痕量二氧化氯、氯及亚氯酸根共振散射光谱测定新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用荧光分光光度计同步扫描技术建立的共振瑞利散射(RRS)光谱是一种高灵敏的简便的可获得较宽频率范围瑞利散射信号的光谱新技术,近年来,已引起分析工作者的广泛兴趣和关注,国内外研究和应用日益增多,已用于生物大分子和痕量无机、有机和药物分析研究等,它在环境分析领域的应用也很活跃,但对于水处理剂氯、二氧化氯及其副产物的分析研究尚未涉及。因此,建立一种灵敏度高、选择性好、简便快速测定饮用水中氯、二氧化氯及其副产物含量的方法具有重要的意义。本文利用共振瑞利散射光谱、荧光光谱、紫外-可见吸收光谱,并结合透射电子显微镜、激光散射技术等研究了氯、二氧化氯、亚氯酸根与I~-、罗丹明染料、阳离子表面活性剂、银纳米微粒等的相互作用过程和机理,考察了它们的光谱特征、适宜的反应条件、影响因素,讨论了共振散射增强的原因,RRS光谱与吸收光谱的关系,建立了简便、快速、灵敏测定氯、二氧化氯、亚氯酸根的共振瑞利散射新方法。说明这一技术在ClO_2、Cl_2、ClO_2~-的研究和测定中具有很好的应用前景,也是共振散射在无机物分析应用中的一个新发展。
     此外,本文综述了氯、二氧化氯及氯氧化物分析研究进展,阐述了共振瑞利散射的理论基础、发展过程及其在科学研究中的应用和发展方向。
     本文主要研究内容及成果如下:
     1.痕量二氧化氯的罗丹明染料共振散射光谱分析
     在酸性介质中,ClO_2能氧化I~-为I_2,过量的I~-与I_2形成I_3~-,它分别能与罗丹明B(RhB)、丁基罗丹明B(b-RhB)、罗丹明6G(RhG)及罗丹明S(RhS)反应形成缔合微粒,显示较强的共振散射效应,最强共振散射峰均位于420nm处。ClO_2浓度分别在0.0056~0.787μg/mL、0.0034~0.396μg/mL、0.0057~0.795μg/mL和0.0052~0.313μg/mL范围内与各体系的共振散射光强度成线性关系。RhB、b-RhB、RhG及RhS体系的检测限分别为0.0011μg/mL、0.006μg/mL、0.0054μg/mL和0.0023μg/mL ClO_2。据此建立了测定ClO_2的罗丹明B缔合微粒共振散射光谱分析新法,用于饮用水中ClO_2的测定,灵敏度高、选择性和精密度好、结果满意。
     2.痕量氯的罗丹明染料共振散射光谱分析及应用
     在Na_2HPO_4-柠檬酸缓冲液中,Cl_2能氧化I~-为I_2,过量的I~-与I_2形成I_3~-,罗丹明B(RhB)、丁基罗丹明B(b-RhB)、罗丹明6G(RhG)及罗丹明S(RhS)分别能与I_3~-发生缔合,发生共振散射效应,共振强峰均在420 nm处出现。Cl_2浓度分别在0.008~1.74μg/mL、0.019~1.33μg/mL、0.021~2.11μg/mL和0.019~2.04μg/mL范围内与RhB、b-RhB、RhG及RhS缔合微粒体系的共振散射光强度成线性关系。各体系的检测限分别为0.0020μg/mL、0.0048μg/mL、0.0063μg/mL和0.0017μg/mL Cl_2。据此建立了测定Cl_2的分析法。其中罗丹明B体系最稳定,且灵敏度也高。用于饮用水中Cl_2的测定,并与光度法对照,结果满意。
     3.痕量亚氯酸根的罗丹明染料共振散射光谱分析及应用
     在乙酸钠-盐酸缓冲液中,亚氯酸根能氧化I~-为I_2,过量的I~-与I_2形成I_3~-,罗丹明B(RhB)、丁基罗丹明B(b-RhB)、罗丹明6G(RhG)及罗丹明S(RhS)分别能与I_3~-发生缔合,在400nm处产生共振散射效应。ClO_2~-浓度分别在0.00726-0.218μg/mL、0.0102~0.292μg/mL、0.00726~0.145μg/mL和0.0290~0.174μg/mL范围内与RhB、b-RhB、RhG及RhS缔合微粒体系的共振散射光强度成线性关系。各体系的检测限分别为0.00436μg/mL、0.00652μg/mL、0.0058μg/mL和0.0145μg/mL ClO_2~-。据此建立了测定ClO_2~-的分析法。其中罗丹明B体系最稳定,且灵敏度也高。用于水中ClO_2~-的测定,结果满意。
     4.痕量亚氯酸根的罗丹明缔合微粒荧光光谱分析
     在有KI存在的乙酸钠-HCl酸性缓冲溶液中,罗丹明B(RhB)、丁基罗丹明(b-RhB)、罗丹明6G(RhG)及罗丹明S(RhS)分别在580nm、580nm、550nm和5500nm处有一个荧光峰。当有ClO_2~-存在时,罗丹明染料荧光峰发生猝灭。考察了荧光光谱特征,影响因素和适宜的反应条件。对于RhB、b-RhB、RhG及RhS体系,亚氯酸根浓度分别在0.0218~0.51、0.0218~0.304、0.0728~1.092、0.051~0.51μg/ml范围内与荧光猝灭强度成线性关系,建立了一个简便灵敏的亚氯酸根荧光分析新方法,用于测定合成水样中ClO_2~-的分析,结果满意。
     5.罗丹明染料缔合微粒荧光光谱法分别测定痕量二氧化氯和亚氯酸根
     在HCl-NaAc或NH_3-NE_4Cl缓冲溶液中,罗丹明S(RhS)、罗丹明6G(RhG)、罗丹明B(RhB)及丁基罗丹明B(b-RhB)分别在550nm、550nm、576nm、576nm处产生一荧光峰。ClO_2在酸性或碱性缓冲液中均能氧化罗丹明染料使其退色、荧光峰降低;亚氯酸根离子仅在酸性溶液中氧化罗丹明染料。在碱性条件下可通过测定ClO_2产生的荧光猝灭强度选择性地测定ClO_2的含量;在酸性条件下可测量ClO_2与ClO_2~-共同产生的荧光猝灭强度,利用差减法可求出ClO_2~-的含量。对于RhS、RhG、RhB及b-RhB四体系,ClO_2浓度分别在0.00840~0.53μg/mL、0.0930~3.15μg/mL、0.215~2.610μg/mL及0.0825~1.096μg/mL范围内与四体系的荧光猝灭强度成线性关系;亚氯算根浓度分别在0.00950~0.711μg/mL、0.0940~2.36μg/mL、0.473~4.73μg/mL及0.473~2.36μg/mL范围内与四体系的荧光猝灭强度成线性关系。在四体系中,罗丹明S具有好的灵敏度和稳定性,因此选择罗丹明S体系测定ClO_2与ClO_2~-。据此,建立了分别测定ClO_2与ClO_2~-的罗丹明S荧光猝灭分析法,用于饮用水中ClO_2及ClO_2的测定,获得了满意的结果。
     6.痕量二氧化氯和亚氯酸根的阳离子表面活性剂体系缔合微粒共振散射光谱及分析应用
     在乙酸钠-盐酸缓冲液中,二氧化氯及亚氯酸根离子能氧化I~-为I_2,过量的I~-与I_2形成I_3~-,阳离子表面活性剂(CS)十四烷基二甲基苄基氯化铵(TDMBA)、溴代十四烷基吡啶(TPB)、十六烷基三甲基溴化铵(CTMAB)、四丁基碘化铵(TBAI)等分别能与I_3~-形成缔合物微粒,在320 nm、467 nm、480nm、530nm处产生共振散射效应。激光散射法测得(TDMBA-I_3)_n缔合物微粒的平均粒径为347 nm。ClO_2浓度分别在0.00992~0.546μg/mL、0.0102~1.024μg/mL、0.0269~0.538μg/mL和0.0178~1.095μg/mL范围内与TDMBA、TPB、CTMAB及TBAI缔合微粒体系在467nm处共振强度成线性关系,各体系的检测限分别为0.00593μg/mL、0.00600μg/mL、0.0198μg/mL和0.0645μg/mL ClO_2;ClO_2~-浓度分别在0.00948~0.664μg/mL、0.0170~1.706μg/mL、0.0474~0.855μg/mL和0.0237~1.138μg/mL范围内与TDMBA、TPB、CTMAB及TBAI缔合微粒体系的共振强度成线性关系。各体系的检测限分别为0.00610μg/mL、0.00819μg/mL、0.0378μg/mL和0.00949μg/mL ClO_2~-。其中TDMBA体系最稳定,且灵敏度较高,用于样品中ClO_2及ClO_2~-的测定。提供了一个新的研究方法,拓展了共振散射的应用。讨论了体系稳定性与分子结构的关系。
     7.银纳米微粒的等离子体共振散射(PRLS)及其在痕量二氧化氯分析中的应用
     在pH 9.1的NH_4NO_3~-NH_3·H_2O缓冲溶液中,银纳米微粒显示强的PRLS信号,特征峰位于470 nm,ClO_2能氧化银纳米微粒,导致PRLS发生猝灭。猝灭强度与ClO_2浓度在0.0011~0.185μg/mL范围内成线性关系,检测限(3σ)为0.00050μg/mL,相关系数0.9995,该法被应用于饮用水中ClO_2的测定,获得了满意的结果。利用激光散射、透射电镜技术、原子吸收光度法及显色剂对银纳米微粒及其与ClO_2的反应进行了表征,阐释了PRLS信号猝灭的原因,讨论了紫外-可见吸收光谱与PRLS光谱之间的关系,该法简便、快速、灵敏,是利用共振散射技术将金属纳米微粒探针应用于无机物分析的新尝试。
     8.银纳米微粒荧光猝灭法测定水中痕量二氧化氯
     在pH=9.1的NH_4Cl-NH_3·H_2O缓冲溶液中,银纳米微粒在470nm处产生一个荧光峰;它能被ClO_2氧化导致体系的荧光发生猝灭。ClO_2浓度在0.0011~0.185μg/mL范围内与荧光猝灭强度成良好的线性关系,检测限为0.0047μg/mL ClO_2。据此建立了测定ClO_2的荧光分析新方法,用于饮用水中ClO_2的测定,结果满意。
Resonance Rayleigh scattering(RRS)spectrum is a new,sensitive and simple spectral technique.It can be obtained by the synchronous scanning technique on a fluorescence spectrophotometer.It brings to extensive attention and interesting in recent years and has been applied to determination of some biomacromolecules,trace inorganic,organic substances and pharmaceutical analysis,and also to the field of environmental analysis.However,up to now it is seldom applied to the study of water treatment chemical,Cl_2,ClO_2 and its by-products.It is very important to establish a simple,rapid,sensitive,selective method for determination of trace Cl_2, ClO_2 and its by-products.Therefore,in the dissertation,the reaction of ClO_2,Cl_2 and ClO_2~- with I~--rodamine dyes,sufactants and silver nanoparticles have been studied by resonance scattering spectra,fluorescence spectra,UV-Vis absorption spectra coupling with scanning electron microscope and laser scattering technology.Their spectral optimum reaction conditions, influencing factors and analytical applications have been examined.Furthermore,the reasons of RRS enhancement,the relationship between RRS spectra and absorption spectra are discussed. Some new,simple,convenient,rapid and sensitive RRS methods are proposed for the determination of ClO_2,Cl_2 and ClO_2~-.This is new development of the RRS technology used in the analytical application of the inorganics.
     In addition,the analytical methods of chlorine dioxide,chlorine and chlorite,the theory of resonance Rayleigh scattering and their applications were reviewed.
     The main contents and some conclusions of the dissertation are as follows:
     1.A Novel and Selective Resonance Scattering Spectral Method for the Determination of Trace ClO_2 Using Rhodamine Dye
     In HCl-NaAc buffer solutions,ClO_2 oxidize I~- to form I_2 and then the excess I~- reacts with I_2 to form I_3~-.The I_3~- combine respectively with rhodamine dyes,including rhodamine B(RhB),butyl rhodamine B(b-RhB),rhodamine 6G(RhG)and rhodamine S(RhS)to form association particles which exhibit stronger resonance scattering effect at 420nm.The resonance scattering intensity for the system of RhB,bRhB,RhG and RhS at 420nm is proportional to chlorine dioxide concentrations in the range of 0.0056-0.787μg/mL,0.0034-0.396μg/mL,0.0057-0.795μg/mL and 0.0052- 0.313μg/mL,respectively.The detection limits of the systems were 0.0011μg/mL,0.006μg/mL, 0.0054μg/mL and 0.0023μg/mL ClO_2,respectively.A novel resonance scattering spectral(RSS) method for determination of chlorine dioxide has been proposed,based on the formation of association complex particles of RhB-I_3.This method has high sensitivity,good selectivity and precision,and has been used for the determination of ClO_2 in drinking water with satisfactory results.
     2.Resonance Rayleigh scattering spectral study of Cl_2 -KI- rodamine dyes and its analytical applications
     In Na_2HPO_4-citric acid buffer solution,Cl_2 can oxidize I~- to form I_2 and then it reacts with excess I~- to form I_3~-.The I_3~- combines respectively with rhodamine dyes,including rhodamine B (RhB),butyl rhodamine B(b-RhB),rhodamine 6G(RhG)and rhodamine S(RhS),to form association particles which give stronger resonance scattering(RS)effect at 400 nm.The RS intensity of the RhB,b-RhB,RhG and RhS systems is proportional to chlorine concentrations in the range of 0.008-1.74,0.019-1.33,0.021-2.11 and 0.019-2.04μg/mL Cl_2,respectively.The detection limits of the systems were 0.0020,0.0048,0.0063 and 0.0017μg/mL,respectively.In them,the RhB system has good stability and high sensitivity,and has been applied to the analysis of chlorine in drinking water,with satisfactory results which is in agreement with that of the methyl orange(MO)spectrophotometry.
     3.Resonance Rayleigh scattering spectrum of KI- ClO_2~- - rodamine dyes and its analytical applications
     In acidic sodium acetate-HCl buffer solution containing KI,chlorite may oxidize I~- to form I_2,and then I_2 reacts with excess I~- to I_3~-,which combines with RhB,b-RhB,RhG and RhS, respectively,to form association particles,which give resonance scattering(RS)effect at 400 nm. The RS intensity at 400 nm of the RhB,b-RhB,RhG and RhS association particles systems is linear to chlorite concentration in the range of 0.00726-0.218μg/mL,0.0102-0.292μg/mL, 0.00726-0.145μg/mL and 0.0290-0.174μg/mL ClO_2~-.The detection limits of the systems were 0.00436μg /mL,0.00652μg /mL,0.0058μg /mL and 0.0145μg /mL ClO_2~-,respectively. Based on this,a new,simple and sensitive analysis method for the determination of chlorite in water was developed.In the four systems,the RhB system possess good stability and high sensitivity.The proposed method has been applied to the analysis of chlorite in water,with satisfactory results.
