硅锗团簇的结构、稳定性及电子性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Si,Ge纳米材料具有许多常规半导体无法媲美的奇异特性和非凡的特殊功能,在诸多领域具有空前的应用前景,因此,纳米Si,Ge材料是材料科学领域研究的热点之一,在冶金、电子、化工等领域中有着广泛的潜在用途。团簇的空间尺度是几埃至几百埃,是介于原子、分子与宏观物质之间的物质结构的过渡状态,代表了凝聚态物质的新层次。以半导体材料为基础制作的各种器件在现代信息技术领域中起着重要的作用,因此,半导体元素团簇的结构及其独特的物理化学性质吸引了大量科学工作者浓厚的兴趣。
     本文采用了遗传算法(Genetic Algorithm, GA)与密度泛函理论(Density Functional Theory, DFT)相结合的方法对硅锗团簇进行了系统的研究,找到了它们的低能异构体,并确定了其最稳定的几何结构。以此为基础我们对硅锗团簇的相对稳定性,电子性质及解离行为等进行了系统地分析,并得到以下结论:
     对2≤n≤33尺度范围内的中性硅团簇的解离行为进行了系统研究,其结果与实验非常吻合。解离能的结果显示Si4,6,7,10是非常稳定的小团簇基元,并且频繁地出现在解离产物中;此外,在11≤n≤20尺度范围内,硅团簇的解离能相对较小,表示在这一尺度范围内,硅团簇较易解离成小团簇。
     采用GA搜索和全电子DFT相结合的方法对Ge34– Ge44中性团簇结构及电子性质进行了系统的研究。对Ge34-39团簇的研究结果表明,最稳定锗团簇Ge34-39是扁长的棒状或者呈现Y型的三臂结构。这两种结构均由两到三个稳定的小团簇(Ge6, Ge7, Ge9或Ge10)组成,中间由锗金刚石的体片段(Ge6, Ge8或Ge9)相连接。锗团簇Ge40-44的最稳定几何结构为盘型结构。这类结构的中心有一个Ge4核,周围由四个稳定的小团簇(Ge9或Ge10)组成。这个Ge4核和周围的四个小团簇的部分原子形成了锗金刚石片段。与离子迁移率的实验结果对比表明,这类盘型结构很有可能在实验中存在并被观测到。研究表明,中等尺度的中性锗团簇的结构是由扁长的棒状结构转化为Y型的三臂结构,之后又向盘型结构转化;前者的转折点出现在Ge35或Ge36,而后者的转折点则出现在Ge40。
     用B3LYP/6-311G(d)的方法计算并确定了与红外光谱实验相吻合的Si12+团簇的最低能几何结构;用全电子DFT方法对小尺度(2≤n≤15)阳离子锗团簇进行了系统的研究,确定了Ge2+– Ge15+的最稳定几何结构,并且与同尺度的阳离子硅团簇(Si2+– Si15+)的结构进行了对比。比较发现,除了n = 9, 12, 13和14以外,这个尺度范围的阳离子硅锗团簇的最稳定几何结构非常相似。从n = 7开始,两种团簇都包含五角双锥和TTP(三帽三棱柱)结构单元,所不同的是,阳离子硅团簇的五角双锥结构单元出现在Si7+, Si8+, Si9+和Si12+中,而TTP (三帽三棱柱)结构单元则出现在n = 10, 11, 13和15的尺度。对于阳离子锗团簇来说,这两种结构单元分别出现在n = 7– 9和n = 10– 15的尺度范围。
Today, the information technology develops rapidly; semiconductor materials play an important role in manufacturing information storage, information exploration, information transmission, laser and optical device with their particular properties. Among these semiconductor materials, silicon and germanium are applied widely in electronic and optoelectronic devices with their unique physical properties. As the scientific research and production of traditional components mature gradually, the size of microelectronic components can reach to a nano-scale. Recently, cluster research has developed rapidly, and the studies about silicon and germanium clusters have became one of the important research topics.
     The structures of silicon and germanium clusters were studied in detail using GA (Genetic Algorithm) for unbiased search, combined with the DFT (Density Functional Theory) method. In this work, we analyzed the fragmentation behaviors of silicon clusters; and confirmed the most stable geometries of medium-sized germanium clusters; and found series of low-lying energy isomers; their electronic properties, such as binding energies, second differences in energy, HOMO– LUMO gaps, occupations on the HOMO shells, ionization potentials (IPs) and ion mobility, etc. have been discussed in detail. We also found an unambiguous structure of the Si12+ cluster, whose IR spectrum agrees well with the experiment result. In addition, we identified the lowest-energy structures of Ge2-15+ clusters, and compared with the corresponding Si2-15+ clusters.
     The main results could be summarized as the following four aspects:
     (1) The binding energies, second differences in energy, HOMO– LUMO gaps and fragmentation behaviors (involving one-step and multi-step fragmentations) of Sin (n =2–33) clusters have been studied at the B3LYP/6-311++G(d) and PW91/6-311++G(d) level. The calculated results indicated that Si4, Si6, Si7 and Si10 are quite stable, and appear frequently in the fragmentation products. For the size range between 11 and 20, the fragmentation energies are obviously small, indicating that Si11?20 can be easily dissociated. We also analyzed the issue about bond broken when cluster dissociate using some examples. In general, in the fragmentation of clusters, the dissociation of a small stable cluster would be favorable. Our calculated results are in good agreement with the experimental observations.
     (2) The structures of Gen (n = 34 ? 39) clusters were searched by a genetic algorithm (GA) using a tight-binding (TB)interatomic potential. Density functional theory (DFT) calculations have been performed to further identify the lowest-energy structures. The electronic properties such as binding energies, second differences in energy, ionization potentials (IPs), electron affinities (EAs), HOMO– LUMO gaps and occupations on the HOMO shells have been analyzed. The calculated results show that the Gen (n = 34 ? 39) clusters favor prolate or Y-shaped three-arm structures consisted of two or three small stable clusters (Ge6, Ge7, Ge9 or Ge10) linked by a Ge6 or Ge9 bulk unit. The calculated results suggest that the transition point from prolate to Y-shaped three-arm structures appears at Ge35 or Ge36. In addition, we found some low-lying energy isomers of Ge34– Ge39. We found platelike also is a kind of competitive structure except prolate and Y-shaped structures. There is a competition between the prolate and Y-shaped three-arm structures starting at this size range of n = 34– 39; and at the end of this size range the competition appears between the Y-shaped three-arm and platelike motifs. For example, the energy differences between platelike and Y-shaped structures of Ge39 calculated at PBE/DND is only 0.016eV.
