柠檬酸根修饰银纳米粒子的可控制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,贵金属纳米材料由于其独特的光学、电学性质,在生物医用检测、催化、非线性光学等领域受到了广泛的关注。银纳米粒子作为贵金属纳米材料中的重要一类,也逐渐地被深入研究,特别在尺寸、形貌的可控性制备以及表面性质研究等方面。柠檬酸钠还原法是制备贵金属纳米材料的常用方法之一,其在银纳米粒子的合成方面的应用也备受关注。
     本论文在传统柠檬酸钠还原法制备银纳米粒子的基础上,通过对粒子形成过程系统、定量的研究,采用改变体系pH值、引入成核剂和使用两种还原剂等方法实现了银纳米粒子成核-生长平衡,从而制备了单分散、尺寸/形貌可控的球形和三角形片状柠檬酸钠修饰的银纳米粒子。
     在两步法的基础上,引入强还原剂快速诱导成核以解决柠檬酸钠弱的还原能力在成核过程中的缺陷,用柠檬酸钠作为粒子生长过程的还原剂,获得了一系列尺寸的柠檬酸钠修饰的球形银纳米粒子。吸收光谱监测表明,柠檬酸钠还原阶段是银纳米粒子逐渐生长过程,此反应过程不存在二次成核现象。TEM表征表明,通过改变NaBH4的用量可以有效调控球形纳米粒子的尺寸。
     在低浓度的反应体系中,采用共还原的热化学方法合成了三角形片状银纳米粒子。对该热化学方法中三角形银纳米粒子的形成过程进行深入研究,提出了三角形片状银纳米粒子的转化机制。确定了影响球形银纳米粒子到三角形片状纳米粒子转化的主要影响因素。该转化过程中,小尺寸球形粒子的浓度与溶液中残余银离子浓度达到平衡是三角形片状结构得以转化的重要条件。通过调节还原剂硼氢化钠和柠檬酸钠的加入比例,可以调控节平衡,控制银纳米粒子的边长,获得了一系列不同尺寸的柠檬酸钠修饰的三角形片状银纳米粒子。
Noble metal nanoparticles have attracted a great deal of attention during the past decades due to their unique electronic and optical properties and good chemical stabilities. The synthesis of noble metal nanparitcles and the utility of them as building block for bio-sensor and other devices are major subject of nanotechnology researches today.
     Silver nanoparticles, as an important member of the noble metal nano-materials, have also been in-depth studied. Great efforts have been devoted to control over the size and shape of silver nanoparticles since it is well documented that their properties are both size- and shape-dependent. Though various shapes and sizes of silver nanoparticles could be well synthesized in nonaqueous solution, the synthesis in aqueous system is still a tremendous challenge. From a green chemistry standpoint, synthesis of silver nanoparticles in aqueous solution is necessary. Synthesis of silver nanoparticles by citrate reduction is an ideal model system, this method had been widely investigated and developed since it was first invented by Turchevich because the citrate is well consistent with the bio-molecules. On the other hand, citrate is a weak ligand, and it is facile to be exchanged with other ligands. Synthesis of gold nanoparticles by the citrate reduction method has been well developed, while the synthesis on silver nanoparticles is still under exploring.
     In this dissertation, we selected the citrate reduction of silver nitride method as a model system. The kinetic factors which affecting the particle growth were studied in details. New synthesis strategy has been designed according to the nucleation-growth-ripening theory, and shape/size-controlled citrate caped silver nanoparticles were obtained.
     This dissertation includes three parts:
     1. we first did research on the following factors, such as reductant concentration, pH value, and reaction temperature, which affect the reaction rate and final shape\size of nanoparticles. Ultimately, we demonstrated that pH value played a crucial role in controlling the reaction rate and the final particle shape and size. We also identified there reaction steps of this synthesis, which are nucleation, growth and particle ripening. pH value can affect the redox rate of this system and through which affect the nucleation and growth rate. According to the well-known LaMer model, a stepwise reduction method, in which the nucleation and growth stages were carried out at high and low pH, respectively, is proposed. The shape control over the spherical silver nanoparticles is improved greatly due to the improved balance between nucleation and growth stages in the stepwise method.
     2. Encouraged by the stepwise reduction method, we adopted NaBH4 to control over the nucleation stage of reaction, and using sodium citrate as a reducing agent in the growth process. The particle size was decreased with the increasing of NaBH4 concentration due to the increasing concentration of silver nuclei reduced by NaBH4. By adjusting the molar ratio of the two reducing agents, the silver particles with various sizes (from 20 nm to 50 nm) were obtained. TEM images showed that the size distribution of the silver nanoparticles was also improved to around 6%.
