24):3156-60.
    11. Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, Jagadeeswaran P.et al.Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA JT - JAMA : the journal of the American Medical Association 1990;263(15):2055-60.
    12. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med JT - Genetics in medicine : official journal of the American College of Medical Genetics 2002;4(2):45-61.
    13. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ.et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature JT - Nature 1997;387(6636):903-8.
    14. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R.et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science JT - Science (New York, N.Y.) 1996;273(5283):1856-62.
    15. Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet JT - Nature reviews. Genetics 2002;3(5):391-7.
    16. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. Mapping complex disease loci in whole-genome association studies. Nature JT - Nature 2004;429(6990):446-52.
    17. The International HapMap Project. Nature JT - Nature 2003;426(6968):789-96.
    18. Olivier M. A haplotype map of the human genome. Physiol Genomics JT - Physiological genomics 2003;13(1):3-9.
    19. Goldstein DB, Cavalleri GL. Genomics: understanding human diversity. Nature JT - Nature 2005;437(7063):1241-2.
    20. Dong S, Wang E, Hsie L, Cao Y, Chen X, Gingeras TR. Flexible use of high-density oligonucleotide arrays for single-nucleotide polymorphism discovery and validation. Genome Res JT - Genome research 2001;11(8):1418-24.
    21. Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet JT - Nature reviews. Genetics 2001;2(2):91-9.
    22. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet JT - Nature reviews. Genetics 2005;6(2):95-108.
    23. Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multipleloci that influence complex diseases. Nat Genet JT - Nature genetics 2005;37(4): 413-7.
    24. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C.et al. Complement factor H polymorphism in age-related macular degeneration. Science JT - Science (New York, N.Y.) 2005;308(5720):385-9.
    25. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T.et al. A common genetic variant is associated with adult and childhood obesity. Science JT - Science (New York, N.Y.) 2006;312(5771):279-83.
    26. Rosskopf D, Bornhorst A, Rimmbach C, Schwahn C, Kayser A, Kruger A.et al. Comment on "A common genetic variant is associated with adult and childhood obesity". Science JT - Science (New York, N.Y.) 2007;315(5809):187; author reply 187.
    27. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM.et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science JT - Science (New York, N.Y.) 2007;316(5826):889-94.
    28. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H.et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science JT - Science (New York, N.Y.) 2007;316(5829):1331-6.
    29. Ubeda M, Rukstalis JM, Habener JF. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem JT - The Journal of biological chemistry 2006;281(39):28858-64.
    30. Foley AC, Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev JT - Genes & development 2005;19 (3):387-96.
    31. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B.et al. Genomewide association analysis of coronary artery disease. N Engl J Med JT - The New England journal of medicine 2007;357(5):443-53.
    32. Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA.et al. High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet JT - American journal of human genetics 2005;77(5):685-93.
    33. Hu N, Wang C, Hu Y, Yang HH, Giffen C, Tang ZZ.et al. Genome-wide associationstudy in esophageal cancer using GeneChip mapping 10K array. Cancer Res JT - Cancer research 2005;65(7):2542-6.
    34. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G.et al. Replicating genotype-phenotype associations. Nature JT - Nature 2007;447(7145): 655-60.
    35. Thornton-Wells TA, Moore JH, Haines JL. Genetics, statistics and human disease: analytical retooling for complexity. Trends Genet JT - Trends in genetics : TIG 2004;20(12):640-7.
    36. Xu Q, Jia YB, Zhang BY, Zou K, Tao YB, Wang YP.et al. Association study of an SNP combination pattern in the dopaminergic pathway in paranoid schizophrenia: a novel strategy for complex disorders. Mol Psychiatry JT - Molecular psychiatry 2004;9(5):510-21.
    37. Schaid DJ, McDonnell SK, Hebbring SJ, Cunningham JM, Thibodeau SN. Nonparametric tests of association of multiple genes with human disease. Am J Hum Genet JT - American journal of human genetics 2005;76(5):780-93.