     (3) For the Ge40-44 clusters, platelike structures are dominant, which are consisted of four small magic clusters (Ge9 or Ge10), and a Ge4 core. The Ge4 core along with the parts of the four linked small clusters forms a diamond segment. As the cluster size grows from Ge40 to Ge44, the subunit Ge9 will be replaced by Ge10 one by one. Therefore, while Ge40a is a structure with four Ge9s and a Ge4 core, Ge44a consists of four Ge10s and a Ge4 core. We also calculated the ion mobilities of the most stable structures, and the calculated results are in good agreement with the experimental data. Thus we can see, there are some rules about the growth pattern of Gen (n≤44). The clusters Ge2-10 have spherical-like compact geometries. Among them, Ge6,7,9,10 are very stable, which are the important components of larger clusters. From Ge11 to Ge16, it can be seen that the TTP (tri-capped trigonal prism) motif is prevailing; and they are all prolate structures. Ge17– Ge35 are consisted of two stable Ge6,7,9,10, and linked by the Ge6 or Ge9 bulk fragment. From Ge36 and Ge40, the number of Ge6,7,9,10 up to three and four, respectively; and the linkage is also the bulk fragment of Ge diamond. Therefore, we can see clearly, medium-sized germanium clusters consisted of Ge6,7,9,10; and linked with bulk fragment of Ge diamond. Increasing the components Ge6,7,9,10s is dominant about the growth pattern of germanium clusters. There is great significance about this discover for studying the size range of diamond of Ge clusters.
     (4) An unambiguous structure of the Si12+ cluster has been determined at the level of B3LYP/6-311G(d), which IR spectrum is quite agreement with the experiment result. The most stable structures of Gen+ (n = 2 ? 15) clusters also have been confirmed using the GA search combined with the DFT method, and compared with the corresponding Sin+. The result shows that most structures between Gen+ and Sin+ clusters are similar except for n = 9, 12, 13 and 14. Furthermore, the motifs of Gen+ (n = 2– 15) clusters differ slightly from the corresponding Sin+ clusters. In Sin+ , the pentagonal bipyramid motif appears in Si7+, Si8+, Si9+ and Si12+; while the TTP (tri-capped trigonal prism) motif exists in the structures with n = 10, 11, 13 and 15. For Gen+, the two types of motifs are contained in the clusters with n = 7– 9 and n = 10– 15, respectively.
引文
[1] COTTON F A. Transition– metal compounds containing clusters of metal atoms, Quarterly Review, Chemistry Society, 1966, 20: 389.
    [2]卢嘉锡.原子簇化合物的结构化学,中国化学, 1978年年会学术报告集,北京:科学出版社, 198, 35-60.
    [3]徐光宪.原子团簇与有关分子的结构规则(I),高等学校化学学报, 1982, 3(专刊), 114.
    [4]阎守胜.固体物理基础[M].北京大学出版社,第二版, 2003.
    [5] POULAIN J E, BENI' TEZ J I, CASTILLO S. A comparative theoretical study of the C2V and C3V reaction of Hz with a Pt4 cluster [J]. J. Molecular Structure: THEOCHEM, 2004, 709: 67.
    [6] BAWENDI G, STEIGERWALD M L, BRUS L E. The quantum mechanics of larger semiconductor clusters ("quantum dots") [J]. Ann. Rev.Phys. Chem., 1990, 41: 477.
    [7] ARROUVEL C, BREYSSE M, TOULHOAT H, et al. A density functional theory Comparison Catalysis, of anatase(TiO2)-andγ-A1203 supported MoS2 catalysts [J]. J. 2005, 232: 161.
    [8] RENA Z–Y, LI.A F, GUOA P, et al. A computational investigation of the Ni-doped Sin clusters by a density functional method [J]. J. Molecular Structure: THEOCHEM, 2005, 718: 165.
    [9]王广厚.原子团簇的稳定结构和幻数[J].物理学进展, 2000, 20: 52.
    [10] ZHAN H, CAI W -S, GUO Q–X, et al. A theoretical investigation of small Si/C clusters by a combination of MM and QM method [J]. Chem. Phys. Lett., 2005,405: 97.
    [11] BENTLEY P G. Chemical Engineering Polymers of Carbon Dioxode [J]. Nature, 1961, 190: 432.
    [12]陈莹.博士论文,金属团簇的结构和固液转变的研究[D].山东大学, 2004.
    [13] OKAMOTO Y. Density-functional calculations of atomic and molecular adsorptions on 55-atom metal clusters: Comparison with (111) surfaces [J]. Chem. Phys. Lett, 2005, 405: 79.
    [14] JUAN R, S'ANCHEZ. Metal surface adsorbed clusters: Structure and dynamics [J]. J. Molecular Catalysis A: Chemical, 2005, 237: 206.
    [15] XIROUCHAKI C, PALMER R E. Pinning and implantation of size-selected metal clusters: a topical–review [J]. Vacuum, 2002, 66: 167.
    [16] SONG X F, LIU G S, YU J G, et al. Density functional theoretical study of water molecular adsorption on surface of Moo with the cluster model [J]. J. Molecular Structure, 2004, 684: 81.
    [17] KROTO H W, Health J R, OBrien S C, et al. C60:Buckminster-fullerene [J]. Nature, 1985, 318: 162-163.
    [18] KRASCHMER W, LAMB L D, FOSTIROPOULOS K, et al. Solid C60:A New form of Carbon [J]. Nature, 1990, 347: 354-358.