     3. Using a co-reduction of NaBH4 and citrate under the lower AgNO3 concentration of 1×10-4 M, we prepared triangular silver nanoprisms with uniform thickness and various edge lengths. Through the study of thermo synthesis method, we proposed triangular sheet transmission mechanism. Also, we ascertained the two decisive factors that impact the transformation from spherical silver nanoparticles transforming into triangular nanoprisms: spherical particle size and the residual silver precursor. The transformation started when the concentration of AgNO3 was about 40% left, and kept 5×10-6 M for all through the transformation process during the 20 to 50 hours. Meaning an inter-particle Ostwald ripening process took place. Further investigation shows that the triangular silver nanoprisms could be synthesized only in the range of the NaBH4 concentration of 5×10-7 M to 5×10-5 M. Moreover, by adjusting the ratio of reductant, we could control the side length of triangular silver nanoparticles, and obtain a series of triangular silver nanoparticles with various sizes.
引文
[1] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev., 2004, 104: 293-346.
    [2] Lewis L N. Chemical catalysis by colloids and clusters [J]. Chem. Rev., 1993, 93:2693-2730.
    [3] Xiong Y J, Wiley B, Xia Y N. Nanocrystals with unconventional shapes - A class of promising catalysts [J]. Angew. Chem. Int. Ed., 2007, 46:7157-7159.
    [4] Cao Y W, Jin R, Mirkin C A. DNA-modified core-shell Ag/Au nanoparticles [J]. J. Am. Chem. Soc., 2001, 123:7961-7962.
    [5] Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes [J]. Science, 2000, 289:1757-1760.
    [6] Tkachenko A G, Xie H, Coleman D. Multifunctional gold nanoparticle - peptide complexes for nuclear targeting [J]. J. Am. Chem. Soc., 2003, 125:4700-4701.
    [7] Zhang X, Young M A, Lyandres O, Van Duyne, R P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy [J]. J. Am. Chem. Soc., 2005, 127:4484-4489.
    [8] Yang Y, Nogami M, Shi J L, Chen H R, Ma G H, Tang S H. Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties [J]. Appl. Phys. Lett., 2006, 88:081110.
    [9] Munro C H, Smith W E, Garner M, Clarkson J, White P C. Characterizationof the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering [J]. Langmuir, 1995, 11:3712-3720.
    [10] Tominaga J, Mihalcea C, Buchel D, Fukuda H, Nakano T, Atoda N, Fuji H, Kikukawa T. Local plasmon photonic transistor [J]. Appl. Phys. Lett., 2001, 78:2417-2419.
    [11] Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A. Plasmonics - a route to nanoscale optical devices [J]. Adv. Mater., 2001, 13:1501-1505.
    [12] Sanders A W, Routenberg D A, Wiley B J, Xia Y, Dufresne E R, Reed M A. Observation of plasmon propagation, redirection, and fan-out in silver nanowires [J]. Nano Lett., 2006, 6:1822-1826.
    [13] Sanders A W, Routenberg D A, Wiley B J, Xia Y, Dufresne E R, Reed M A. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents [J]. Nano Lett., 2005, 5:473-477.
    [14] Skrabalak S E, Chen J, Au L, Lu X, Li X, Xia Y. Gold nanocages for biomedical applications [J]. Adv. Mater., 2007, 19:3177-3184.
    [15] Jain P K, Huang X, El-Sayed I H, El-Sayed M A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine [J]. Acc. Chem. Res., 2008, 41:1578-1586.
    [16] Faulk W P, Taylor G M. Communication to the editors: an immunocolloid method for the electron microscope [J]. Immunochemistry, 1971, 8:1081-1083.
    [17] Haes A J, Chang L, Klein W L, Van Duyne R P. Detection of a biomarker for alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor [J]. J. Am. Chem. Soc., 2005, 127:2264-2271.
    [18] Cao Y C, Jin R, Mirkin C A. Nanoparticles with Raman spectroscopicfingerprints for DNA and RNA detection [J]. Science, 2002, 297:1536-1540.
    [19] Georganopoulou D G, Chang L, Nam J M, Thaxton C S, Mufson E J, Klein W L, Mirkin C A. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease [J]. Proc. Natl. Acad. Sci. USA, 2005, 102:2273-2276.
    [20] Seferos D S, Giljohann D A, Hill H D, Prigodich A E, Mirkin C A. Nano-flares: probes for transfection and mRNA detection in living cells [J]. J. Am. Chem. Soc., 2007, 129:15477-15479.
    [21] Hill H D, Mirkin C A. Nonenzymatic detection of bacterial genomic DNA using the bio bar code assay [J]. Anal. Chem., 2007, 79:9218-9223.
    [22] Elghanian R E, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science, 1997, 277:1078-1081.
    [23] Park S J, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes [J]. Science, 2002, 295:1503-1506.