     4.Fluorescence analysis of trace ClO_2~- based on formation of rodanmine dyes association complex particles
     In acidic sodium acetate-HCl buffer solution containing KI,rhodamine B(RhB),butyl rhodamine B(BRhB),rhodamine 6G(RhG)and rhodamine S(RhS)has a fluorescence peak at 580 nm,580nm,550nm,550nm,respectively.When ClO_2~- exists fluorescence quenching occur. The fluorescence spectral characteristics,the influencing factors and the optimum conditions of these reactions have been investigated.For RhB,b-RhB,RhG and RhS systems,fluorescence quenching intensity is linear to the concentration of ClO_2~- in the range of 0.0218-0.51, 0.0218-0.304,0.0728-1.092 and 0.051-0.51μg/ml,respectively.The new,simple,sentisive fluorescence method has been applied to the determination of ClO_2~- in water,with satisfactory results.
     5.Fluorescence spectral study of rodamine dyes association particles and their application to respective determination of trace ClO_2 and ClO_2~-
     A fluorescence quenching method has been proposed for respective determination of chlorine dioxide and chlorite by using rhodamine dyes.In HCl-NaAc or NH_3-NH_4Cl buffer solution,rhodamine S(RhS),rhodamine 6G(RhG),rhodamine B(RhB)and butyl rhodanmine B(b-RhB)respectively exhibit a maximal fluorescence peak at 550nm,550nm,576nm and 576nm.Chlorine dioxide oxidizes rhodamine dyes in acidic or alkaline solution and chlorite oxidize them only in acidic solution,which results in the decolorization of rhodamine dyes and the quenching of fluorescence peak.Under alkaline condition,concentration of ClO_2 can be selectively determined by measuring the fluorescence quenching intensity.Concentration of ClO_2~- can be obtained by measuring the fluorescence quenching intensity that is produced by the reaction of chlorine dioxide and chlorite and by differential method.For RhS,RhG,RhB and b-RhB systems,the linear range for chlorine dioxide is 0.00840-0.53μg/mL,0.0930-3.15μg/mL, 0.215-2.610μg/mL and 0.0825-1.096μg/mL,respectively;the linear range for chlorite is 0.00950-0.711μg/mL,0.0940-2.36μg/mL,0.473-4.73μg/mL and 0.473-2.36μg/mL, respectively.In the four systems,the RhS system have good stability and high sensitivity and was chosen to determine chlorine dioxide and chlorite.It has been applied to the analysis of chlorine dioxide and chlorite in water,with satisfactory results.
     6.Resonance Rayleigh scattering spectral determination of trace ClO_2 and ClO_2~- with cationic sursfacts
     ClO_2 and ClO_2~- oxidize I~- to form I_2 and it reacts with the excess I~- to form I_3~-,which combine with a cationic surfactant such as tetrdecyldimethyl benzylammonium chloride(TDMBA),tetradecane pyridinium bromide(TPB),cetyltrimethylammonium bromide(CTMAB),tetrabutyl-ammonium iodie(TBAI)to form association particles in acidic sodium acetate-HCl buffer solution,which exhibit stronger resonance scattering effect at 320 nm,467 nm,480nm,530nm.The laser scattering indicates that the average diameter of (TDMBA-I_3)_n association particles was about 347 nm.The resonance scattering intensity at 467nm for TDMBA、TPB、CTMAB and TBAI systems is proportional to chlorine dioxide concentrations in the range of 0.00992-0.546μg/mL,0.0102-1.024μg/mL,0.0269-0.538μg/mL and 0.0178-1.095μg/mL,respectively.The detection limits of the systems were 0.00593μg /mL,0.00600μg/mL,0.0198μg/mL and 0.0645μg /mL ClO_2,respectively.The RS intensity at 467 nm for the TDMBA,TPB,CTMAB and TBAI association particles systems is linear to chlorite concentration over the range of 0.00948-0.664μg/mL,0.0170-1.706μg/mL, 0.0474-0.855μg/mL and 0.0237-1.138μg/mL ClO_2~-,respectively,with detection limits of 0.00610μg /mL,0.00819μg /mL,0.0378μg/mL and 0.00949μg /mL ClO_2~-,respectively. Among the systems,the stability and sensitivity of TDMBA system is the best and has been used for the determination of ClO_2 and ClO_2~- in sample.Novel resonance scattering spectral(RSS) methods for determination of chlorine dioxide and chlorite have been respectively proposed with TDMBA and the application field of the RS technology has been developed.The relationship between stability of systems and molecular structure has been primarily discussed.
     7.Plasmon resonance light scattering of silver nanoparticles and its analytical application to trace ClO_2
     A plasmon resonance light scattering(PRLS)detection method of chlorine dioxide is reported based on the oxidization of silver nanoparticles(NPs)by it,in pH 9.1 ammonia-ammonium chloride buffer solutions.Silver NPs exhibit strong PRLS signals characterized at 470 nm,and can be oxidized by ClO_2,which results in PRLS quenching at 470 nm.It was found that the PRLS quenching intensity is proportional to the concentration of chlorine dioxide over the range of 0.0011-0.185μg/mL,with the corresponding detection limit(3σ)of 0.00050μg/mL and the correlation coefficient of 0.9995.The method is was applied to the determination of chlorine dioxide in drinking water,with satisfactory results.The laser scattering,TEM,AAS and colored reagents were used to Characterize silver NPs and the reaction of it with ClO_2.The reason of PRLS signal quenching is explained,and the relationship between UV-Vis absorption spectra and PRLS spectra is dicussed.The method is simple,convenient,cost effective,rapid and sensitive and is a innovation that RS technology is applied to the analysis of inorganics with metal nanoparticls.
     8.Fluorescence quenching method for the determination of trace ClO_2 in water by silver nanoparticls
     In pH=9.1 NH_4Cl-NH_3·H_2O buffuer solutions,there is a fluorescence peak at 470nm for silver nanoparticles.A fluorescence quenching take places when it was oxidized by ClO_2.The intensity of fluorescence quenching is linear to the concentration of ClO_2 in the range of 0.0011-0.185μg/mL.The detection limit is 0.0047μg/mL ClO_2.A new fluorescence method has been proposed for the determination of ClO2 in water samples,with satisfactory results
引文
[1]Bellar TA,Lichtenberg JJ,Kroner RC.The occurrence of organohalides in chlorinated drinking waters.J Am Water Works Assoc 1974;66:703-6.
    [2]Bull RJ,Birnbaum LS,Cantor KP,Rose JB.Water chlorination:essential process or cancer hazard?.Fund,Appl Toxicol 1995;155:28.
    [3]Boorman GA,Dellarco V.Drinking water disinfection by-products:Review and approach to toxicity evaluation.Environ Health persp 1999;207:107.
    [4]Institute NC.Report on the Carcinogenesis Bioassay of Chloroform.NTIS No.PB26018/AS National Cancer Institute Washington,DC;1976.
    [5]张金松.饮用水二氧化氯净化技术[M].北京:化学工业出版社;2003,第一版.
    [6]Liyanage LRJ,Gyurek LL,Finch GR.Modeling cryptosporidium parvum inactivation by chlorine dioxide.In:Proceedings of the Forth Enviromental Engineering Speciality Conference,Edmonton,AB,May 29-June 1;1996,p.17-25.
    [7]Aieta EM,Roberts PV.A review of chlorine dioxide in drinking water treatment.J AWWA 1986;78:62.
    [8]Huang J,Wang L,Ren N,Li LX,Sun RF,Yang G Disinfection effect of chlorine dioxide on viruses,algae and animal planktons in water.Water Res 1997;31(3):455-60.
    [9]Korn C,Andrews RC,Escobar MD.Development of chlorine dioxide-related by-product models for dringking water treatment.Water Res 2002;36:330-42.
    [10]Rittmann T.Can chlorine dioxide and activated carbon control THM.Water/Engineering and management June,1992:p16-7.
    [11]Lafrance P,Duchesne D,Arcouette NN.The use of CO2:case study of Laval.In:Chlorine dioxide:drinking water issues.Proceedings of the Second International Symposium;1993;Houston,TX:American Water Works Association;1993.p.p147-62.
    [12]lykins JBW,Griese MH.Using chlorine dioxide for trihalomethane control.J AWWA 1986;78(6):88-93.
    [13]Muttamara S,Sales CI,Gazali Z.The formation of trihalomethane from chemical disinfectants and humic substances in drinking water.Water Supply 1995;13(2):105.
    [14]Werdehoff KS,Singer PC.Chlorine dioxide effects on THMPF,TOXFP,and the formation of inorganic by-products.J AWWA 1987;79(9):103.
    [15]Li JW,Yu Z,Cai X.Trihalomethanes formation in water treated with chlorine dioxide.Water Res 1996;30(10):2371.
    [16]Rauh JS.Disinfection and oxidation of wasters by chlorine dioxide.J Environ Sci 1979;22(2):42-5.
    [17]Griese HM,Jerry JK,Cordon G.Combinining methods for the reduction of oxychlorine residuals in drinking water.J AWWA 1992;84(11):69-77.
    [18]Gordon G Minimizing chlorite ion and chlorate in water treated with chlorine dioxide.J AWWA 1990;82(4):160.
    [19]Condie LW.Toxicological problems associated with chlorine dioxide.J AWWA 1986;78(1):73.