    [19] HEBARD A F, ROSSEINSKY M J, HADDON R C, et al. Superconductivity at 18 K in Potassium-doped C60 [J]. Nature, 1991, 350: 600-601.
    [20] JUNG J, KIM J C, HAN Y–K. Structure and electronic properties of Al13X (X = F, Cl, Br and I) clusters [J]. Phys. Rev. B, 2005, 72: 155439-155444.
    [21] BERGERON D E, CASTLEMAN A W, MORISATO T, et al. [J]. Science, 2004, 304: 84.
    [22] SUN S, MURRAY C B, WELLER D, et al. [J]. Science, 2000, 287: 1989.
    [23] BERGERON D E, ROACH P J, CASTLEMAN A W, et al. Reactions of AlnIx- with Methyl Iodide: The Enhanced Stability of Al7I and the ChemicalSignificance of Active Centers [J]. J. Am. Chem. Soc., 2005, 127: 16048.
    [24] BERGERON D E, ROACH P J, CASTLEMAN A W, et al. [J]. Science, 2005, 307: 231.
    [25] VALDEN M, LAI X, GOODMAN D W. [J]. Science, 1998, 281: 1647.
    [26] BERGERON D E, CASTLEMAN A W, MORISATO T, et al. Formation and properties of halogenated aluminum clusters [J]. J. Chem. Phys., 2004, 121: 10456.
    [27] JONES N O, REVELES J U, KHANNA S N, et al. Structural, electronic, and chemical properties of multiply iodized aluminum clusters [J]. J. Chem. Phys., 2006, 124: 154311.
    [28] HAN Y–K, JUNG J. Does the Al13– core exist in the Al13 polyhalide Al13In–(n=1–12) clusters? [J]. J. Chem. Phys., 2005, 123: 101102.
    [29] LI X, KUZNETSOV A E, ZHANG H–F, et al. [J]. Science 2001, 291: 859.
    [30] HAN J–G, JORGE A, MORALES A. theoretical investigation on fullerene-like phosphorus clusters [J]. Chem. Phys. Lett., 2004, 396: 27.
    [31] YAO C -H, SONG B, CAO P–L. Stable structures for Ahoclusters [J]. Physics Letters A, 2005, 341:177.
    [32] YAO C–H; SONG B, CAO P–L. Structures of Ah9 cluster: A full-potential LMTO molecular-dynamics study [J]. Phys. Rev. B., 2004, 70: 195431.
    [33] DOYE J P K. A model metal potential exhibiting polytetrahedral clusters [J]. J. Chem. Phys., 2003, 119: 1136.
    [34] BROWN W L, FREEMAN R R, RAGHAVACHARI K, et al. Covalent Group IV Atomic Clusters [J]. Science, 1987, 235: 860-865.
    [35] JARROLD M F. Nanosurface Chemistry on Size Selected Silicon Clusters [J]. Science, 1991, 252: 1085-1092.
    [36]张乾二.林连堂.王南钦.赖善桃.多面体分子轨道的理论方法:III.结构多面体骨架的成键分子轨道.厦门大学学报(自然科学版),1981, 2: 226.
    [37] ZHANG Q L, LIU Y, CURL R F, et al. Photodissociation of semiconductor positive cluster ions [J]. J. Chem. Phys., 1988, 88: 1670-1677.
    [38] ALFORD J M, LAAKSONEN R T, SMALLEY R E, Ammonia chemisorption studies on silicon cluster ions [J]. J. Chem. Phys., 1991, 94: 2618-2630.
    [39] BERGERON D E, CASTLEMAN JR A W. Insights into the stability of silicon cluster ions: Reactive etching with O2 [J]. J. Chem. Phys., 2002, 117: 3219-3223.
    [40] RAY U, JARROLD M F, Reactions of silicon cluster ions, Sin+ (n=10–65), with water [J]. J. Chem. Phys., 1991, 94: 2631-2639.
    [41] JARROLD M F, IJIRI Y, RAY U. Interaction of silicon cluster ions with ammonia: Annealing, equilibria, high temperature kinetics, and saturation studies [J]. J. Chem. Phys., 1991, 94: 3607-3618.
    [42] PHILLIPS J C. Pulsed Gen+ microcluster concentration spectra [J]. J. Chem. Phys., 1986, 85: 5246-5250.
    [43] MARTIN T P, SCHABER H. Mass spectra of Si, Ge, and Sn clusters [J]. J. Chem. Phys., 1985, 83: 855-858.
    [44] SCHULZE W, WINTER B, GOLDENFELD I. Generation of germanium clusters using the gas aggregation technique: Stability of small charged clusters [J]. J. Chem. Phys., 1987, 87: 2402-2403.
    [45] GINGERICH K A, SCHMUDE R W, BABA M S, et al. Atomization enthalpies and enthalpies of formation of the germanium clusters, Ge5, Ge6, Ge7 and Ge8 by Knudsen effusion mass spectrometry [J]. J. Chem. Phys., 2000, 112: 7443-7448.
    [46] YOSHIDA S, FUKE K. Photoionization studies of germanium and tin clusters in the energy region of 5.0–8.8 eV: Ionization potentials for Gen (n = 2– 57) and Snn (n = 2– 41) [J]. J. Chem. Phys., 1999, 111: 3880-3890.
    [47] FUKE K, TSUKAMOTO K, MISAIZU F, et al. Near threshold photoionization of silicon clusters in the 248–146 nm region: Ionization potentials for Sin [J]. J. Chem. Phys., 1993, 99: 7807-7812.
    [48] HEATH J R, LIU Y, O’BRIEN S C, et al. Semiconductor cluster beams: One and two color ionization studies of Six and Gex [J]. J. Chem. Phys., 1985, 83: 5520-5526.
    [49] SCH?FER R, SCHLECHT S, WOENCKHAUS J, et al. Polarizabilities of Isolated Semiconductor Clusters [J]. Phys. Rev. Lett., 1996, 76: 471- 474.
    [50] BURTON G R, XU C S, ARNOLD C C, et al. Photoelectron spectroscopy and zero electron kinetic energy spectroscopy of germanium cluster anions [J]. J. Chem. Phys., 1996, 104: 2757-2764.