    [24] Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins [J]. Science, 2003, 301:1884-1886.
    [25] Fleischmann M, Hendra P J, McQuillan A. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett., 1974, 26:163-166.
    [26] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode [J]. J. Am. Chem. Soc., 1977, 99:5215-5217.
    [27] Kneipp K, Kneipp H, Manoharan R, Itzkan I, Dasari R R, Feld S M. Surface-enhanced Raman scattering (SERS) - a new tool for single molecule detection and identification [J]. Bioimaging, 1998,6:104-110.
    [28] Kneipp K, Kneipp H, Manoharan R, Hanlon E B, Itzkan I, Dasari R R, Feld S M. Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters [J]. Appl. Spectrosc., 1998, 52:1493-1497.
    [29] Petry R, Schmit M, Popp J. Raman spectroscopy - a prospective tool in the life sciences [J]. Chem. Phys. Chem., 2003, 4:14-30.
    [30] Freeman R G, Graber K C, Allison K J, Bright R M, Davis J A, Guthrie A P, Hommer M B, Jackson M A, Smith P C, Walter D G, Natan M J. Self-assembled metal colloid monolayers: an approach to SERS substrates [J]. Science, 1995, 267:1629-1632.
    [31] Chumanov G, Sokolov K, Gregory B W, Cotton T M. Colloidal metal films as a substrate for surface-enhanced spectroscopy [J]. J. Phys. Chem., 1995, 99:9466-9471.
    [32] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275:1102-1106.
    [33] Bjerneld E J, Foldes-Papp Z, Kall M, Rigler R. Single-molecule surface-enhanced Raman and fluorescence correlation spectroscopy of horseradish peroxidase [J]. J. Phys. Chem. B, 2002, 106:1213-1218.
    [34] Broglin B L, Andreu A, Dhussa N, Heath J A, Jr, Gerst J, Dudley B, Holland D, El-kouedi M. Investigation of the effects of the local environment on the surface-enhanced Raman spectra of atriped gold/silver nanorod arrays [J]. Langmuir, 2007, 23:4563-4568.
    [35] Malicka J, Gryczynski I, Lakowiez J R. Enhanced emlssion of highly labeled DNA oligomers near silver metallic surfaee [J]. Anal. Chem., 2003, 75:4408-4414.
    [36] Lakowiez J R, Malicka J, Auria S D, Gryczynski I. Release of the self-quenching of fluorescence near silver metallic surface [J].Anal. Biochem., 2003, 320:13-20.
    [37] Malicka J, Gryczynski I, Lakowiez J R. DNA hybridization assays using metal-enhanced fluorescence [J]. Biochem. Biophys. Res. Commun., 2003, 306:213-218.
    [38] Gryczynski I, Malicka J, Holder E, DiCesare N, Lakowicz J R. Effects of metallic silver particles on the emission properties of [Ru(bpy)3]2+ [J]. Chem. Phys. Lett., 2003, 372:409-414.
    [39] Aslan K, Lakowiez J R, Szmacinski H, Geddes C D. Metal-enhanced fluorescence solution-based sensing platform [J]. J. Fluoresc., 2004, 14:677-679.
    [40] Gryczynski I, Malicka J, Geddes C D, Lakowiez J R. The CFS engineers the intrinsic radiative decay rate of low quantum yield fluorophores [J]. J. Fluoresc., 2003, 12:11-13.
    [41] Geddes C D, Parfenov A, Roll D. Silver fractal-like structures for metal-enhanced fluorescence: Enhanced fluorescence intensities and increased probe photostabilities [J]. J. Fluoresc., 2003, 13:267-276.
    [42] Shang L, Chen H J, Dong S J. Electrochemical preparation of silver nanostructure on the planar surface for application in metal-enhanced fluorescence [J]. J. Phys. Chem. C, 2007, 111:10780-10784.
    [43]庄严,周群,李晓伟,董文明,郑军伟.银粒子的表面修饰及荧光表面增强效应.光谱实验室, 2005, 27:635-637.
    [44] Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B, 2003, 107:668-677.
    [45] Mie G, Beitr?ge zur Optik Trüber Medien. Ann. Phys., 1908, 25:377.
    [46] Noguez C. Surface plasmons on metal nanoparticles: the influence of shpae and physical environment [J]. J. Phys. Chem. C, 2007,111:3806-3819.
    [47] Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y N. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis [J]. J. Phys. Chem. B, 2006, 110:15666-15675.
    [48] Xia Y N, Xiong Y J, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? [J]. Angew. Chem. Int. Ed., 2009, 48:60-103.
    [49] Auer S, Frenkel D. Nature, 2001, 406:464.