    38. Nielsen DM, Ehm MG, Weir BS. Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus. Am J Hum Genet JT - American journal of human genetics 1998;63(5):1531-40.
    39. Hoh J, Wille A, Ott J. Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Res JT - Genome research 2001;11(12): 2115-9.
    40. Cooper GF, Aliferis CF, Ambrosino R, Aronis J, Buchanan BG, Caruana R.et al. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif Intell Med JT - Artificial intelligence in medicine 1997;9(2):107-38.
    41. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S.et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science JT - Science (New York, N.Y.) 2003;302(5644):449-53.
    42. Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science JT - Science (New York, N.Y.) 2005;308(5721):523-9.
    1. Kleinpell, R., Advances in treating patients with severe sepsis. Role of drotrecogin alfa (activated). Crit Care Nurse, 2003. 23(3): p. 16-29; quiz 67-8.
    2. Sorensen, T.I., et al., Genetic and environmental influences on premature death in adult adoptees. N Engl J Med, 1988. 318(12): p. 727-32.
    3. Holmes, C.L., J.A. Russell, and K.R. Walley, Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest, 2003. 124(3): p. 1103-15.
    4. Kumar, A., J. Short, and J.E. Parrillo, Genetic factors in septic shock. Jama, 1999. 282(6): p. 579-81.
    5. Tabrizi, A.R., et al., Genetic markers in sepsis. J Am Coll Surg, 2001. 192(1): p. 106-17; quiz 145-6.
    6. Emonts, M., et al., Host genetic determinants of Neisseria meningitidis infections. Lancet Infect Dis, 2003. 3(9): p. 565-77.
    7. Lin, M.T. and T.E. Albertson, Genomic polymorphisms in sepsis. Crit Care Med, 2004. 32(2): p. 569-79.
    8. Opal, S.M., Endotoxin and cytokine detection systems as biomarkers for sepsis-induced renal injury. Contrib Nephrol, 2007. 156: p. 220-6.
    9. Juszczynski, P., et al., Human leukocyte antigens class II and tumor necrosis factor genetic polymorphisms are independent predictors of non-Hodgkin lymphoma outcome. Blood, 2002. 100(8): p. 3037-40.
    10. Skoog, T., et al., A common functional polymorphism (C-->A substitution at position -863) in the promoter region of the tumour necrosis factor-alpha (TNF-alpha) gene associated with reduced circulating levels of TNF-alpha. Hum Mol Genet, 1999. 8(8): p. 1443-9.
    11. Stuber, F., et al., -308 tumor necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. J Inflamm, 1995. 46(1): p. 42-50.
    12. Brinkman, B.M., et al., Relevance of the tumor necrosis factor alpha (TNF alpha) -308 promoter polymorphism in TNF alpha gene regulation. J Inflamm, 1995. 46(1): p. 32-41.
    13. Mira, J.P., et al., Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. Jama, 1999. 282(6): p. 561-8.
    14. O'Keefe, G.E., D.L. Hybki, and R.S. Munford, The G-->A single nucleotide polymorphism at the -308 position in the tumor necrosis factor-alpha promoter increases the risk for severe sepsis after trauma. J Trauma, 2002. 52(5): p. 817-25; discussion 825-6.
    15. Watanabe, E., et al., Extremely high interleukin-6 blood levels and outcome in the critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphisms. Crit Care Med, 2005. 33(1): p. 89-97; discussion 242-3.
    16. Appoloni, O., et al., Association of tumor necrosis factor-2 allele with plasma tumor necrosis factor-alpha levels and mortality from septic shock. Am J Med, 2001. 110(6): p. 486-8.
    17. Jaber, B.L., et al., Cytokine gene promoter polymorphisms and mortality in acute renal failure. Cytokine, 2004. 25(5): p. 212-9.