    [51] MARSEN B, LONFAT M, SCHEIER P, et al. Energy gap of silicon clusters studied by scanning tunneling spectroscopy [J]. Phys. Rev. B, 2000, 62: 6892-6895.
    [52] ZHU X L, ZENG X C. Structures and stabilities of small silicon clusters: Ab initio molecular-orbital calculations of Si7– Si11 [J]. J. Chem. Phys., 2002, 118: 3558-3570.
    [53] NIGAM S, MAJUMDER C, KULSHRESHTHA S K. Structural and electronic properties of Sin, Sin?, and PSin?1 clusters (2≤n≤13): Theoretical investigation based on ab initio molecular orbital theory [J]. J. Chem. Phys., 2006, 125: 074303.
    [54] BANDYOPADHYAY D, SEN P. Density Functional Investigation of Structure and Stability of Gen and GenNi (n = 1 - 20) Clusters: Validity of the Electron Counting Rule [J]. J. Phys. Chem. A, 2010, 114: 1835–1842.
    [55] WANG J L, WANG G H, ZHAO J J. Structure and electronic properties of Gen (n = 2– 25) clusters from density-functional theory [J]. Phys. Rev. B, 2001, 64: 205411.
    [56] HUDGINS R R, IMAI M, JARROLD M F. High-resolution ion mobility measurements for silicon cluster anions and cations [J]. J. Chem. Phys., 1999, 111: 7865-7870.
    [57] JARROLD M F, BOWER J E. Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres [J]. J. Chem. Phys., 1992, 96: 9180-9190.
    [58] HUNTER J M, FYE J L, JARROLD M F, et al. Structural Transitions in Size-Selected Germanium Cluster Ions [J]. Phys. Rev. Lett., 1993, 73: 2063-2066.
    [59] JARROLD M F, IJIRI Y, CONSTANT V A. Silicon cluster ions: Evidence for a structural transition [J]. Phys. Rev. Lett., 1991, 67: 2994-2997.
    [60] BUSULU S, YOO S, ZENG X C. Search for global minimum geometries for medium sized germanium clusters: Ge12–Ge20 [J]. J. Chem. Phys., 2005, 122: 164305(1-5).
    [61] SHVARTSBURG A A, LIU B, LU Z Y, et al. Structures of Germanium Clusters: Where the Growth Patterns of Silicon and Germanium Clusters Diverge [J]. Phys. Rev. Lett., 1999, 83: 2167-2170.
    [62] YOO S, ZHAO J J, WANG J L, et al. Endohedral Silicon Fullerenes SiN (27≤N≤39) [J]. J. Am. Chem. Soc., 2004, 126: 13845-13849.
    [63] YOO S, SHAO N, KOEHLER C, et al. Structures and relative stability of medium-sized silicon clusters.Ⅴ. Low-lying endohedral fullerenelike clusters Si31– Si40 and Si45 [J]. J. Chem. Phys., 2006, 124: 164311(1-6).
    [64] MA L, ZHAO J J, WANG J G, et al. Lowest-energy endohedral fullerene structures of SiN (30≤N≤39) clusters by density functional calculations [J]. Phys. Rev. A, 2006, 73: 063203(1-5).
    [65] YOO S, ZENG X C, ZHU X L, et al. Possible Lowest-Energy Geometry of Silicon Clusters Si21 and Si25 [J]. J. Am. Chem. Soc., 2003, 125: 13318-13319.
    [66] YOO S, ZENG X C. Structures and relative stability of medium-sized silicon clustersⅣ. Motif-based low-lying clusters Si21– Si30 [J]. J. Chem. Phys., 2006, 124: 054304(1-6).
    [67] IDROBO J C, YANG M L, JACKSON K A, et al. First-principles absorptionspectra of Sin (n=20–28) clusters: Time-dependent local-density approximation versus predictions from Mie theory [J]. Phys. Rev. B, 2006, 74: 153410(1-4).
    [68] SUN Q, WANG Q, JENA P, et al. Geometry and energetics of Si60 isomers [J]. Science and Technology of Advanced Materials, 2003, 4: 361-365.
    [69] ZHAO J J, MA L, WEN B. Lowest-energy endohedral fullerene structure of Si60 from a genetic algorithm and density-functional theory [J]. J. Phys.: Condens. Matter, 2007, 19: 226208(1-6).
    [70] SUN Q, WANG Q, JENA P, et al. Stabilization of Si60 Cage Structure [J]. Phys. Rev. Lett., 2003, 90: 135503(1-4).
    [71] LI B X, LIU J H, ZHAN S C. Stability of Si70 cage structures [J]. Eur. Phys. J. D, 2005, 32: 59-62.
    [72] MA S J, WANG G H. Nonorthogonal tight-binding study of Si60 cluster [J]. Journal of Molecular Structure: THEOCHEM, 2005, 757: 47-51.
    [73] YOO S, SHAO N, ZENG X C. Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si39, Si40, Si50, Si60, Si70, and Si80 [J]. J. Chem. Phys., 2008, 128: 104316(1-9).
    [74] ONA O, BAZTERRA V E, CAPUTO M C, et al. Modified genetic algorithms to model cluster structures in medium-sized silicon clusters: Si18-Si60 [J]. Phys. Rev. A, 2006, 73: 053203(1-11).
    [75] SONG J, ULLOA S E, Drabold D A, Exciton-induced lattice relaxation and the electronic and vibrational spectra of silicon clusters [J]. Phys. Rev. B, 1996, 53: 8042-8051.
    [76] YOO S, ZENG X C. Search for global-minimum geometries of medium-sized germanium clusters.Ⅱ. Motif-based low-lying clusters Ge21– Ge29 [J]. J. Chem. Phys., 2006, 124: 184309(1-5)
    [77] WANG L, ZHAO J J. Competition between supercluster and stuffed cage structures in medium-sized Gen (n=30–39) clusters [J]. J. Chem. Phys., 2008,128: 024302(1-5).