    [50] Gasser U, Weeks E R, Schofield A, Pusey P N, Weitz D A. Real-space imaging of nucleation and growth in colloidal crystallization [J]. Science, 2001, 292:258-262.
    [51] Hillier A C, Ward M D. Atomic force microscopy of the electrochemical nucleation and growth of molecular crystals [J]. Science, 1994, 263:1261-1264.
    [52] Yau S T, Vekilov P G. Quasi-planar nucleus structure in apoferritin crystallization [J]. Nature, 2000, 406:494-497.
    [53] Richmond M G. Annual survey of organometallic metal cluster chemistry for the year 2001 Coord [J]. Chem. Rev., 2003, 241:273-294.
    [54] LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. J. Am. Chem. Soc., 1950, 72:4847-4854.
    [55] Colombi Ciacchi L, Pompe W, De Vita. A nitial nucleation of platinum clusters after reduction of K2PtCl4 in aqueous solution: A first principles study [J]. J. Am. Chem. Soc., 2001, 123:7371-7380.
    [56] Colombi Ciacchi L, Pompe W, De Vita A. Growth of platinum clusters via addition of Pt(II) complexes: a first principles investigation [J]. J. Phys. Chem. B, 2003, 107:1755-1764.
    [57] Huang Z Y, Mills G, Hajek B. Spontaneous formation of silver particlesin basic 2-propanol [J]. J. Phys. Chem. B, 1993, 97:11542-11550.
    [58] Finney E E, Finke R G. Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters [J]. J. Colloid Interface Sci., 2008, 317:351-374.
    [59] Xiong Y, Washio I, Chen J, Sadilek M, Xia Y. Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver [J]. Angew. Chem. Int. Ed., 2007, 46:4917-4921.
    [60] Li J, Li X, Zhai H J, Wang L S. Au20: A tetrahedral cluster [J]. Science, 2003, 299:864-867.
    [61] Zhang H F, Stender M, Zhang R, Wang C M, Li J, Wang L S. Toward the solution synthesis of the tetrahedral Au20 cluster [J]. J. Phys. Chem. B, 2004, 108:12259-12263.
    [62] van Leeuwen D A, van Ruitenbeek J M, Schmid G, de Jongh L. Size-dependent magnetisation of Pd clusters and colloids [J]. Phys. Lett. A, 1992, 170:325-333.
    [63] Schmid G. Large clusters and colloids: metals in the embryonic state [J]. Chem. Rev., 1992, 92:1709-1727.
    [64] Zhang H, Schmid G, Hartmann U. Reduced metallic properties of ligand-stabilized small metal clusters [J]. Nano Lett., 2003, 3:305-307.
    [65] Aiken III J D, Finke R G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis [J]. J. Mol. Catal. A, 1999, 145:1-44.
    [66] Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies [J]. J. Phys. Chem. B, 2000, 104:1153-1175.
    [67] Zhang J M, Ma F, Xu K W. Calculation of the surface energy of FCC metals with modified embedded-atom method [J]. Appl. Surf. Sci., 2004,229:34-42.
    [68] Peng X G, Wickham J, Alivisatos A P.Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "focusing" of size distributions [J]. J. Am. Chem. Soc., 1998, 120:5343-5344.
    [69] Houk L R, Challa S R, Grayson B, Fanson P, Datye A K. The definition of "citical radius" for a collection of nanoparticles undergoing Ostwald ripening [J]. Langmuir, 2009, ASAP.
    [70] Chen Y F, Johnson E, Peng X G. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening [J]. J. Am. Chem. Soc., 2007, 129:10937-10947.
    [71] Lee P C, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols [J]. J. Phys. Chem., 1982, 86:3391-3395.
    [72] Turkevich J, Hillier J, Stevenson P C. A study of the nucleation and growth processes in the synthesis of colloidal gold [J]. Discuss. Faraday Soc., 1951, 11:55-75.
    [73] Goia D V, Matijevic E. Tailoring the particle size of monodispersed colloidal gold [J]. Colloid. Surface. A, 1999, 146:139-152.
    [74] Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates [J]. Nano Lett., 2002, 2:1003-1007.
    [75] Yin Y D, Li Z Y, Zhong Z Y, Gates B, Xia Y N, Venkateswaran S. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process [J]. J. Mater. Chem., 2002, 12:522-527.
    [76] Nickel U, zu Castell A, Poppl K, Schneider S. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy [J]. Langmuir, 2000, 16:9087-9091.
    [77] Pyatenko A, Yamaguchi M, Suzuki M. Synthesis of spherical silvernanoparticles with controllable sizes in aqueous solutions [J]. J. Phys. Chem. C, 2007, 111:7910-7917.