    [20]Gallagher DL,Hoehn RC,Dietrich AM.Sources,occurrence and control of chlorine dioxide by-product residuals in drinking water.Denver,CO:AWWA Research Foundation 1994:p184.
    [21]黄君礼.有关二氧化氯的毒理学问题.环境科学丛刊1992;13(1):72-8.
    [22]Chriswell B,Keller B.Spectrophotometric method for the determination of chlorite and chlorate.Analyst 1993;118(1):1457-9.
    [23]Kolar JJ,Lindgen BO.Spectrophotometric determination of chlorine dioxide in the presence of chlorine.Tappi Journal 1983;67(8):81.
    [24]Lars S,Disa T.Determination of inorganic chlorine compounds and total chlorine in spent bleaching liquors.Svensk Pappersidning 1978;81(4):114-20.
    [25]朱英存,黄君礼.膜分离紫外测定二氧化氯最佳实验条件的探索.苏州城建环保学院学报2000;13(1):12-6.
    [26]美国公众健康协会美国水环境基金《水和废水标准测试方法》.第20版,4500-C12.G4a.1998.
    [27]Wheeler GL,Lott PF,Yau FW.A rapid microdetermination of chlorine dioxide in the presence of active chlorine compounds.Microchem J 1978;23:160-4.
    [28]Harp DL,Klein RL.Spectrophotometric determination of chlorine dioxide.J AWWA 1981;73:387-8.
    [29]Feletcher IJ,Hemmings P.Determination of chlorine dioxide in potable waters using chlorophenol red.Analyst 1985;110:695-9.
    [30]Sweetin DL,Sullivan E,Gordor G The use of chlorophenol red for the selective determination of chlorine dioxide in drinking water.Talanta 1996;43:103-8.
    [31]Zhang X,Zhao ZJ.Highly selective spectrophotometric determination of chlorine dioxide in water using rhodamine B.Analyst 1995;120(4):1199-200.
    [32]Chiswell B,O'Halloran KR.Use of Lissamine Green B as a spectrophotometric reagent for the determination of low residuals of chlorine dioxide.Analyst 1991;116:657-61.
    [33]Masscheleing WJ.二氧化氯的酸性铬紫K分光光度测定.Anal Chem 1966;38:1839.
    [34]Chen H,Wang G,Yuan L.Exaction spectrophotometric determination of trace chlorine dioxide with methylene blue.Anal lett 1997;30(7):1415-21.
    [35]崔崇威,黄君礼,冯琦.酸性靛蓝示差光度法测定水中低水平ClO2的含量.哈尔滨建筑大学学报1996;29(6):57-60.
    [36]王学凤,黄君礼,曹亚凤,郭同杰.饮用水中二氧化氯的示差光度分析方法.哈尔滨建筑大学学报1996;29(6):57-60.
    [37]梁爱惠,蒋治良,康彩艳.罗丹明S光度法测定痕量二氧化氯.工业水处理2005;25(2):53-5.
    [38]邓临新,李崧,谢家理.间接光度法测定饮用水中二氧化氯的浓度.四川环境2003;22(4):49.
    [39]Emmert CL,Coutant DE,Sweetin DL,Gordon G,Bubnis B.Studies of selectivity in the amaranth method for chlorine.Talanta 2000;51:879-88.
    [40]Tinoco R,Hernandez-Saavedra D,Ochoa JL,Vazquez-Duhalt R.Biochemical method for chlorine dioxide determination.Anal Biochem 1996;241:18-22.
    [41]刘文明,马卫兴,刘新河.罗丹明6G褪色光度法测定氯酸根.分析实验室1999;18(3):77-9.
    [42]Chiswell B,O'Halloran KR.Acid yellow 17 as a spectrophotometric reagent for the determination of low concentrations of residual free chlorine.Anal Chim Acta 1991;249(2):519-24.
    [43]Standard Methods for the Examination of Water and Wastewater,16th edn..Washington:APHA,AWWA,WPCF;1985.
    [44]刘希东.碘化物-结晶紫-聚乙烯醇体系分光光度法测定自来水中痕量二氧化氯.分析化学2002;30(1):50-2.
    [45]刘希东.碘化物-亚啶红高灵敏度显色反应及其分析应用.分析科学学报 2002;18(3):218-21.
    [46]Saka DJ,Smart RB.Chemiluminencence determination of chlorine dioxide in film low cell.Environ Sci Technol 1985;19(5):450-4.
    [47]罗世地,邓春梅,康信煌.二氧化氯-碘化物-罗丹明6G体系荧光猝灭反应.化学研究与应用 2004;16(4):548-50.
    [48]Jiang ZL,Zhang BM,Liang AH.A new sensitive and selective fluorescence method for determination of chlorine dioxide in water using rhodamine S.Talanta 2005;66(3):783-8.
    [49]Kar S,Arnold MA.Fiber-optic chlorine probe based on fluorescence decay of N-(6-methoxyquinolyl)-acetoethyl ester.Talanta 1995;42(4):663-70.
    [50]Watanabe T,Ishii T,Yoshimura Y,Nakazawa H.Determination of chlorine dioxide using 4-aminoantipyrine and phenol by flow injection analysis.Anal Chim Acta 1997;341:257-62.
    [51]陈慧,王改珍,袁莉.反相流动注射分光光度法测定水中微量二氧化氯.西北师范大学学报(自然科学版)1997;33(2):41.
    [52]Themelis DG,Wood DW,Gordon G Determination of low concentrations of chlorite and chlorate ions by using a flow-injection system.Anal ChimActa 1989;225:437-41.
    [53]Gordon G,Yoinok K,Themelis DG,Wood D.Utilisation of kinetic-based flow injection methods for determination of chlorine and oxychlorine species.Anal Chim Acta 1989;224(2):383-91.
    [54]Sakai A,Hemmi A,Hachiya H.Flow injection analysis for residual chlorine using Pb(Ⅱ)ion-selective electrode detector.Talanta 1998;45:575-81.
    [55]Themelis DG,Kika FS.Gas-diffusion flow injection assay for the selective determination of chlorine dioxide based on the fluorescence quenching of chromoltropic acid.MicrochemJ 2006;82:108-12.
    [56]Hollowell DA,Gibert EP,Gordon G Selective determination of chlorine dioxide using gas diffusion flow injection analysis.Anal Chem 1985;57:2851-4.
    [57]Gord JR,Gordon G,Pacey GE.Selective chlorine determination by gas-diffusion flow injection analysis with chemiluminescent detection.Ana Chem 1988;60:2-4.
    [58]施来顺,胡德栋,谢永芳.电位滴定法区分测定水中微量ClO_2、Cl_2、ClO_2~-及ClO_3~-的研究.工业水处理2003;23(4):57-9.
    [59]Jozefkepintski,B/aszkiewicz G Drect potentiometric titration of chlorite in presence of chlorate,chlorine dioxide and chloride.Talanta 1966;13(3):357-62.
    [60]Ohura H,Imato T,Yamasaki S.Simultaneous potentiometric determination of ClO3-- ClO2-and ClO3--HClO by flow injection analysis using Fe(Ⅲ)-Fe(Ⅱ)potential buffer.Talanta 1999;49:1003-15.
    [61]American Public Health Association,standard methods for the examination of water and wastewater.19thed.1995.
    [62]Aieta EM,Roberts PV,Hernade ZM.Determination of chlorine dioxide,chlorine,chlorite and chlorate in water.JAWWA 1984;76(1):64-70.
    [63]Praus P.Determination of chlorite in drinking water by on-line coupling of capillary isolachophoresis and capillary zone electrophoesis.Talanta 2004;62:977-82.
    [64]Haddad DR.Comparison of ion chromatography and capillary electrophoresis for the determination of inorganic anions.J Chromatogr.1997;281:770.
    [65]Nakareseison S,Tachiyashiki S.Determination of chlorite at very low levels by using differential puls polarography.Anal Chim Acta 1988;204:169-77.
    [66]Quentel F,Elleouet C,Madec C.Electrochemical determination of low levels of residual chlorine dioxide in tap water.Anal Chim Acta 1994;295:85-91.
    [67]陈国青,陈琼,陈必松.区分测定水中二氧化氯、氯、亚氯酸根及氯酸根的研究.环境与健康杂志1997;14(5):222-4.
    [68]陈慧,王改珍,魏东斌.二氧化氯、亚氯酸根及氯酸根含量在水处理中的分析方法.甘肃环境研究与监测1996;9(2):9-12.
    [69]崔莉凤,张标.水溶液中二氧化氯及系列氧化物的测定.中国环境监测2000;16(1):22-5.
    [70]李君文,丁祚斌,战威.水中二氧化氯及亚氯酸根的区分测定研究.中华预防医学杂志1994;28(4):230-2.
    [71]任素梅,江涛,吴俊龙.稳态二氧化氯的测定.工业水处理2002;22(12):45-6.
    [72]王丽,黄君礼,李海波.水中ClO_2、Cl_2、ClO_2~-及ClO_3~-的连续碘量法测定.哈尔滨建筑大学学报1997;30(4):66-71.
    [73]Haddad PR,Jackson PLE.Ion chromatography-principles and applications(Journal of Chromatography Library,Vol.46).Elsevier,Amsterdam 1990.
    [74]R.E.Smith.Ion Chromatography Applications,CRC Press,Boca Raton,FL.1988.
    [75]Pfaff JD,Brockhoff CA.Determining Inorganic Disinfection By-products by Ion Chromatography.JAWWA 1990;82:192.
    [76]Bolyard M,Fair PS,Hautmann DP.Occurrence of chlorate in hypochlorite solutions used for drinking water disinfection.Environ Sci Technol 1992;26(8):1663-5.
    [77]Watanabe T,Idehara T,Yoshimura Y,Nakazawa H.Simultaneous determination of chlorine dioxide and hypochlorite in water by high-performance liquid chromatography.J Chromatogr.A 1998;796:397-400.
    [78]Dietrich AM,Ledder TD,Gallagher DL.Determination of chlorite and chlorate in chlorinated and chloraminated drinking water by flow injection analysis and ion chromatography.Anal Chem 1992;64:496-502.
    [79]Sullivan J,Douek M.Determination of inorganic chlorine species in kraft mill bleach effluents by ion chromatography.J Chromatogr A 1998;804:113-21.
    [80]ISO 10304-4.Water Quality-Determination of dissolved anions by liquid chromatography of ions-Part 4:Determination of chlorate,chloride and chlorite in water with low contamination..1997.
    [81]田芳,谢家理.用离子色谱法测定水中的二氧化氯、氯、亚氯酸根及氯酸根.分析化学2004;32(4):522-4.
    [82]Shin HS,Jung DG Determination of chlorine dioxide in water by gas chromatography-mass spectrometry.J Chromatogr 2006;1123:92-7.
    [83]蒋治良.纳米粒子与共振散射光谱学.桂林:广西师范大学出版社;2003.
    [84]Miller GA.Fluctuation theory of the resonance enhancement of Rayleigh scattering in absorbing media.J Phys Chem 1978;82(5):616-8.
    [85]Lempert W,Wang CH.Studies of shear waves and translation-rotation coupling of liquid nitrobenzene in neat liquid and in carbon tetrachloride solution by depolarized Rayleigh scattering JChemPhys 1980;72(6):3490-5.
    [86]Strzalkowski A.Investigations on the scattering of radiation in the earth's atmosphere.Acta Astronomica 1955;5:95.
    [87]Volz F.Photograghic UWiss 1954;3:3.
    [88]Kuiper GP.The Atmospheres of the Earth and Planets 2nd.Ed.Chicago:Univ.of Chicago Press;Chap.12.
    [89]Debye P.Light scattering in solutions.J Appl Phys 1944;15(4):388.
    [90]Toporowski PM, Roovers J. The Intramolecular Scattering Function of Model Branched Polymers. Macromolecules 1978;11(2):365-8.
    