    [78] SHVARTSBURG A A, JARROLD M F, LIU B, et al. Dissociation Energies of Silicon Clusters: A Depth Gauge for the Global Minimum on the Potential Energy Surface [J]. Phys. Rev. Lett., 1998, 81: 4616-4619.
    [79] RAGHAVACHARI K, ROHLFING C M. FRAGMENTATION OF SMALL SILICON CLUSTERS [J]. Chem. Phys. Lett., 1987, 143: 428-434.
    [80] HUNTER J M, FYE J L, JARROLE M F, et al. Structural Transitions in Size-Selected Germanium Cluster Ions [J]. Phys. Rev. Lett., 1994, 73: 2063-2066.
    [81] LYON J T, GRUENE P, FIELICKE A, et al. Structures of Silicon Cluster Cations in the Gas Phase [J]. J. Am. Chem. Soc., 2009, 131: 1115-1121.
    [1] BORN M, OPPENHEIMER R, Zur Quantentheorie der Molekeln. Annalen der Physik. (Quantum Theory of the Molecules Ann. Phys.), 1927, 84: 457-484.
    [2]唐敖庆.杨忠志.李前树.量子化学,北京,科学出版社, 1982.
    [3]徐光宪.黎乐民.王德民.量子化学基本原理和从头计算法,北京,科学出版社, 1985.
    [4] MCQUARRIE D A. Quantum Chemistry University, Science Books: Mill Vally. CA. 1983.
    [5] HEHRE W J, RADOM L, SCHLEYER P V R, et al. Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986.
    [6] LOWDIN P O. Correlation Problem in Many-Electron Quantum Mechanics [J]. Adv. Chem. Phys., 1959, 2: 207.
    [7] POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies [J]. J. Chem. Phys., 1987, 87: 5968-5975.
    [8] KRISHNAN R, SCHLEGEL H B, POPLE J A. Derivate Studies in Configuration Interaction Theory [J]. J. Chem. Phys., 1980, 72: 4654-4655.
    [9] POPLE J A, SEEGER R, KRISHNAN R. Variational Configuration Interaction Methods and Comparison with Perturbation Theory [J]. Int. J. Quant. Chem. Symp., 1977, 11: 149.
    [10] SALTER E A, TRUCKS G W, BARTLETT R J. Analytic Energy Derivatives in Many-Body Methods I. First Derivatives [J]. J. Chem. Phys., 1989, 90 : 1752-1766.
    [11] FORESMAN J B, HEAD-GORDON M, POPLE J A, et al. Toward a Systematic Molecular Orbital Theory for Excited States [J]. J. Phys. Chem., 1992, 96: 135-149.
    [12] RAGHAVACHARI K, POPLE J A. [J]. Int. J. Quant. Chem., 1981, 20: 167.
    [13] BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach [J]. J. Chem. Phys., 1980, 72: 4652-4653.
    [14] EADE R H E, ROBB M A. Direct minimization in mc scf theory. the quasi-newton method [J]. Chem. Phys. Lett., 1981, 83: 362-368.
    [15] CIOSLOWSKI J. A New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues [J]. Chem. Phys. Lett., 1994, 219: 151-154.
    [16] HEGARTY D, ROBB M A. Application of Unitary Group Methods to Configuration Interaction Calculations [J]. Mol. Phys., 1979, 38: 1795-1812.
    [17] SCHLEGEL H B, ROBB M A. MCSCF Gradient Optimization of the H2CO→H2+CO Transition Structure [J]. Chem. Phys. Lett., 1982, 93: 43-46.
    [18] BARTLETT R J, PURVIS G D. General Application of a Big Molecule Gaussian SCF/CI Program for Calculations of Excited Metastables and of Negative Ion Bound States and Resonances [J]. Int. J. Quant. Chem., 1978, 14: 515-518.
    [19] POPLE J A, KRISHNAN R, SCHLEGEL H B, et al. Electron correlation theories and their application to the study of simple reaction potential surfaces [J]. Int. J. Quant. Chem., 1978, 14: 545?560.
    [20] SCUSERIA G E, JANSSEN C L, SCHAEFER H F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations [J]. J. Chem. Phys., 1988, 89: 7382-7387.
    [21] PURVIS G D, BARTLETT R J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples [J]. J. Chem. Phys., 1982, 76: 1910-1918.
    [22] SCUSERIA G E, SCHAEFER H F. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction(QCISD)? [J]. J. Chem. Phys., 1989, 90: 3700-3703.
    [23] KRISHNAN R, POPLE J A. Appoximate Forth-Order Perturbation Theory of the Electron Correlation Energy [J]. Int. J. Quant. Chem., 1978, 14: 91?100.
    [24] M?LLER C, PLESSET M S. Note on an Approximation Treatment for Many-Electron Systemsp [J]. Phys. Rev., 1934, 46: 618-622.
    [25] POPLE J A, BINKLEY J S, SEEGER R. Theoretical Models Incorporating Electron Correlation [J]. Int. J. Quant. Chem. Symp., 1976, 10: 1?19.
    [26] RAGHAVACHARI K, POPLE J A, REPLOGLE E S, et al. Fifth-Order Moller-Plesset Perturbation Theory: Comparison of Existing Correlation Methods and Implementation of New Methods Correct to Fifth-Order [J]. J. Phys. Chem., 1990, 94: 5579-5586.
    [27] HEAD-GORDON M, POPLE J A, Frisch M J. A Direct MP2 Gradient Method [J]. Chem. Phys. Lett., 1988, 153: 503-506.
    [28] THOMAS. PROC L H, [J]. Camb. Phil. Soc., 1927, 23: 542.
    [29] FERMI. [J]. E. Z. Phys., 1928, 48: 73.
    [30] HOHENBERG P, KOHN W, Inhomogeneous Electron Gas [J]. Phys. Rev., 1964, 136: B864?B871.
    [31] KOHN W, SHAM L J, Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev., 1965, 140: A1133?A1138.
    [32] SLATER J C. A Simplification of the Hartree-Fock Method [J]. Phys. Rev., 1951, 81: 385.