    [78] Green S, Cortes A, Riveros G, Gomez H, Dalchiele E A, Marotti R E. Optical properties of copper and silver nanowires grown in a nanoporous alumina template [J]. Phys. Stat. Sol., 2007, 4:340-343.
    [79] Adhyapaka V, Karandikarb P, Vijayamohananb K, Athawale A A, Chandwadkar A. Synthesis of silver nanowires inside mesoporous MCM-41 host [J]. Mater. Lett., 2004, 58:1168-1171.
    [80] Jana N R, Gearheart L, Murphy C J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods [J]. J. Phys. Chem. B, 2001, 105:4065-4067.
    [81] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio [J]. Chem. Commun., 2001, 617-618.
    [82] Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires [J]. Adv. Mater., 2002, 14:80-82.
    [83] Sun Y G, Yin Y D, Mayers B T, Herricks T, Xia Y N. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) [J]. Chem. Mater., 2002, 14:4736-4745.
    [84] Zheng X W, Zhu L Y, Yan A H, Wang X J, Xie Y. Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions [J]. J. Colloid Interface Sci., 2003, 268:357-361.
    [85] Caswell K K, Bender C M, Murphy C J. Seedless, surfactantless wet chemical synthesis of silver nanowires [J]. Nano Lett., 2003, 3:667-669.
    [86] Zhu J J, Liao X H, Zhao X N, Chen H Y. Preparation of silver nanorods by electrochemical methods [J]. Mater. Lett., 2001, 49:91-95.
    [87] Liu F, Huang P, Chang Y, Ko C, Ko F, Chu T. Formation of silver nanorodsby microwave heating in the presence of gold seeds [J]. J. Cryst. Growth., 2005, 273:439-445.
    [88] Tsuji M, Matsumoto, K, Miyamae N, Tsuji T, Zhang X. Rapid preparation of silver nanorods and nanowires by a microwave-polyol method in the presence of Pt catalyst and polyvinylpyrrolidone [J]. Cryst. Growth Des., 2007, 7:311-320.
    [89] Zhang J, Han B, Liu M, Liu D, Dong Z, Liu J, Li D. Ultrasonication-induced formation of silver nanofibers in reverse micelles and small-angle X-ray scattering studies [J]. J. Phys. Chem. B, 2003, 107:3679-3683. [90.] Sun Y G, Xia Y N. Multiple-walled nanotubes made of metals [J]. Adv. Mater., 2004, 16:265-268.
    [91] Bai J W, Qin Y, Jiang C Y, Qi L. Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns [J]. Chem. Mater., 2007, 19:3367-3369.
    [92] Jin R C, Cao Y W, Mirkin C A, Kelly K L Schatz G C, Zheng J G. Photoinduced conversion of silver nanospheres to nanoprisms [J]. Science, 2001, 294(5548):1901-1903.
    [93] Maillard M, Huang P, Brus L. Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+] [J]. Nano Lett., 2003, 3:1611-1615.
    [94] Callegari A, Tonti D, Chergui M. Photochemically grown silver nanoparticles with wavelength-controlled size and shape [J]. Nano Lett., 2003, 3:1565-1568.
    [95] Bonacina L, Callegari A, Bonati C, van Mourik F, Chergui M. Time-resolved photodynamics of triangular-shaped silver nanoplates [J]. Nano Lett., 2006, 6:7-10.
    [96] Jin R C, Cao Y C, Hao E, Metraux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation [J].Nature, 2003, 425:487-490.
    [97] Xue C, Mirkin C A. pH-swichable silver nanoprism growth pathways [J]. Angew. Chem. Int. Ed., 2007, 46:2036-2038.
    [98] Xue C, Metraux G S, Millstone J E, Mirkin C A. Mechanistic study of photomediated triangular silver nanoprism growth [J]. J. Am. Chem. Soc., 2008, 130:8337-8344.
    [99] Sun Y G, Mayers B, Xia Y N. Transformation of silver nanospheres into nanobelts and triangular nanoplates throgh a thermal process [J]. Nano Lett., 2003, 3:675-679.
    [100] Ledwith D M, Whelan A M, Kelly J M. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles [J]. J. Mater. Chem., 2007, 17:2459-2464.
    [101] Maillard M, Giorgio S, Pilleni M P. Silver nanodisks [J]. Adv. Mater., 2002, 14:1084-1086.
    [102] Chen S H, Fan Z Y, Carroll D L. Silver Nanodisks: Synthesis, Characterization, and Self-Assembly [J]. J. Phys. Chem. B, 2002, 106:10777-10781.
    [103] Maillard M, Giorgio S, Pilleni M P. Tuning the Size of Silver Nanodisks with Similar Aspect Ratios: Synthesis and Optical Properties [J]. J. Phys. Chem. B, 2003, 107:2466-2470.