    [91]Burchard W. Combined static and dynamic light scattering approaches to biopolymeicanalysis. Biochem Soc Trans 1991; 19:478.
    
    [92]Huglin MB. Recent trends in classical light scattering from polymer solutions. Pure and ApplChem 1977;49(7):929-40.
    
    [93]Kratochivil P. Advances in classical light scattering from polymer solutions. Pure and ApplChem 1982;54(2):379-93.
    
    [94] Antonietti M, Bremser W, Schmidt M. Microgels: model polymers for the crosslinked state. Macromolecules 1990;23:3796.
    
    [95]Huglin MB. Light Scattering from Polymer Solution. London and New York: Academic Press; 1972.
    
    [96]Stanton SG, Recora R, Hudson BS. Resonance enhanced dynamic Rayleigh scattering. J Chem Phys 1981;75(12): 5615-26.
    
    [97]Anglister J, Steinberg IZ. Resonance Rayleigh scattering of cyanine dyes in solution. J Chem Phys 1983;78(9):5358.
    
    [98]Placzek G in Handbuck der Radiologie, Vol. VI, Edited by Marx E. AkademischeVerlagsgesellschaft Leipzig 1934, part 2, :205.
    
    [99] Bauer DR, Hudson B, Pecora R. Resonance enhance depolarized rayleigh scattering from diphenylpolyenes J Chem Phys 1975;63(1):588.
    
    [100] Anglister J, Steinberg IZ. Depolarized rayleigh light scattering in absorption bands measured in lycopene solution. Chem Phys Lett 1979;65(1):50.
    
    [101] Anglister J, Steinberg IZ. Measurement of the depolarization ratio of Rayleigh scattering at absorption bands. J Chem Phys 1981;74(2):786-91.
    
    [102] Behringer J. MolSpectrosc 1974;2:100.
    
    [103] Liu SP, Liu ZF. Studies on the resonant luminescence spectra of rhodamine dyes and their ion-association complexes. Spectrochim Acta Part A 1995;51:1497-500.
    
    [104] Rubio S, Gomez-Heus A, Valcarce M. Analytical applications of synchronous fluorescence spectroscopy. Talanta 1986;33:633-40.
    
    [105] Imasaka T, Tsukamoto A, Ishibash N. Supersonic jet/synchronous scan luminescence spectrometry. Anal Chem 1988;60(14):1362-5.
    
    [106] 魏永巨.北京大学博士学位论文.1997.
    
    [107] Pasternack RF, Bustamante C, Collings PJ. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc 1993;115(13):5393-9.
    
    [108] Arena G, Scolaro LM, Pasternack RF. Synthesis, Characterization, and Interaction with DNA of the Novel Metallointercalator Cationic Complex (2,2':6',2"-terpyridine)methylplatinum(II). Inorg Chem 1995;34(11):2994-3002.
    
    [109] Pasternack RF, Copings PJ. Resonance light scattering: A new technique for studying chromophore aggregationg. Science 1995;269:935.
    
    [110] Rubires R, Crusats J, EI2Hachemi Z. Self-assembly in water of the sodium salts of meso-sulfonatophenyl substituted porphyrins. New J Chem 1999;189-198(23):4-8.
    
    [111] Pasternack RF, Schaefer KF, Hambright P. Resonance light-scattering studies of porphyrin diacid aggregates. Inorg Chem 1994;33(9):2062-5.
    
    [112] Parkash J, H.Robblee J, Agnew J. Depolarize resonance light scattering by porphyrin and chlorophylpynamics a aggregates. Biophys J 1998;74:2089.
    