    [33] Buhl M, Kaupp M, Malkina O L, et al. The DFT route to NMR chemical shifts [J]. J. Comp. Chem., 1999, 20: 91-105.
    [34] SLATER J C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill [M]. New York, 1974.
    [35] Zhao Y, Lynch B J, Truhlar D G.. Doubly hybrid meta DFT: Newmulti-coefficient correlation and density functional methods for thermochemistry and thermochemical kinetics [J]. J. Phys. Chem. A, 2004, 108: 4786-4791.
    [36] SALAHUB D R, ZERNER M C, eds. The Challenge of d and f Electrons ACS [C]. Washington, D.C., 1989.
    [37] Grafenstein J, Cremer D. The combination of density functional theory with multi-configuration methods - CAS-DFT [J]. Chem. Phys. Lett., 2000, 316: 569-577.
    [38] POPLE J A, GILL P M W, JOHNSON B G. Kohn-Sham density-functional theory within a finite basis set [J]. Chem. Phys. Lett., 1992, 199: 557.
    [39] PARR R G, YANG W. Density-functional theory of atoms and molecules [M]. Oxford Univ. Press: Oxford, 1989.
    [40] JOHNSON B G, FRISCH M J. An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys., 1994, 100: 7429.
    [41] LABANOWSKI J K, ANDZELM J W, eds. Density Functional Methods in Chemistry [J]. Springer-Verlag: New York, 1991.
    [42] SLATER J C, KOSTER G F. Simplified LCAO Method for the Periodic Potential Problem [J]. Phys. Rev., 1954, 94: 1498-1524.
    [43] CHADI D J. Atomic and Electronic Structures of Reconstructed Si (100) Surfaces [J]. Phys. Rev. Lett., 1979, 43: 43-47.
    [44] ELSTNER M, POREZAG D, JUNGNICKEL G, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J]. Phys. Rev. B, 1998, 58: 7260-7268.
    [45] HO K M, SHVARTSBURG A, PAN B C, et al. Structures of Medium-Sized Silicon Clusters [J]. Nature, 1998, 392: 582-584.
    [46] DEAVEN D, HO K M. Molecular Geometry Optimization with a Genetic Algorithm [J]. Phys. Rev. Lett., 1995, 75: 288-291.
    [47] HOLLAND J H. [M]. MIT Press, 1975.
    [48] BODY R G, et al. SCF Wavefunctions for the NH3 Molecule. Potential-Energy Surface and Vibrational Force Constants [J]. J. Chem. Phys., 1968, 49: 4916.
    [49] GARTON D, SUTCHIFFE B T, Theoretical Chemistry [M]. Vol. 1 (Ed. R. N. Dixon), The Chemical Society, London, 1974.
    [50] PULAY P. Modern Theoretical Chemistry [M]. Vol. 4, Plenum Press, New York, 1977.
    [51] PULAY P, [J]. Mol. Phys., 1969, 17: 197.
    [52] FLETCHER R, POWELL M J D. [J]. Computer J., 1963, 6 : 163.
    [53]. MURTAGH A A, et al. [J]. Computer J., 1970, 13 : 185.
    [54] MURTAGH J W, et al. [J]. Chem. Phys. Lett., 1971, 10: 303.
    [55] PANCIV J. [J]. Collect. Czech. Chem. Commun, 1975, 40: 2726.
    [56] POPPINGER D. [J]. Chem. Phys. Lett., 1975, 34: 332.
    [1] GINGERICH K A, SCHMUDE R W, BABA M S, et al. Atomization enthalpies and enthalpies of formation of the germanium clusters, Ge5, Ge6, Ge7, and Ge8 by Knudsen effusion mass spectrometry [J]. J. Chem. Phys., 2000, 112: 7443-7448.
    [2] MARTIN T P, SCHABER H. Mass spectra of Si, Ge, and Sn clusters [J]. J. Chem. Phys., 1985, 83: 855-858.
    [3] PHILLIPS J C. Pulsed Gen+ microcluster concentration spectra [J]. J. Chem. Phys., 1986, 85: 5246-5250.
    [4] SCHULZE W, WINTER B, GOLDENFELD I. Generation of germanium clusters using the gas aggregation technique: Stability of small charged clusters [J]. J. Chem. Phys., 1987, 87: 2402-2403.
    [5] HEATH J R, LIU Y, O’BRIEN S C, et al. Semiconductor cluster beams: One and two color ionization studies of Six and Gex [J]. J. Chem. Phys., 1985, 83: 5520-5526.
    [6] YOSHIDA S, FUKE K. Photoionization studies of germanium and tin clusters in the energy region of 5.0–8.8 eV: Ionization potentials for Gen (n = 2– 57) and Snn (n = 2– 41) [J]. J. Chem. Phys., 1999, 111: 3880-3890.
    [7] BURTON G R, XU C S, ARNOLD C C, et al. Photoelectron spectroscopy and zero electron kinetic energy spectroscopy of germanium cluster anions [J]. J. Chem. Phys., 1996, 104: 2757-2764.
    [8] HUNTER J M, FYE J L, JARROLD M F, et al. Structural Transitions in Size-Selected Germanium Cluster Ions [J]. Phys. Rev. Lett., 1993, 73: 2063-2066.
    [9] ALFORD J M, LAAKSONEN R T, SMALLEY R E. Ammonia chemisorption studies on silicon cluster ions [J]. J. Chem. Phys., 1991, 94: 2618-2630.
    [10] SHVARTSBURG A A, LIU B, LU Z Y, et al. Structures of Germanium Clusters: Where the Growth Patterns of Silicon and Germanium Clusters Diverge [J]. Phys.Rev. Lett., 1999, 83: 2167-2170.
    [11] SHVARTSBURG A A, HUDGINS R R, DUGOURDB P, et al. Structural information from ion mobility measurements: applications to semiconductor clusters [J]. Chem. Soc. Rev., 2001, 30: 26-35.
    [12] MARSEN B, LONFAT M, SCHEIER P, et al. Energy gap of silicon clusters studied by scanning tunneling spectroscopy [J]. Phys. Rev. B, 2000, 62: 6892-6895.