    18. Gordon, A.C., et al., TNF and TNFR polymorphisms in severe sepsis and septic shock: a prospective multicentre study. Genes Immun, 2004. 5(8): p. 631-40.
    19. Balding, J., et al., Genomic polymorphic profiles in an Irish population with meningococcaemia: is it possible to predict severity and outcome of disease? Genes Immun, 2003. 4(8): p. 533-40.
    20. Calvano, J.E., et al., Influence of the TNF-alpha and TNF-beta polymorphisms upon infectious risk and outcome in surgical intensive care patients. Surg Infect (Larchmt), 2003. 4(2): p. 163-9.
    21. Majetschak, M., et al., Tumor necrosis factor gene polymorphisms, leukocyte function, and sepsis susceptibility in blunt trauma patients. Clin Diagn Lab Immunol, 2002. 9(6): p. 1205-11.
    22. Tang, G.J., et al., Tumor necrosis factor gene polymorphism and septic shock in surgical infection. Crit Care Med, 2000. 28(8): p. 2733-6.
    23. Treszl, A., et al., Genetic variants of TNF-[FC12]a, IL-1beta, IL-4 receptor [FC12]a-chain, IL-6 and IL-10 genes are not risk factors for sepsis in low-birth-weight infants. Biol Neonate, 2003. 83(4): p. 241-5.
    24. Zhang, D., et al., Association of two polymorphisms of tumor necrosis factor gene with acute severe pancreatitis. J Surg Res, 2003. 112(2): p. 138-43.
    25. Dianliang, Z., et al., Association of plasma levels of tumor necrosis factor (TNF)-alpha and its soluble receptors, two polymorphisms of the TNF gene, with acute severe pancreatitis and early septic shock due to it. Pancreas, 2003. 26(4): p. 339-43.
    26. Waterer, G.W., et al., Septic shock and respiratory failure in community-acquired pneumonia have different TNF polymorphism associations. Am J Respir Crit Care Med, 2001. 163(7): p. 1599-604.
    27. Reid, C.L., et al., Genetic variation in proinflammatory and anti-inflammatory cytokine production in multiple organ dysfunction syndrome. Crit Care Med, 2002. 30(10): p. 2216-21.
    28. Kahlke, V., et al., Are postoperative complications genetically determined by TNF-beta NcoI gene polymorphism? Surgery, 2004. 135(4): p. 365-73; discussion 374-5.
    29. Majetschak, M., et al., Relation of a TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg, 1999. 230(2): p. 207-14.
    30. Stuber, F., et al., A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med, 1996. 24(3): p. 381-4.
    31. Fang, X.M., et al., Comparison of two polymorphisms of the interleukin-1 gene family: interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis. Crit Care Med, 1999. 27(7): p. 1330-4.
    32. Riese, J., et al., Association of a TNFbeta gene polymorphism with complications after major abdominal operations. Shock, 2003. 19(1): p. 1-4.
    33. Wunderink, R.G. and G.W. Waterer, Genetics of sepsis and pneumonia. Curr Opin Crit Care, 2003. 9(5): p. 384-9.
    34. Waterer, G.W., et al., Heat shock protein 70-2+1267 AA homozygotes have an increased risk of septic shock in adults with community-acquired pneumonia. Crit Care Med, 2003. 31(5): p. 1367-72.
    35. Schroeder, S., et al., Analysis of two human leukocyte antigen-linked polymorphic heat shock protein 70 genes in patients with severe sepsis. Crit Care Med, 1999. 27(7): p. 1265-70.
    36. Wen, A.Q., et al., Effects of haplotypes in the interleukin 1beta promoter on lipopolysaccharide-induced interleukin 1beta expression. Shock, 2006. 26(1): p. 25-30.
    37. Lind, H., A. Haugen, and S. Zienolddiny, Differential binding of proteins to the IL1B -31 T/C polymorphism in lung epithelial cells. Cytokine, 2007. 38(1): p. 43-8.