    [113] Purrello R, Bellacchio E, Gurrieri S. pH Modulation of Porphyrins Self-Assembly onto Polylysine. J Phys Chem B 1998;102(44):8852-7.
    [114]Pasternack RF,Goldsmith JI,Szep S.A spectroscopic and thermodynamic study of porphyrin/DNA supramolecular assemblies.Biophys J 1998;75(2):1024-31.
    [115]Huang CZ,Li KA,Tong SY.Determination of Nucleic Acids by a Resonance Light-Scattering Technique with α,β,γ,5-Tetrakis[4-(trimethylammoniumyl)phenyl]porphine.Anal Chem 1996;68(13):2259-63.
    [116]Huang CZ,Li KA,Tong SY.Determination of Nanograms of Nucleic Acids by Their Enhancement Effect on the Resonance Light Scattering of the Cobalt(Ⅱ)/4-[(5-Chloro-2-pyridyl)azo]-1,3-diaminobenzene Complex.Anal Chem 1997;69(3):514.
    [117]Huang CZ,Li KA,Tong SY.A Resonance Light-Scattering Analysis of the Suprahelical Helixes of Nucleic Acids Induced by 5,10,15,20-Tetrakis[4-(trimethyammonio)-phenyl]porphine.Bull Chem Soc Jpn 1997;70:1843-9.
    [118]刘绍璞,刘忠芳.硒(Ⅳ)碘化物-结晶紫体系的共振发光和二级散射光谱.高等学校化学学报1996;17:887.
    [119]Liu SP,Zhou GM,Liu ZF.Resonance Rayleigh scattering for the determination of trance amounts of mercury(Ⅱ)with thiocyanate and basic triphenylmethane dyes.Anal Lett 1998;37:1247-59.
    [120]刘希东,刘绍璞,黄承志.镉-碘化物-吖啶红高灵敏显色反应及其分析应用.分析化学1998;26(1):93-6.
    [121]Liu SP,Liu Q,Liu ZF.Resonance Rayleigh scattering of chromium(Ⅵ)-iodide-basic triphenylmethane dye systems and their analytical application.Anal Chim Acta 1999;379:53-61.
    [122]刘绍璞,刘忠芳.分析化学进展.太原:山西科学技术出版社;1997.
    [123]刘绍璞,周光明,刘忠芳等.共振瑞利散射法测定硫氰酸盐-碱性三苯甲烷染料体系中的痕量钼.高等学校化学学报1998;19:1040-6.
    [124]Liu SP,Liu ZF,Li M.Resonance luminescence spectra of selenium(Ⅳ)-iodide-rhodamie B system and its analytical application.JSouthwest China Normal University(Natural Science)1996;21:682.
    [125]Liu SP,Liu ZF,Huang CZ.Resonance Rayleigh Scattering for an Indirect Determination of Trace Amounts of Selenium(Ⅳ)with Iodide-Basic Triphenylmethane Dye Systems.Anal Sci 1998;14:799.
    [126]Liu SP,Zhou GM,Liu ZF.Resonance Rayleigh scattering for the determination of cationic surfactants with Eosin Y.Fresenius J Anal Chem 1999;363:651-4.
    [127]张筑元.西南师范大学硕士研究生论文.1999.
    [128]奉萍.西南师范大学硕士研究生论文.2000.
    [129]Huang CZ,Feng P,Li YF,Qin KJ,Wang HY.Adsorption of penicillin-berberine ion associates at a water/tetrachloromethane interface and determination of penicillin based on total internal-reflected resonance light scattering measurements.Anal Chim Acta 2005;538:337-43.
    [130]Jiang ZL,Huang GX.Resonance scattering spectra of micrococcus lysodeikticus and its application to assay of lysozyme activity.Clin Chim Acta 2007;376:136-41.
    [131]Jiang ZL,Sun SJ,Liang AH,Huang WX,Qin AM.Gold-Labeled Nanoparticle-Based Immunoresonance Scattering Spectral Assay for Trace Apolipoprotein Al and Apolipoprotein B.Clin Chem 2006;52(7):1389-94.
    [132]Jiang ZL,Sun SJ,Liang AH,Liu CJ.A new immune resonance scattering spectral assay for trace fibrinogen with gold nanoparticle label.Anal Chim Acta 2006:571:200-5.
    [133]蒋治良,陈媛媛,梁爱惠,陶慧林,唐宁莉,钟福新.痕量纤维蛋白原的银纳米标记免疫共振散射光谱分析.中国科学B辑化学2006;36(1):1-6.
    [134]Hou M,Sun SJ,Jiang ZL.A new and selective and sensitive nanogold-labeled immunoresoance scattering spectral assay for trace prealbumin.Talanta 2007;72:463-7.
    [135]Hu XL,Feng P,Li YF.Interactions of pyrogallol red with proteins and the determination of proteins by resonance light-scattering.J Southwest china Normal University(Natural P Science)1998;23:561-6.
    [136]Cao QE,Ding ZT,Fang RB,Zhao X.A sensitive and rapid method for the determination of protein by the resonance Rayleigh light-scattering technique with Pyrogallol Red.Analyst 2001:126:1444.
    [137]刘绍璞,范莉,胡小莉,刘忠芳,陈粤华.某些氨羧络合型染料与蛋白质相互作用的共振瑞利散射研究.化学学报2004;62(17):1635-40.
    [138]范莉,刘绍璞,龙秀芬,胡小莉.某些变色酸双偶氮染料-蛋白质体系的共振瑞利散射及其分析应用.分析化学2002;30(1):81.
    [139]刘绍璞,范莉,龙秀芬,胡小莉.偶氮氯膦Ⅲ共振瑞利散射法测定蛋白质.西南师范大学学报(自然科学版)2001;26(3):293.
    [140]吴会灵,李文友,何锡文.乙醇敏化钛黄与蛋白质作用的共振光散射光谱研究及其分析应用.化学学报2002;60(10):1822-7.
    [141]Liu SP,Liu Q.Resonance Rayleigh-Scattering Method for the Determination of Proteins with Some Monoazo Dyes of Chromotropic Acid.Anal Sci 2001;17(2):239.
    [142]李树伟,李娜,赵凤林,李克安.用铀试剂Ⅰ共振光散射法测定蛋白质的研究.光谱学与光谱分析2002;22(8):619-22.
    [143]Guo ZX,Shen HX.Sensitive and' simple determination of protein by resonance Rayleigh scattering with 4-azochromotropic acid phenylfluorone.Anal Chim Acta 2000;408:177-82.
    [144]王晓霞,沈含熙,郝永梅.苋菜红-蛋白质体系的共振光散射光谱研究及其分析应用.分析化学2000;28(11):1388-90.
    [145]Dong LJ,P.Jia R,Li QF,Chen XG,Hu ZD.Study of the reaction of proteins with Beryllon Ⅱ-Al~Ⅲ by the Rayleigh light scattering technique and its application.Analyst 2001;126:707.
    [146]Zhong H,Xu JJ,Chen HY.A rapid and sensitive method for the determination of trace proteins based on the interaction between proteins and Ponceau 4R.Talanta 2005;67:749-54.
    [147]赵小辉,黄承志.依思明蓝与牛血清白蛋白作用的共振光散射研究.西南师范大学学报(自然科学版)2006;31(3):70-5.
    [148]Dong LJ,Li Y,Zhang YH,Chen XG,Hu ZD.A flow injection sampling resonance light scattering system for total protein determination in human serum.SpectrochimActaPart A 2007;66:1317-22.
    [149]Ma CQ,Li KA,Tong SY Microdetermination of Proteins by Resonance Light Scattering Spectroscopy with Bromophenol Blue.Anal Biochem 1996;239:86-91.
    [150]Huang CZ,Lu W,Li YF,Huang YM.On the factors affecting the enhanced resonance light scattering signals of the interactions between proteins and multiply negatively charged chromophores using water blue as an example.Anal Chim Acta 2006;556:469-75.
    [151]Li YF,Huang CZ,Li M.Aresonance light-scattering determination of proteins with fast green FCF.Analsci 2002;18:177-81.
    [152]Feng S,Pan ZH,Fan J.Determination of proteins at nanogram levels with Bordeaux red based on the enhancement of resonance light scattering.Spectrochim Acta Part A 2006;64:574-9.
    [153]Chen ZG,Zhang TY,Ren FL,Ding WF.Determination of Proteins at Nanogram Levels Based on Their Resonance Light Scattering Decrease Effect on the Dibromo-o-Nitrophenylfluorone-Sodium Lauroyl Glutamate System.Microchim Acta 2006;153:65-71.
    [154]Feng SL,Pan ZH,Fan J.Determination of trace proteins with pyronine Y and SDS by resonance light scattering.Anal Bioanal Chem 2005;383:255-60.
    [155]李永新,张德兴,赵丹华,卓淑娟,朱昌青,王伦.四磺基锰酞菁2蛋白质体系的共振瑞利散射行为及其分析应用.分析化学2003 33(11):1372-5.
    [156]Chen XL,Li DH,Zhu QZ,Yang HH,Zheng H,Wang ZH,et al.Determination of proteins at nanogram levels by a resonance light-scattering technique with terra-substituted sulphonated aluminum phthalocyanine.Talanta 2001;53:1205-10.
    [157]Liu SP,Yang Z,Liu ZF,Kong L.Resonance Rayleigh-scattering method for the determination of proteins with gold nanoparticle probe.Anal Biochem 2006;353:108-16.
    [158]Fang B,Gao YC,Li MG,Wang GF,Li YX.Application of Functionalized Ag Nanoparticles for the Determination of Proteins at Nanogram Levels Using the Resonance Light Scattering Method.Microchim Acta 2004;147:81-6.
    [159]Li ZP,Duan XR,Liu CH,Du BA.Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles.Anal Biochem 2006;351:18-25.
    [160]Zhao GC,Zhang P,Wei XW,Yang ZS.Determination of proteins with fullerol by a resonance light scattering technique.AnalBiochem 2004;334:297-302.
    [161]Wang LY,Chen HQ,Li L,Xia TT,Dong L,L.Wang.Quantitative determination of proteins at nanogram levels by the resonance light scattering technique with macromolecules nanoparticles of PS-AA.Spectrochim Acta Part A 2004;60:747-50.
    [162]Zhou YY,She SK,Zhang L,Lu Q.Determination of proteins at nanogram levels using the resonance light scattering technique with a novel PVAK nanoparticle.Microchim Acta 2005;149:151.
    [163]Wang LY,Wang L,Chen HQ.Direct quantification of γ-globulin in human blood serum by resonance light scattering techniques without separation of human serum albumin.Anal Chim Acta 2003;493:179-84.
    [164]Wang LY,Wang L,Dong L,Hu YL,Xia TT,Chen HQ,et al.Determination of _-globulin at nanogram levels by its enhancement effect on the resonance light scattering of functionalized HgS nanoparticles.Talanta 2004;62:237-40.
    [165]Wang L,Xu FG,Zhou YY,Wang LY,Liu YC.Preparation and application of MS-M~(2+)nanoparticles as a novel resonance light-scattering probe.SpectrochimActa Part A 2004;60:2141-5.
    [166]Chen HQ,Xu FG,Hong S,Wang L.Quantictiative determination of proteins at nanogram levels by the resonance light-scattering technique with compesite nanoparticles of CdS/PAA.Spectrochim Acta Part A 2006;65:428-32.
    [167]Pan HC,Tao XC,Mao CJ,Zhu JJ,Liang FP.Aminopolycarboxyl-modified Ag_2S nanoparticles:Synthesis,characterization and resonance light scattering sensing for bovine serum albumin.Talanta 2007;71:276-81.
    [168]Zhu CQ,Li DH,Zhu QZ,Zheng H,Chen QY,Yang HH,et al.Determination of proteins at nanogram levels by their quenching effect on large particle scattering of colloidal silver chloride.Fresenius J Anal Chem 2000;366:863.