    [13] RAY U, JARROLD M F. Reactions of silicon cluster ions, Sin+ (n=10–65), with water [J]. J. Chem. Phys., 1991, 94: 2631-2639.
    [14] BERGERON D E, CASTLEMAN JR A W. Insights into the stability of silicon cluster ions: Reactive etching with O2 [J]. J. Chem. Phys., 2002, 117: 3219-3223.
    [15] JARROLD M F, IJIRI Y, RAY U. Interaction of silicon cluster ions with ammonia: Annealing, equilibria, high temperature kinetics, and saturation studies [J]. J. Chem. Phys., 1991, 94: 3607-3618.
    [16] JARROLD M F, IJIRI Y, CONSTANT V A. Silicon cluster ions: Evidence for a structural transition [J]. Phys. Rev. Lett., 1991, 67: 2994-2997.
    [17] SCH?FER R, SCHLECHT S, WOENCKHAUS J, et al. Polarizabilities of Isolated Semiconductor Clusters [J]. Phys. Rev. Lett., 1996, 76: 471- 474.
    [18] JARROLD M F, HONEA E C. Dissociation of large silicon clusters: the approach to bulk behavior [J]. J. Phys. Chem., 1991, 95: 9181-9185.
    [19] JARROLD M F, BOWER J E. Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres [J]. J. Chem. Phys., 1992, 96: 9180-9190.
    [20] HUDGINS R R, IMAI M, JARROLD M F. High-resolution ion mobility measurements for silicon cluster anions and cations [J]. J. Chem. Phys., 1999, 111: 7865-7870.
    [21] ZHANG Q L, LIU Y, CURL R F, et al. Photodissociation of semiconductor positive cluster ions [J]. J. Chem. Phys., 1988, 88: 1670-1677.
    [22] FUKE K, TSUKAMOTO K, MISAIZU F, et al. Near threshold photoionization of silicon clusters in the 248–146 nm region: Ionization potentials for Sin [J]. J. Chem. Phys., 1993, 99: 7807-7812.
    [23] MITAS L, GROSSMAN J C, STICH I, et al. Silicon Clusters of Intermediate Size: Energetics, Dynamics, and Thermal Effects [J]. Phys. Rev. Lett., 2000, 84: 1479-1482.
    [24] YOO S, ZENG X C. Motif Transition in Growth Patterns of Small to Medium-Sized Silicon Clusters [J]. Angew. Chem. Int. Ed., 2005, 44: 1491-1494.
    [25] GOEDECKER S, HELLMANN W. Global Minimum Determination of the Born-Oppenheimer Surface within Density Functional Theory [J]. Phys. Rev. Lett., 2005, 95: 055501(1-4).
    [26] SIECK A, FRAUENHEIM T, JACKSON K A. Shape transition of medium-sized neutral silicon clusters [J]. Phys. stat. sol. (b), 2003, 240: 537-548.
    [27] JACKSON K A, HOROI M H. Unraveling the Shape Transformation in Silicon Clusters [J]. Phys. Rev. Lett., 2004, 93: 013401(1-4).
    [28] YOO S, ZENG X C, ZHU X L, et al. Possible Lowest-Energy Geometry of Silicon Clusters Si21 and Si25 [J]. J. Am. Chem. Soc., 2003, 125: 13318-13319.
    [29] YOO S, ZHAO J J, WANG J L, et al. Endohedral Silicon Fullerenes SiN (27≤N≤39) [J]. J. Am. Chem. Soc., 2004, 126: 13845-13849.
    [30] BAI J, CUI L F, WANG J L, et al. Structural Evolution of Anionic Silicon Clusters SiN (20≤N≤45) [J]. J. Phys. Chem. A, 2006, 110: 908-912.
    [31] YOO S, ZENG X C. Structures and relative stability of medium-sized silicon clusters. IV. Motif-based low-lying clusters Si21–Si30 [J]. J. Chem. Phys., 2006, 124: 054304(1-6).
    [32] YOO S, SHAO N, KOEHLER C, et al. Structures and relative stability of medium-sized silicon clusters. V. Low-lying endohedral fullerenelike clusters Si31-Si40 and Si45 [J]. J. Chem. Phys., 2006, 124: 164311(1-6).
    [33] ONA O, BAZTERRA V E, CAPUTO M C, et al. Modified genetic algorithms to model cluster structures in medium-sized silicon clusters: Si18-Si60 [J]. Phys. Rev. A, 2006, 73: 053203(1-11).
    [34] BUSULU S, YOO S, ZENG X C. Search for global minimum geometries for medium sized germanium clusters: Ge12–Ge20 [J]. J. Chem. Phys., 2005, 122: 164305(1-5).
    [35] WANG J L, WANG G H, ZHAO J J. Structure and electronic properties of Gen (n=2–25) clusters from density-functional theory [J]. Phys. Rev. B, 2001, 64: 205411(1-5).
    [36] MA S J, WANG G H. Structures of medium size germanium clusters [J]. Journal of Molecular Structure: THEOCHEM, 2006, 767: 75-79.
    [37] LIANG F S, LI B X. Stable structures of Gen (n=21–25) clusters [J]. Phys. Lett. A , 2004, 328: 407-413.
    [38] YOO S, ZENG X C. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21–Ge29 [J]. J. Chem. Phys., 2006, 124: 184309(1-5).
    [39] ZHU X L, ZENG X C, LEI Y A. Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si12–Si20 [J]. J. Chem. Phys., 2004, 120: 8985-8995.
    [40] YOO S, ZENG X C. Structures and stability of medium-sized silicon clusters.Ⅲ. Reexamination of motif transition in growth pattern from Si15 to Si20 [J]. J. Chem. Phys., 2005, 123: 164303(1-6).
    [41] FUKE K, TSUKAMOTO K, MISAIZU F, et al. Near threshold photoionization of silicon clusters in the 248–146 nm region: Ionization potentials for Sin [J]. J. Chem. Phys., 1993, 99: 7807-7812.