    [104] An J, Tang B, Ning X H, Zhou J, Zhao B, Xu W Q, Corredor C, Lombardi J R. Photoinduced Shape Evolution: From Triangular to Hexagonal Silver Nanoplates [J]. J. Phys. Chem. C, 2009, 111:18055-18059.
    [105] Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002, 298:2176-2179.
    [106] Gao Y, Jiang P, Song L, Wang J X, Liu L F, Xiang Y J, Zhang Z X, Zhao X W, Dou X Y, Luo S D, Zhou W Y, Xie S S. Studies on silver nanodecadrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction [J]. J. Cryst. Growth., 2006, 289:376-380.
    [107] Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y N. Right bipyramidsof silver: a new shape derived from single twinned seeds [J]. Nano Lett., 2006, 6:765-768.
    [108] Tao A R, Habas S, Yang P D. Shape control of colloidal metal nanocrystals [J]. Small, 2008, 4:310-325.
    [1] Turkevich J, Hillier J, Stevenson P C. A study of the nucleation and growth processes in the synthesis of colloidal gold [J]. Discuss. Faraday Soc., 1951, 11:55-75.
    [2] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nature Phys. Science, 1973, 241:20-22.
    [3] Lee P C, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols [J]. J. Phys. Chem., 1982, 86:3391-3395.
    [4] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev., 2004, 104:293-346.
    [5] Kumar S, Gandhi K S, Kumar R. Modeling of formation of gold nanoparticles by citrate method [J]. Ind. Eng. Chem. Res., 2007, 46:3128-3136.
    [6] Ji X H, Song X N, Li J, Bai Y B, Yang W S, Peng X G. Size control of gold nanocrystals in citrate reduction: the third role of citrate [J]. J. Am. Chem. Soc., 2007, 129:13939-13948.
    [7]Khanal B P, Zubarev E R. Purification of high aspect ratio gold nanorods: complete removal of platelets [J]. J. Am. Chem. Soc., 2008, 130:12634-12635.
    [8] Zheng X L, Xu W Q, Corredor C, Xu S P, An J, Zhao B, Lombardi J R. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect [J]. J. Phys. Chem. C, 2007, 111:14962-14967.
    [9] El-Ghamry M T, Frei R W. Spectrophotometric determination of traceamounts of silver(I) [J]. Anal. Chem., 1968, 40:1986-1990.
    [10] Mie G. Beitr?ge zur Optik Trüber Medien. Ann. Phys., 1908, 25:377.
    [11] Noguez C. Surface plasmons on metal nanoparticles: the influence of shpae and physical environment [J]. J. Phys. Chem. C, 2007, 111:3806-3819.
    [12] Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B, 2003, 107:668-677.
    [13] Wiley B J, Im S H, Li Z Y, Mclellan J, Siekkinen A, Xia Y N. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis [J]. J. Phys. Chem. B, 2006, 110:15666-15675.
    [14] Kreibig U. Vollmer M. Optical Properties of Metal Clusters [M]. 25th ed. Berlin: Springer, 1995.
    [15] Henglein A, Giersig M. Formation of colloidal silver nanoparticles: capping action of citrate [J]. J. Phys. Chem. B, 1999, 103:9533-9539.
    [16] Kumbhar A S, Kinnan M K, Chumanov G. Multipole plasmon resonances of submicron silver particles [J]. J. Am. Chem. Soc., 2005, 127:12444-12445.
    [17] Evanoff D D, Chumanov G. Size-controlled synthesis of nanoparticles. 1. "silver-only" aqueous suspensions via hydrogen reduction [J]. J. Phys. Chem. B, 2004, 108:13948-13956.
    [18] Hoang T K N, La V B. Ostwald ripening of alkane in water emulsions stabilized by sodium dodecyl benzene sulfonate [J]. Langmuir, 2002, 18:10086-10090.
    [19] Peng Z A, Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals [J]. J. Am. Chem. Soc., 2001, 123:1389-1395.
    [20] Suber L, Sondi I, Matijevic E, Goia D V. Preparation and the mechanisms of formation of silver particles of different morphologies inhomogeneous solutions [J]. J. Colloid Interface Sci., 2005, 288:489-495.
    [21] Tao A, Sinsermsuksakul P, Yang P D. Polyhedral silver nanocrystals with distinct scattering signatures [J]. Angew. Chem. Int. Ed., 2006, 45:4597-4601.
    [22] Velikov K P, Zegers G E, van Blaaderen A. Synthesis and characterization of large colloidal silver particles [J]. Langmuir, 2003, 19:1384-1389.
    [23] Dean J A. Lange's Handbook of Chemistry [M]. 15th ed. Beijing: Beijing World Publishing Corporation,1999,
    [24] LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. J. Am. Chem. Soc., 1950, 72: 4847-4854.