    [169]Feng P,Hu XL,Huang CZ.Determination of Proteins at Nanogram Levels with Their Enhancement Effects of Resonance Light-Scattering on Quercetin.Anal Lett 1999;32(7):1323.
    [170]Gao DG,Tian Y,Liang FH,Bi SY,Li TC,Chen YH,et al.Investigation on hyperin-cetyltrimethylammonium bromide-fibronectin system by resonance light-scattering technique.Spectrochim Acta Part A 2007;66:52-7.
    [171]Liu RT,Yang JH,Wu X,Lan ZJ.Resonance double light scattering method for the determination of proteins with morin-CTMAB.Spectrochim Acta Part A 2002;58:3077-83.
    [172]李振中,蒋治良,陈媛媛,孙双娇,周苏梅.蛋白质-阳离子表面活性剂缔合微粒体系的光谱特性及分析应用.应用化学2005;22(12):1304-7.
    [173]胡庆红,江波.阴离子表面活性剂与蛋白质的共振瑞利散射及分析应用.分析化学2003;31(9):1123-6.
    [174]Chen ZG,Liu JB,Han YL.Rapid and sensitive determination of proteins by enhanced resonance light scattering spectroscopy of sokium lauroyl glutamate.Talanta 2007;71:1246-51.
    [175]Chen YH,Tian Y,Gao DJ,Bai Y,Yu AM,Zhang HQ.Determination of serum albumin in the presence of poly(diallyldimethylammonium chloride)by resonance light scattering technique.Spectrochim Acta Part A2007;66:1011-5.
    [176]蒋治良,邹节明,王力生,覃爱苗.蛋白质与三氯乙酸相互作用的共振散射光谱研究及分析应用.分析化学2003;31(1):70-3.
    [177]陈粤华,刘忠芳,胡小莉,刘绍璞.铬(Ⅵ)与蛋白质相互作用的共振瑞利散射光谱及其分析应用.分析化学2005;33(6):802-4.
    [178]Long XF,Liu SP,Kong L,Liu ZF,Bi SP.A study on the interaction of proteins with some heteropoly compounds and their analytical application by resonance Rayleigh scattering method.Talanta 2004;63:279-86.
    [179]梁爱惠,邹节明,蒋治良,王力生,覃爱苗.磷钼杂多酸与蛋白质相互作用的共振散射光谱研究.应用化学2002;19(8):768-71.
    [180]刘绍璞,杨睿,罗红群,刘忠芳,石燕.某些同多酸根与蛋白质相互作用的共振瑞利散射光谱研究.分析化学2005;33(8):1125-8.
    [181]Huang CZ,Li YF,Liu XD.Determination of nucleic acids at nanogram levels with safranine T by a resonance light-scattering technique.Anal Chim Acta 1998;375:89.
    [182]Huang CZ,Li YF,Deng SY,Liu SR.Assembly of Methylene Blue on Nucleic Acid Template as Studied by Resonance Light-Scattering Technique and Determination of Nucleic Acids at Nanogram Levels.Bull Chem Soc Jpn 1999;72:1501-8.
    [183]Long XF,Bi SP,Tao XK.Resonance Rayleigh scattering study of the reaction of nucleic acids with thionine and its analytical application.Spectrochim Acta Part A 2004;60:455-62.
    [184]Li YF,Huang CZ,Huang XH,Li M.Determination of DNA by its enhancement effect of resonance light scattering by azur A.Anal Chim Acta 2001;429:311-9.
    [185]Li YF,Huang CZ,Li M.Study of the interaction of Azur B with DNA and the determination of DNA based on resonance light scattering measurements.Anal Chim Acta 2002;452:285-94.
    [186]Huang CZ,Li YF,Pu QH,Lai LJ.Interaction of nile bule sulphate with nucleic acids as studied by resonance light-scattering measurements and determination of nucleic acids at nanogram levels.Anal Lett 1999;32(12):2395.
    [187]Huang CZ,Li YF,Hu XL,Li NB.Three-dimensional spectrum of the interactions of nile blue sulphate with DNA and determination of DNA by light-scattering.Anal Chim Acta 1999;395:187.
    [188]Huang CZ,Li YF,Huang XH,Li M.Interactions of Janus green B with double stranded DNA and the determination of DNA based on the measurement of enhanced resonance light scattering.Analyst 2000;125:1267.
    [189]Wu X,Wang YB,Wang MQ,Sun SN,Yang JH,Luan YX.Determination of nucleic acids at nanogram level using resonance light scattering technique with Congo Red.Spectrochim Acta Part A 2005;61:361-6.
    [190]Li YF,Huang CZ,Huang XH,Li M.Enhanced Resonance Light Scattering of Alcian Blue 8GX as an assay of DNA.Anal Lett 2001;34(7):1117-32.
    [191]Chen XM,Cai CQ,Zeng JX,Liao YZ,Luo HA.Study on bromocresol green-cetyltrimethylammonium-deoxyribonucleic acids system by resonance light scattering spectrum methods.Spectrochim Acta Part A 2005;61:1783-8.
    [192]Wei Q,Zhang H,Du B.Sensitive Determination of DNA by Resonance Light Scattering with Pentamethoxyl Red.Microchim Acta 2005;151:59-65.
    [193]Cai CQ,Gong H,Chen XM.Simple and sensitive assay for nucleic acids by use of the resonance light-scattering technique with the anionic dye methyl blue in the presence of cetyltrimethylammonium bromide.Microchim Acta 2007;157:165-71.
    [194]Gao F,Li YX,Zhang L,Wang L.Cetyltrimethylammonium bromide sensitized resonance light-scattering of nucleic acid-Pyronine B and its analytical application.Spectrochim Acta Part A 2004;60:2505-9.
    [195]Fang F,Zheng H,Li L.Determination of nucleic acids with a near infrared cyanine dye using resonance light scattering technique.Spectrochim Acta Part A 2006;64:698-702.
    [196]Liu RT,Yang JH,Sun CX.Study of the interaction of nucleic acids with acridine orange-CTMAB and determination of nucleic acids at nanogram levels based on the enhancement of resonance light scattering.Chem Phys Lett 2003;376:108-15.
    [197]Huang JP,Chen F,He ZK.A resonance light scattering method for determination of DNA using Ru(bpy)_2PIP(V)~(2+).Microchim Acta 2007;157:181-7.
    [198]Wu X,Sun SN,Yang JH.Study on the interaction between nucleic acid and Eu~(3+)-oxolinic acid and the determination of nucleic acid using the resonance light scattering technique.Spectrochim Acta Part A 2005;62:896-901.
    [199]Bao P,Frutos AG,Greef C,Lahiri J,Muller U,Peterson TC.High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering.AnalChem 2002;74:1792-.
    [200]Cheng YQ,Li ZP,Su YQ,Fan YS.Ferric nanoparticle-based resonance light scattering determination of DNA at nanogram levels.Talanta 2007;71:1757-61.
    [201]Chen ZG,Ding WF,Ren FL,Liu JB,Liang YZ.A simple and sensitive assay of nucleic acids based on the enhanced resonance light scattering of zwitterionics.AnalChimActa 2005;550:204-9.
    [202]Li YF,Sun WQ,Feng P,Huang CZ,Li M.Determination of DNA with cetyltrimethylammonium bromide by the measurement of resonance light scattering.Anal Sci 2001;17:693.
    [203]刘绍璞,胡小莉,罗红莉,范莉.阳离子表面活性剂与核酸反应的共振Rayleigh散射光谱特性及其分析应用.中国科学(B辑)2002;32(1):18-26.
    [204]Liu RT,Yang JG,Sun CX,Wu X.Resonance double light scattering method for the determination of nueleic acids with cetylpyridine bromide.MicrochimActa 2004;147:105-9.
    [205]Gao DJ,Tian Y,Ding L,Liang FH,Bi SY.Determination of human complement factor C4 using resonance light-scattering technique with sodium dodecylbenzene sulphonate probe. Spectrochim Acta Part A 2006;64:430-4.
    [206]Chen ZG,Ding WF,Liang YZ,Ren FL,Han YL.Determination of Nucleic Acids Based on Their Resonance Light Scattering Enhancement Effect on Metalloporphyrin Derivatives.Microchim Acta 2005;150:35-42.
    [207]Wu QH,Li N,Yang LH,Tang RX,Bian RH.Determination of nucleic acids at nanogram levels using the resonance light scattering technique with 3,30-dichlorobenzidine.Microchim Acta 2007;157:189-92.
    [208]Jia Z,Yang JH,Wu X.The sensitive determination of nucleic acids using resonance light scattering quenching method.Spectrochim Acta Part A 2006;64:555-9.
    [209]Chen ZG,Zhang TY,Chen XG Interactions of norfloxacin with DNA and determination of DNA at nanogram levels based on the measurement of enhanced resonance light scattering.Microchim Acta 2007;157:107-12.
    [210]Long XF,Miao Q,Bi SP.Resonance Rayleigh scattering method for the recognition and determination of double-stranded DNA using amikacin.Talanta 2004;64:366-72.
    [211]Liu SP,Chen YH,Liu ZF.A Highly Sensitive Resonance Rayleigh Scattering Method for the Determination of Vitamin B1 with Gold Nanoparticles Probe.Microchim Acta 2006;154:87-93.
    [212]Liu SP,Luo HQ,Xu H,Lia NB.Resonance Rayleigh scattering study of interaction of heparin with some cationic surfactants and their analytical application.Spectrochim Acta Part A 2005;61:861-7.
    [213]Long YJ,Li YF,Huang CZ.A wide dynamic range detection of biopolymer medicines with resonance light scattering and absorption ratiometry.Anal Chim Acta 2005;552:175-81.
    [214]Xu DP,Liu SP,Liu ZF,Hu XL.Determination of verapamil hydrochloride with 12-tungstophosphoric acid by resonance Rayleigh scattering method coupled to flow injection system.Anal Chim Acta 2007;588:10-5.
    [215]Liu ZD,Huang CZ,Lia YF,Long YF.Enhanced plasmon resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example.Anal Chim Acta 2006;577:244-9.
    [216]Liu XL,Yuan H,Pang DW,Cai RX.Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application.Spectrochim Acta Part A 2004;60:385-9.
    [217]Wei XQ,Liu ZF,Liu SP.Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue.Anal Biochem 2005;346:330-2.
    [218]Wei XQ,Liu ZF,Liu SP.Resonance Rayleigh scattering spectra of tetracycline antibiotic-Cu(Ⅱ)-titan yellow systems and their applications in analytical chemistry.Anal Bioanal Chem 2006;385:1039-44.
    [219]Liu SP,Yang Z,Liu ZF,Liu JT,Shi Y.Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application.Anal Chim Acta 2006;572:283-9.
    [220]彭敬东,刘绍璞,刘忠芳,石燕.氯金酸-小檗碱离子缔合物体系的共振瑞利散射光谱研究及其分析应用.化学学报2005;63(8):745-51.
    [221]邹节明,潘宏程,蒋治良,袁伟恩,王力生.盐酸小檗碱-十二烷基苯磺酸钠缔合微粒体系的共振散射光谱研究及其分析应用.分析化学2003;31(11):348-51.
    [222]彭敬东,刘绍璞,刘忠芳,石燕.镧(Ⅲ)与丹参酮ⅡA磺酸钠螯合物的共振瑞利散射光谱及其分析应用.中国科学B辑化学2006;36(3):227-33.