    38. Stuber, F., et al., GENOMIC POLYMORPHISMS OF INTERLEUKIN-1RA AND TUMOR NECROSIS FACTOR DEFINE AN EXTENDED HAPLOTYPE FOR RISK ASSESSMENT IN SEVERE SEPSIS. crit Care Med, 1998. 26: p. A29.
    39. Read, R.C., et al., Variation within genes encoding interleukin-1 and the interleukin-1 receptor antagonist influence the severity of meningococcal disease. Ann Intern Med, 2003. 138(7): p. 534-41.
    40. Ma, P., et al., Genomic polymorphism within interleukin-1 family cytokines influences the outcome of septic patients. Crit Care Med, 2002. 30(5): p. 1046-50.
    41. Zhang, D.L., et al., Association of polymorphisms of IL and CD14 genes with acute severe pancreatitis and septic shock. World J Gastroenterol, 2005. 11(28): p. 4409-13.
    42. Arnalich, F., et al., Interleukin-1 receptor antagonist gene polymorphism and mortality in patients with severe sepsis. Clin Exp Immunol, 2002. 127(2): p. 331-6.
    43. Westendorp, R.G., et al., Genetic influence on cytokine production and fatal meningococcal disease. Lancet, 1997. 349(9046): p. 170-3.
    44. Lio, D., et al., Interleukin-10 promoter polymorphism in sporadic Alzheimer's disease. Genes Immun, 2003. 4(3): p. 234-8.
    45. Gallagher, P.M., et al., Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax, 2003. 58(2): p. 154-6.
    46. Mok, C.C., et al., Interleukin-10 promoter polymorphisms in Southern Chinese patients with systemic lupus erythematosus. Arthritis Rheum, 1998. 41(6): p. 1090-5.
    47. Hu, R.C., et al., [Polymorphism of interleukin-10 gene promoter and its association with susceptibility to chronic obstructive pulmonary disease in Chinese Han people]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2003. 20(6): p. 504-7.
    48. Nakada, T.A., et al., Influence of toll-like receptor 4, CD14, tumor necrosis factor, and interleukine-10 gene polymorphisms on clinical outcome in Japanese critically ill patients. J Surg Res, 2005. 129(2): p. 322-8.
    49. Stanilova, S.A., et al., Interleukin-10-1082 promoter polymorphism in association withcytokine production and sepsis susceptibility. Intensive Care Med, 2006. 32(2): p. 260-6.
    50. Bennermo, M., et al., Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin Chem, 2004. 50(11): p. 2136-40.
    51. Terry, C.F., V. Loukaci, and F.R. Green, Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem, 2000. 275(24): p. 18138-44.
    52. Heesen, M., et al., The interleukin-6 G(-174)C polymorphism and the ex vivo interleukin-6 response to endotoxin in severely injured blunt trauma patients. Eur Cytokine Netw, 2002. 13(1): p. 72-7.
    53. Schluter, B., et al., Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and outcome of sepsis. Crit Care Med, 2002. 30(1): p. 32-7.
    54. Sutherland, A.M., et al., The association of interleukin 6 haplotype clades with mortality in critically ill adults. Arch Intern Med, 2005. 165(1): p. 75-82.
    55. Gu, W., et al., Identification of interleukin-6 promoter polymorphisms in the Chinese Han population and their functional significance. Crit Care Med, 2008. 36(5): p. 1437-43.
    56. Clark, M.F. and S.V. Baudouin, A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med, 2006. 32(11): p. 1706-12.
    57. Menges, T., et al., Sepsis syndrome and death in trauma patients are associated with variation in the gene encoding tumor necrosis factor. Crit Care Med, 2008. 36(5): p. 1456-62, e1-6.
    58. Arcaroli, J., M.B. Fessler, and E. Abraham, Genetic polymorphisms and sepsis. Shock, 2005. 24(4): p. 300-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700