    [25] Pyatenko A, Yamaguchi M, Suzuki M. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions [J]. J. Phys. Chem. C, 2007. 111:7910-7917.
    [1] Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B, 2003, 107:668-677.
    [2] Noguez C. Surface plasmons on metal nanoparticles: the influence of shpae and physical environment [J]. J. Phys. Chem. C, 2007, 111:3806-3819.
    [3] Wiley B J, Im S H, Li Z Y, Mclellan J, Siekkinen A, Xia Y N. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis [J]. J. Phys. Chem. B, 2006, 110: 15666-15675.
    [4] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nature Phys. Science, 1973, 241:20-22.
    [5] Ji, X H, Song, X N, Li J, Bai Y B, Yang W S, Peng X G. Size control of gold nanocrystals in citrate reduction: the third role of citrate [J]. J. Am. Chem. Soc., 2007, 129:13939-13948.
    [6] Pyatenko A, Yamaguchi M, Suzuki M. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions [J]. J. Phys. Chem. C, 2007, 111:7910-7917.
    [7] Maillard M, Giorgio S, Pilleni M P. Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties [J]. J. Phys. Chem. B, 2003, 107:2466-2470.
    [8] Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties [J]. Chem. Mater., 2008, 20:5186-5190.
    [9] Evanoff D D, Chumanov G. Size-controlled synthesis of nanoparticles.1. "silver-only" aqueous suspensions via hydrogen reduction [J]. J. Phys. Chem. B, 2004, 108:13948-13956.
    [10] Wiley, B J, Chen Y, Mclellan M J, Xiong Y J, Li Z Y, Ginger D, Xia Y N. Synthesis and optical properties of silver nanobars and nanorice [J]. Nano Lett., 2007, 7:1032-1036.
    [11] LaMer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. J. Am. Chem. Soc., 1950, 72:4847-4854.
    [12] Creighton J, Blatchford C, Albrecht M. Plasma resonance enhancement of raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength [J]. J. Chem. Soc. Faraday Trans., 1979, 75:790-798.
    [13] Lee P C, Meisel D. Adsorption and surface-enhanced raman of dyes on silver and gold Sols [J]. J. Phys. Chem., 1982,86:3391-3395.
    [14] Munro C H, Smith W E, Garner M, Clarkson J, White P C. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance raman scattering [J]. Langmuir, 1995, 11:3712-3720.
    [15] Sun Y G, Yin Y D, Mayers B T, Herricks T, Xia Y N. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone) [J]. Chem. Mater., 2002, 14:4736-4745.
    [16] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem. B, 2001, 105:4065-4067.
    [17] Khanal B P, Zubarev E R. Purification of high aspect ratio gold nanorods: complete removal of platelets [J]. J. Am. Chem. Soc., 2008, 130:12634-12635.
    [18] Chen S H, Carroll D L. Synthesis and characterization of truncatedtriangular silver nanoplates [J]. Nano Lett., 2002, 2:1003-1007.
    [19] Pal T, Sau T K, Jana N R. Reversible formation and dissolution of silver nanoparticles in aqueous surfactant media [J]. Langmuir, 1997, 13:1481-1485.
    [20] Mie G. Beitr?ge zur optik trüber medien [J]. Ann. Phys., 1908, 25:377.
    [21] Suber L, Sondi I, Matijevic E, Goia D V. Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions [J]. J. Colloid Interface Sci., 2005, 288:489-495.
    [22] Tao A, Sinsermsuksakul P, Yang P D. Polyhedral silver nanocrystals with distinct scattering signatures [J]. Angew. Chem. Int. Ed., 2006, 45:4597-4601.
    [23] Kumbhar A S, Kinnan M K, Chumanov G. Multipole plasmon resonances of submicron silver particles [J]. J. Am. Chem. Soc., 2005, 127:12444-12445.
    [1] Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C,Zheng J G. Photoinduced conversion of silver nanospheres to nanoprisms [J]. Science, 2001, 294:1901-1903.
    [2] Cao Y W, Jin R, Mirkin C A. DNA-modified core-shell Ag/Au nanoparticles [J]. J. Am. Chem. Soc., 2001, 123:7961-7962.
    [3] Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes [J]. Science, 2000, 289:1757-1760.
    [4] Tkachenko A G, Xie H,Coleman D. Multifunctional gold nanoparticle - peptide complexes for nuclear targeting [J]. J. Am. Chem. Soc., 2003, 125:4700-4701.
    [5] Zhang X, Young M A, Lyandres O, Van Duyne R P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy [J]. J. Am. Chem. Soc., 2005, 127:4484-4489.
    [6] Millstone J E, Hurst S J, Metraux G S, Cutler J I, Mirkin C A. Colloidal gold and silver triangular nanoprisms [J]. Small, 2009, 5:646-664.