    [223]Yang CX,Li YF,Huang CZ.Determination of cationic surfactants in water samples by their enhanced resonance light scattering with azoviolet.Anal Bioanal Chem 2002;374:868-72.
    [224]程云燕,蒋治良,梁爱惠.基于AgI_2~-缔合微粒共振散射效应测定阳离子表面活性剂.光谱学与光谱分析2006;26(10):1888-90.
    [225]杨清玲,刘忠芳,鲁群岷,刘绍璞.盐酸氯丙嗪作探针共振瑞利散射法测定环境水样中某些阴离子表面活性剂.高等学校化学学报2006;27:2281-4.
    [226]Cui FL,Wang L,Cui YR.Determination of bismuth in pharmaceutical products using methyltriphenylphosphonium bromide as a molecular probe by resonance light scattering technique.J Pharmaceutical and Biomedical Analysis 2007;43:1033-8.
    [227]Sun S,Wu X,Yang JH,Li L,Wang YB.Determination of dysprosium by resonance light scattering technique in the presence of BPMPHD.Spectrochim Acta Part A 2004;60:261-4.
    [228]Xiao JB,Chen JW,Ren FL,Chen YY,Xu M.Highly sensitive determination of trace potassium ion in serum using the resonance light scattering technique with sodium tetraphenylboron.Microchim Acta 2007.
    [229]Long XF,Bi SP,Ni HY,Tao XK,Gan N.Resonance Rayleigh scattering determination of trace amounts of Al in natural waters and biological samples based on the formation of an Al(Ⅲ)-morin-surfactant complex.Anal Chim Acta 2004;501:89-97.
    [230]黄德发.碘汞酸钾与CPB反应产物的共振散射光谱及其在分析中的应用-理化检验.化学分册2006;42(4):237-9.
    [231]南海军,刘忠芳,刘绍璞.Hg(Ⅱ)-碘化物-结晶紫体系的共振瑞利散射光谱及其分析应用研究.西南师范大学学报(自然科学版)2005;30(6):1074-7.
    [232]黄德发.四溴汞(Ⅱ)酸钾2异辛基苯二聚乙二醇醚二甲基苄基氯化铵的共振散射光谱及其分析应用.分析试验室2005;24(10):48-51.
    [233]Liu SP,Liu ZF,Luo HQ.Resonance Rayleigh scattering method for the determination of trace amounts of cadmium with iodide-rhodamine dye systems.Anal Chim Acta 2000;407:255-60.
    [234]Liu SP,Liu ZF,Li M,Li NB,Luo HQ.Resonance Rayleigh scattering method for the determination of trace amounts of cadium with iodide-basic triphenylmethane dye systems.Fresenius JAnalChem 2000;368:848-52.
    [235]刘绍璞,杨睿,刘忠芳.铬(Ⅵ)-碘化物-维多利亚蓝4R体系的共振瑞利散射和二级散射及其分析应用.分析化学1998;26(12):1432.
    [236]Liang AH,Jiang ZL,Zhang BM.A new resonance scattering spectral method for the determination of trace amounts of iodate with rhodamine 6G Anal Chim Acta 2005;530:131-4.
    [237]Jiang ZL,Liu QY,Liu SP.Resonance scattering spectral analysis of chlorides based on the formation of(AgCl)n(Ag)s nanoparticle.Spectrochim Acta Part A2002;58:2759-64.
    [238]蒋治良,李芳,梁宏.磷钼杂多酸-罗丹明S体系的共振散射光谱研究.化学学报2000;58(8):1059-62.
    [239]李振中,蒋治良,杨光,卢丹,刘绍璞.罗丹明6G缔合微粒共振散射光谱法测定过氧化氢.光谱学与光谱分析2005;25(8):1286-8.
    [240]梁爱惠,蒋治良,陶慧林.一个灵敏测定过氧化氢的吖啶红共振散射光谱新方法.光谱学与光谱分析2007;27(1):120-2.
    [241]Jiang ZL,Zou SM.A resonance scattering method for determination of hydroxyl radical in fenton system using rhodamine Sand its application in screening the antioxidant.Talanta 2006;70(2):444-8.
    [242]武秀红,董存智.萘乙二胺-亚硝酸根体系共振散射光谱研究及分析应用.中国卫生检验杂志2006;16(12):1420-8.
    [243]Huang CZ,Lu W,Li YF.Total internal reflected resonance light scattering detection of DNA at water/tetrachloromethane interface with acrindine orange and cetyltrimethylammonium bromide.Ana Chim Acta 2003;494:11-9.
    [244]Lu W,Huang CZ,Li YF.A sensitive and selective assay of nucleic acids by measuring enhanced total internal reflected resonance light scattering signals deriving from the evanescent field at the water/tetrachloromethane interface.Analyst 2002;127:1392-6.
    [245]Zhao HW,Huang CZ,Li YF.Immunoassay by detecting enhanced resonance light scattering signals of immunocomplex using a common spectrofluorometer.Talanta 2006;70:609-14.
    [246]Jiang ZL,Liu SP,Liu QY.Catalytic-reaction esonance scattering spectral method for the determination of trace amounts of Se.Talanta 2002;58:635.
    [247]Huang CZ,Pang XB,Li YF.Determination of Heparin Using Azure B by Flow Injection Analysis-Resonance Light Scattering Coupled Technique.AnalLett 2005;8:349-62.
    [248]Qin KJ,Li YF,Huang CZ.Flow injection resonance light scattering detection of proteins of nanogram.Luminescence 2005;20:176-80.
    [249]Huang CZ,Pang XB,Li YF,Long YJ.A resonance light scattering ratiometry applied for binding study of organic small molecules with biopolymer.Talanta 2006;69:180-6.
    [250]蔡宏道.现代环境卫生学.北京:人民卫生出版社;1995.
    [251]宋鸿,奚旦立.二氧化氯技术在水处理中的应用.化工标准化与质量监督2000;7:21-4.
    [252]Aieta EM,Roberts PV.Determination of chlorine dioxide,chlorine,chlorite and chlorate in water.J AWWA 1984;76(1):64.
    [253]蒋治良,冯忠伟,李挺盛.金纳米粒子的共振散射光谱.中国科学(B辑)2001;31(2):183-8.
    [254]李原芳,黄承志,胡小莉.共振光散射技术的原理及其在生化研究和分析中的应用.分析化学1998;26(12):1508-15.
    [255]蒋治良,潘宏程,袁伟恩.铬天青S-铝(Ⅲ)-聚乙二醇4000体系的共振散射光谱及其应用.环境化学2004;23(5):573-7.
    [256]罗杨合,蒋治良,李振中.罗丹明6G缔合微粒荧光猝灭法测定痕量碘酸根.分析测试技术与仪器2004;10(2):68-71.
    [257]梁爱惠,蒋治良,李振忠,康彩艳.I_3-丁基罗丹明B缔合微粒体系的光谱特性.应用化学2004;21(12):1217-20.
    [258]蒋治良,刘绍璞,赵保刚.CoFe_2O_4纳米粒子的共振散射光谱研究.光谱学与光谱分析2002;22(4):615-8.
    [259]钟福新,蒋治良,李芳等.纳米银胶的光化学制备及其共振散射光谱研究.光谱学与光谱分析2000;20(5):724-6.
    [260]周运友,佘世科,章丽.功能性β-二酮型高分子纳米微球的制备及其共振散射光性质.应用化学2004;21(12):1225-8.
    [261]刘道杰,张爱梅,田林芹.高碘酸钾氧化丁基罗丹明B崔化动力学光度法测定微量芦丁.分析化学2003;31(10):1224-7.
    [262]刘绍璞,刘忠芳,李明.离子缔合二级散射光谱的分析应用-硒(Ⅳ)-碘化物-罗丹明B体系.化学学报1995;53(12):1178-84.
    [263]蒋治良,刘绍璞,王力生.金纳米粒子-荧光素体系的光谱特性.高等学校化学学报2003:24(7):1201-3.
    [264]刘希东.碘化物-罗丹明B光度法测定水中痕量有效氯.化学研究与应用2002:14(2):225-7.
    [265]蒋治良,刘绍璞,邹彩霞.罗丹明B-P_dI_4~(2-)缔合纳米粒子体系的极谱猝灭效应.应用化学2003;20(1):34-7.
    [266]蒋治良,刘绍璞,江洪流.[AuI_4]-RDG+缔合物纳米微粒体系的共振散射增强与荧光猝灭.应用化学2002;19(12):1133-6.
    [267]宋丽英,李素娟,胡晓波,冯俊贤.碘量法区分和测定二氧化氯和氯气含量.理化检验化学分册2003;39:738.
    [268]国家环境保护局编.水和废水检测分析方法(第3版).北京:中国环境科学出版社;1989.
    [269]宋晓春,张玉红,平海宏.空气中氯气的测定及问题研究.化工自动化及仪表2001;28(6):79-81.
    [270]Moberg L,Karlberg B.An improved N,N-diethyl-p-phenylenediamine(DPD)method for the determination of free chlorine based on multiple wavelength detection.Anal Chim Acta 2000;407:127-33.
    [271]Chaurasia A,Verma KK.Flow-injection spectropholometric determination of residual free chlorine and chloramine.Anal Bioanal Chem 1995;351:335-7.
    [272]March JG,Gual M,Simonet BM.Determination of residual chlorine in greywater using o-tolidine.Talanta 2002;58:995.
    [273]Pobozy E,Pyrzynska K,Szostek B,Trojanowicz M.Flow-Injection Spectrophotometric Determination of Free Residual Chlorine in Waters with 3,3' -Dimethylnaphtidine.Microchem J1995;51:379.
    [274]Nakahara T,Nishida T.Analyte volatilization procedure for the determination of low concentrations of chlorine by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry.Spectrochim Acta Part B 1998;53:1209.
    [275]Ralfs M,Heinze J.Disposable optochemical sensor for the determination of chlorine concentrations in the ppb-range.Sensors and Actuators B 1997;44:257.
    [276]张丽珠,崔高峰,杨艳伟.离子色谱法测定煤中氯.岩矿测试1999;18:299-302.
    [277]Mary-Ann HF.Standard Methods for the Examination of Water and Waste water.15 th ed.New York:American public health Association;1980.
    [278]Marino DF,Ingic JD.Determination of chlorine in water by luminol chemiluminescence.Anal Chem 1981;53:455.
    [279]Jia RP,Zhai HL,Shen Y,Chen XG,Hu ZD.Human serum albumen enhanced resonance light scattering of dyes.Talanta 2004;64:355.
    [280]袁伟恩,蒋治良.某些液相纳米微粒的光谱特性研究及分析应用.分析测试技术与仪器2004;12:193.
    [281]Jiang ZL,Shun SJ,Kang CY,Lu X,Lan J.A New and Sensitive Resonance Scattering Method for the Determination of Trace Nitrite in Water Using Rhodamine 6G Anal Bioanal Chem 2005;381:896.
    [282]Jiang ZL,Zhao MX,Liao LX.Catalytic spectrophotometric methods for the determination of oxalic acid.Anal Chim Acta 1996;320:139-43.
    [283]蒋治良,江洪流,刘凤志,邹节明,王力生.染料分子吸收对硫纳米微粒瑞利散射光谱的影响.应用化学2003;20(4):351.
    [284]White GC.The Handbook of Chlorination and Alternative Desinfectants,3rd ed.New York:Van Nostrand Reinhold;1992.
    [285]Edwards GA,Amirtharajah A.Removing color carsed by humic acids.J AWWA 1993;77(3):50-62.
    [286]Drinking water and Health:Disinfectants and Disinfectant By-products.Vol.7.Washington,DC:National Academy Press;1987.
    [287]World Health Organization,Guidelines for Drinking Water Quality,3rd edition:Geneve;1996.
    [288]Demetrius GT,Delmer WW,Gilbert G.Determination of low concentrations of chlorite and chlorate ions by using a flow-injection system.Anal Chimi Acta 1989;225:437-41.
    [289]Achminke G,Seubert A.Simultaneous determination of inorganic disinfection by-products and the seven standard anions by ion chromatography.J Chromatog 2000;890:295.
    [290]Marchetto A,Mosello R,A.Tartari G,Muntau H,Bianchim M.Precision of ion chromatographic analyses compared with that of other analytical techniques through intercomparison exercises.J Chromatogr 1995;706:13.
    [291]Pfaff JD,Brockkoff CA.The Determination of Inorganic Anions in Water by Ion Chromatography-Methods 300.0 A&B.USEPA Environmental Monitoring and Systems Laboratory,Clnclnnatl.OH;1989.
    [292]Chiswell B,Keller-Lehmann B.Spectrophotometric method for the determination of chlorite and chlorate.Analyst 1993;118(1):1457-9.
    [293]Denis M,Minon G,Masschelein WJ.Continuous determination of residual chlorite in water.Anal Chim Acta 1989;226:121-8.