    [7] Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates [J]. Nano Lett., 2002, 2:1003-1007.
    [8] Maillard M, Giorgio S, Pilleni M P. Silver nanodisks [J]. Adv. Mater., 2002, 14:1084-1086.
    [9] Maillard M. Giorgio S, Pilleni M P. Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties [J]. J. Phys. Chem. B, 2003, 107:2466-2470.
    [10] Bastys V, Pastoriza-Santos I, Rodriguez-Gonzalez B, Vaisnoras R, Liz-Marzan L M. Formation of silver nanoprisms with surface plasmons at communication wavelengths [J]. Adv. Funct. Mater., 2006, 16:766-773.
    [11] Zheng, X L, Xu W Q, Corredor C, Xu S P, An J, Zhao B, Lombardi J R.Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect [J]. J. Phys. Chem. C, 2007, 111:14962-14967.
    [12] Jiang X C, Zeng Q H, Yu A B. Thiol-frozen shape evolution of triangular silver nanoplates [J]. Langmuir, 2007, 23:2218-2223.
    [13] Cao Z W, Fu H B, Kang L T, Huang L W,Zhai T Y, Ma Y,Yao J N. Rapid room-temperature synthesis of silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR [J]. J. Mater. Chem., 2008, 18:2673-2678.
    [14] Aherne D, Ledwith D M, Gara M, Kelly J M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature [J]. Adv. Funct. Mater., 2008, 18:2005-2016.
    [15] Jin R C, Cao Y C, Hao E, Metraux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation [J]. Nature, 2003, 425:487-490.
    [16] Xue C,Mirkin C A. PH-swichable silver nanoprism growth pathways [J]. Angew. Chem. Int. Ed., 2007, 46:2036-2038.
    [17] Xue C, Metraux G S, Millstone J E, Mirkin C A. Mechanistic study of photomediated triangular silver nanoprism growth [J]. J. Am. Chem. Soc., 2008, 130:8337-8344.
    [18] Wu X, Redmond P L, Liu H, Chen Y, Steigerwald M, Brus L. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms [J]. J. Am. Chem. Soc., 2008, 130:9500-9506.
    [19] Callegari A, Tonti D, Chergui M. Photochemically grown silver nanoparticles with wavelength-controlled size and shape [J]. Nano Lett., 2003, 3:1565-1568.
    [20] An J, Tang B, Ning X, Zhou J, Xu S P, Zhao B, W X, Corredor C, Lombardi J R. Photoinduced shape evolution: from triangular to hexagonalsilver nanoplates [J]. J. Phys. Chem. C, 2007, 111:18055-18059.
    [21] Tang B, An J, Zheng X L, Xu S P, Li D M, Zhou J, Zhao B, Xu W Q. Silver nanodisks with tunable size by heat aging [J]. J. Phys. Chem. C, 2008, 112:18361-18367.
    [22] Tang B, Xu S P, An J, Zhao B, Xu W Q. Photoinduced shape conversion and reconstruction of silver nanoprisms [J]. J. Phys. Chem. C, 2009, 113:7025-7030.
    [23] Bonacina L, Callegari A, Bonati C, Van Mourik F, Chergui M. Time-resolved photodynamics of triangular-shaped silver nanoplates [J]. Nano Lett., 2006, 6:7-10.
    [24] Rocha T C R, Winnischofer H, Westphal E, Zanchet D. Fromation kinetics of silver triangular nanoplates [J]. J. Phys. Chem. C, 2007, 111:2885-2891.
    [25] Xiong Y, Washio I, Chen J, Sadilek M, Xia Y N. Trimetic clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver [J]. Angew. Chem. Int. Ed., 2007, 16:4917-4921.
    [26] Zhang Q, Ge J, Pham T, Goebl J, Hu Y, Lu Z, Yin Y. Reconstruction of silver nanoplates by UV Irradiation: tailored optical properties and enhanced stability [J]. Angew. Chem. Int. Ed., 2009, 48:3516-3519.
    [27] Sun Y G, Mayers B, Xia Y N. Transformation of silver nanospheres into nanobelts and triangular nanoplates throgh a thermal process [J]. Nano Lett., 2003, 3:675-679.
    [28] Houk L R, Challa S R, Grayson B, Fanson P, Datye A K. The definition of "Critical Radius" for a collection of nanoparticles undergoing Ostwald ripening [J]. Langmuir, 2009, ASAP.
    [29] Dong X Y, Ji X H, Wu H L, Zhao L L, Li J, Yang W S. Shape control of silver nanoparticles by stepwise citrate reduction [J]. J. Phys. Chem. C, 2009, 113:6573-6576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700