    [294]Masschelein WJ,Denis M,Ledent R.Determination of chlorite ion in dilute solution by pulse polarography.Anal ChimActa 1979;107:383-6.
    [295]Kang CY,Xi DL,Zhou SM,Jiang ZL.A novel and selective spectral method for the determination of trace chlorine in water basing on the resonance scattering effect of rhodamine B-I3 association nanoparticles.Talanta 2006;68:974-8.
    [296]Wang M,Wu X,Huang F,Yang JH.Study of the interaction of nucleic acids with acridine red and CTMAB by aresonance light scattering technique and determination of nucleic acids at nanogram levels.Anal Chim Acta 2000;422(2):151-8.
    [297]Wang YT,Li KA,Tong SY,Zhao FL.Molecular spectroscopic study of DNA binding with neutral red and application to assay of nucleic acids.Anal Chim Acta 1999;396(1):75 - 81.
    [298]Huang CZ,Li KA,Tong SY.Microdetermination of proteins b resonance light-scattering technique using meso-tetrakis(4-sulfonatophenyl)porphyrin.AnalSci 1997;13:263.
    [299]Ma CQ,Li KA,Tong SY.Enhancement of Rayleigh Light Scattering of Acid Chrome Blue K by Proteins and Protein Assay by the Scattering Technique.Analyst 1997;122(4):361-4.
    [300]周苏梅,陈媛媛,蒋治良.金属(Ⅱ)一双硫腙螯合物微粒的共振散射光谱特性.应用化学2005;22(11):1274-6.
    [301]Kang CY,Jiang ZL,Xi DL.A novel,simple and sensitive resonance scattering spectral method for the determination of chlorite in water by means of rhodamine B.J Enviro Sci 2006;18(5):1000-3.
    [302]蒋治良,邹节明,康彩艳.奎宁-[PtI_6]~(2-)缔合微粒体系的光谱特性及分析应用.光谱学与光谱析2004;24(12):1634-6.
    [303]蒋治良,邹明静,梁爱惠.硫酸软骨素-阳离子表面活性剂缔合物微粒体系的共振散射光谱研究及分析应用.化学学报2006;64(2):111-6.
    [304]Liu RT,Yang JH,Wu X.Interaction of cetylpyridine bromide with nucleic acids and determination of nucleic acids at nanogram levels based the enhancement of resonance Rayleigh light scattering.Spectrochim Acta Part A 2002;58:1935-42.
    [305]黄新华,舒为群,李原芳,黄承志.溴代十六烷基三甲基铵敏化亮绿-脱氧核糖核酸作用的共振光散射增强研究.分析化学2001;29(3):271-5.
    [306]陈艳晶,杨景和,吴霞.邻苯二酚紫-溴化十六烷基三甲铵核酸共振光散射体系的研究及其分析应用.分析化学2003;31(11):1352-5.
    [307]Chen YJ,Yang JH,Wu X,Wu T,Luan YX.Resonance light scattering technique for the determination of proteins with resorcinol yellow and OP.Talanta 2002;58:869-74.
    [308]Gordon G,Cooper WJ,Rice RG,Pacey GE.Disinfectant Residual measurement Methods,Second ed.American Water Works Association,Denver,CO 1992:p142.
    [309]Flether IJ,Hemming P.Determination of chlorine dioxide in potable waters using chlorophenol red.Analyst 1985;110:695-9.
    [310]Takaho W,Idehara T,Yoshimura Y.Simultaneous determination of chlorine dioxide and hypochlorite in water by high-performance liquid chromatography.J Chomatogr A 1998;796:397-400.
    [311]中华人民共和国建设部.《城市供水水质标准》CJ/T 206-2005.北京:中国标准出版社;2005.
    [312]Zhu BH,Zhong ZX,Yao J.Ion chromatographic determination of trace iodate,chlorite,chlorate,bromide,bromate and nitrite in drinking water using suppressed conductivity detection and visible detection.J Chromatogr A2006;1118:106-10.
    [313]Casella IG,Contursi M.Electrochemical and spectroscopic characterization of a tungsten electrode as a sensitive amperometric sensor of small inorganic ions.Electrochim Acta 2005;50:4146.
    [314]Pezzatini G,Midili I,Toti G Determination of chlorite in drinking water by differential pulse voltammetry on graphite..Anal Bioanal Chem 2004;380:650-7.
    [315]Yang CX,Li YF,Huang CZ.Determination of cationic surfactants in water samples by their enhanced resonance light scattering with azoviolet.Anal Bioanal Chem 2002;374:868-72.
    [316]Liu RT,H.Yang J,Sun CX.Study on the interaction between nucleic acids and cationic surfactants.Colloids and surfaces B:Biointerfaces 2004;34:59-63.
    [317]Dai XX,Li YF,He W,Huang CZ.A dual-wavelength resonance light scattering ratiometry of biopolymer by its electrostatic interaction with surfactant.Talanta 2006;70:578-83.
    [318]肖月华.化工商品科学情报1994;4:17.
    [319]Masschelen WJ.Chloride Dioxide.Ann Arbor Science,Ann Arbor,MI 1979:p.154.
    [320]Quentel F,Elleouet C,Madec C.Determination of trace levels of chlorine dioxide in drinking water by electrochemistry.Analusis 1996;24:199.
    [321]Kang XJ,Fan XR.The use of naphthol green for the determination of chlorine dioxide in water.Anal Lett 2003;36:1661-7.
    [322]Wang G,Chen H,Yuan L.AnalLett 2001;34:2485.
    [323]Mayes AG,BALYTH j,Millington RB,Lowe CR.Metal ion-sensitive holographic sensors.AnalChem 2002;74:3649.
    [324]Kim Y,Johnson RC,Hupp JT.Gold nanoparticle-based sensing of "spectroscopically silent" heavy metal ions.Nano Lett 2001;1:165-7.
    [325]Storhoff JJ,Elghanjan R,Mucic RC,Mirkin CA,Letsinger RL.One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes.J Am Chem Soc 1998;120:1959-64.
    [326]Elghanian R,Storhoff JJ,Mucic RC,Letsinger RL,Mirkin CA.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science 1997;1277:1078-81.
    [327]Asian K,Lakowicz JR,Geddes CD.Nanogold plasmon resonance-based glucose sensing:2 wavelength-rationmetric resonance light scattering.AnalChem 2005;77:2007-14.
    [328]Xu HX,Kall M.Modeling the optical response of nanoparticle-based surface plasmon resonance sensors.Sensors and Actuators B 2002;87:244-9.
    [329]Haes AJ,Hall WP,Chang L,Klein WL.A locallized surface plasmon resonance biosensor:first steps toward an assay for alzheimer's disease.Nano Lett 2004;4:1029-34.
    [330]McFarland AD,Van-Duyne RP.Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity.Nano Lett 2003;3(8):1057 -62.
    [331]Kundu S,Ghosh SK,Mandal M,Pal T,Pal A.Spectrophotometric determination of arsenic via arsine generation and in-situ colour bleaching of methylene blue(MB)in micellar medium.Talanta 2002;58:935-42.
    [332]Cao YC,Jin R,Thaxton CS,Mirkin CA.A two-color-change,nanoparticle-based method for DNA detection.Talanta 2005;67:449-55.
    [333]Malinsky MD,Kelly KL,Schatz GC,Van-Duyne RP.chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolyayers.J Am ChemSoc 2001;123:1471-82.
    [334]Faulds K,Smith WE,Graham.D.Evaluation of surface-enhanced resonance Roman scattering for quantitative DNA analysis.Anal Chem 2004;76(2):412 -7.
    [335]Asian K,Holley P,Davies L,Lakowicz JR,Geddes CD.Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing.JAmChem Soc 2005;127:12115-21.
    [336]Malynych S,Chumanov G Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays.J Am Chem Soc 2003;125:2896-8.
    [337]Wu LP,Li YF,Huang CZ,Zhang Q.Visual Detection of Sudan Dyes Based on the Plasmon Resonance Light Scattering Signals of Silver Nanoparticles.AnalChem 2006;78:5570-7.
    [338]Govorov AO,Carmeli I.Hybrid structures composed of photosynthetic system and metal nanoparticles:plasmon enhancement effect.Nano Lett 2007;7(3):620 -5.
    [339]Alvarez-Puebla RA,Ross DJ,Nazri-Abbas G,Aroca RF.Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance.Langmuir 2005;21(23):10504-8.
    [340]Xu G,Chen Y,Tazawa M,Jin P.J Phys Chem 2006;110(5):2051 -6.
    [341]Chen Y,Munechika K,Ginger DS.Dependence of fluorescence intensity on the spectral overlap between flurophores and plasmon resonant single silver nanoparticles.Nano Lett 2007;7(3):690 -6.
    [342]Ianoul A,Bergeron A.Spatially inhomegeneous enhancement of fluorescence by a monolayer of silver nanoparticles.Langmuir 2006;22(24):10217-22.
    [343]Kieffer.RG,Gordon G.Disproportionation of chlorous acid.1.stoichiometry.Inorg Chem 1968;7:235.
    [344]蔡树型,黄超.重金属分析,第一版.北京:冶金工业出版社;1984,p195.
    [345]Selvakannan PR,Swami A,Srisathiyanarayanan D,Shirude PS,Pasricha R,Mandate AB,et al.Synthesis of aqueous Au core-Ag shell nanopartides using tyrosine as a pH-dependent reducing agent and assembling phase transferred silver nanoparticles at the air-water interface Langmuir 2004;20:7825-36.
    [346]Tokareva L,J.Hutter E.Hybridization of Oligonucleotide-Modified Silver and Gold Nanoparticles in Aqueous Dispersions and on Gold Films.AmChemSoc 2004;126:15784-9..
    [347]Liu SH,Zhang ZH,Han MY.Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection.AnalChem 2005;77:2595-600.
    [348]Palin AT,Darral KG.A modified DPD titrimetric procedure for determination of chlorine dioxide and chlorite in water.J Inst Water Eng Sci 1979;33(5):467-73.
    [349]Collier CP,Saykally RJ,Shiang JJ,Henrichs SE,Heath JR.Reversible tning of silver quantum dot monolayers through the motal-insulator transition.Science 1997;277:1978.
    [350]Braun E,Eichen Y,Sivan U.DNA-templated assembly and electrode attachment of a conducting silver wire.Nature 1998;391:775.
    [351]Jiang ZL,Liu SP,Chen S.A study of the resonance nonlinear scattering of silver atomic clusters.Spectrochim Acta Part A 2002;58:3121-6.
    [352]蒋治良,翟好英,章表明.液相卤化银纳米微粒的界面荧光和共振散射光谱特性.化学学报2004:62:1272.
    [353]Jiang ZL,Yuan WN,Pan HC.Luminescence effect of silver nanoparticle in water phase.Spectrochim Acta Part A 2005;61:2488-94.
    [354]凌绍明,蒋治良,闭献树,义祥輝.(AgCl)_核.(Ag)_壳复合纳米粒子的光化学合成及共振散射光谱研究.光谱学与光谱分析2001;21(6):866.
    [355]章表明,蒋治良,翟好英,梁爱惠等.液相硫化银纳米微粒的界面荧光和共振散射光谱特性.光谱学与光谱分析2005;25:1092.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700