    [42] RAGHAVACHARI K, ROHLFING C M. FRAGMENTATION OF SMALL SILICON CLUSTERS [J]. Chem. Phys. Lett., 1987, 143: 428-434.
    [43] SHVARTSBURG A A, JARROLD M F, LIU B, et al. Dissociation Energies of Silicon Clusters: A Depth Gauge for the Global Minimum on the Potential Energy Surface [J]. Phys. Rev. Lett., 1998, 81: 4616-4619.
    [44] IDROBO J C, YANG M, JACKSON K A. First-principles absorption spectra of Sin (n =20– 28) clusters: Time-dependent local-density approximation versus predictions from Mie theory [J]. Phys. Rev. B, 2006, 74: 153410(1-4).
    [45] LI B X, CAO P L. Structures of Gen clusters (n = 3– 10) and comparisons to Sin clusters [J]. Phys. Rev. B, 2000, 62: 15788-15796.
    [46] YOO S, ZENG X C. Global geometry optimization of silicon clusters described by three empirical potentials [J]. J. Chem. Phys., 2003, 119: 1442-1450.
    [47] ZHU X L, ZENG X C. Structures and stabilities of small silicon clusters: Ab initio molecular-orbital calculations of Si7– Si11 [J]. J. Chem. Phys., 2003, 118: 3558-3570.
    [48] ZHAO L Z, LU W C, QIN W, et al. Comparison of the Growth Patterns of Sin and Gen Clusters (n = 25 ? 33) [J]. J. Phys. Chem. A, 2008, 112: 5815-5823.
    [49] CHUANG F C, WANG C Z, HO K H. Structure of neutral aluminum clusters Aln (2≤n≤23): Genetic algorithm tight-binding calculations [J]. Phys. Rev. B, 2006, 73: 125431(1-7).
    [50] DAVEN D M, TIT N, MORRIS J R, et al. Structural optimization of Lennard-Jones clusters by a genetic algorithm [J]. Chem. Phys. Lett., 1996, 256: 195-200.
    [51] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, Revision B. Gaussian, Inc., Pittsburgh, PA, 2003.
    [52] MARTIN T P, SCHABER H. Mass spectra of Si, Ge, and Sn clusters [J]. J. Chem. Phys., 1985, 83: 855-858.
    [53] RAJESH C, MAJUMDER C, RAJAN M G R, et al. Isomers of small Pbn clusters(n = 2– 15): Geometric and electronic structures based on ab initio molecular dynamics simulations [J]. Phys. Rev. B, 2005, 72: 235411(1-8).
    [54] DE HEER W A. The physics of simple metal clusters: experimental aspects and simple models [J]. Rev. Mod. Phys., 1993, 65: 611-676.
    [55] BRACK M. The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches [J]. Rev. Mod. Phys., 1993, 65: 677-732.
    [1] UGRINOV A, SEVOV S C. [Ge9=Ge9=Ge9]6-: A Linear Trimer of 27 Germanium Atoms [J]. J. Am. Chem. Soc., 2002, 124: 10990-10991.
    [2] UGRINOV A, SEVOV S C. [Ge9=Ge9=Ge9=Ge9]8-: A Linear Tetramer of Nine-Atom Germanium Clusters, a Nanorod [J]. Inorg. Chem., 2003, 42: 5789-5791.
    [3] HUNTER J M, FYE J L, JARROLD M F, et al. Structural Transitions in Size-Selected Germanium Cluster Ions [J]. Phys. Rev. Lett., 1994, 73: 2063-2066.
    [4] SHVARTSBURG A A, HUDGINS R R, DUGOURDB P, et al. Structural information from ion mobility measurements: applications to semiconductor clusters [J]. Chem. Soc. Rev., 2001, 30: 26-35.
    [5] JARROLD M F, CONSTANT V A. Silicon cluster ions: Evidence for a structural transition [J]. Phys. Rev. Lett., 1991, 67: 2994-2997.
    [6] HAGEN D F. Characterization of isomeric compounds by gas and plasma chromatography [J]. Anal. Chem., 1979, 51: 870-874.
    [7] JARROLD M F, BOWER J E. Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres [J]. J. Chem. Phys., 1992, 96: 9180-9190.
    [8] HUDGINS R R, IMAI M, JARROLD M F. High-resolution ion mobility measurements for silicon cluster anions and cations [J]. J. Chem. Phys., 1999, 111: 7865-7870.
    [9] SHVARTSBURG A A, LIU B, LU Y, et al. Structures of Germanium Clusters: Where the Growth Patterns of Silicon and Germanium Clusters Diverge [J]. Phys. Rev. Lett., 1999, 83: 2167-2170.
    [10] WANG J L, WANG G H, ZHAO J J. Structure and electronic properties of Gen (n = 2– 25) clusters from density-functional theory [J]. Phys. Rev. B, 2001, 64: 205411(1-5).
    [11] YOO S, ZENG X C. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21–Ge29 [J]. J. Chem. Phys., 2006, 124: 184309(1-5).
    [12] WANG L, ZHAO J J. Competition between supercluster and stuffed cage structures in medium-sized Gen (n = 30– 39) clusters [J]. J. Chem. Phys., 2008, 128: 024302(1-5).
    [13] CHUANG F C, WANG C Z, HO K H. Structure of neutral aluminum clusters Aln (2≤n≤23): Genetic algorithm tight-binding calculations [J]. Phys. Rev. B, 2006, 73: 125431(1-7).
    [14] DAVEN D M, TIT N, MORRIS J R, et al. Structural optimization of Lennard-Jones clusters by a genetic algorithm [J]. Chem. Phys. Lett., 1996, 256: 195-200.
    [15] MESLEH M F, HUNTER J M, SHVARTSBURG A A, et al. Structural Information from Ion Mobility Measurements: Effects of the Long-Range Potential [J]. J. Chem. Phys., 1996, 100: 16082-16086.
    [16] SHVARTSBURG A A, JARROLD M F. An exact hard-spheres scattering model for the mobilities of polyatomic ions [J]. Chem. Phys. Lett., 1996, 261: 86-91.
    [17] BUSULU S, YOO S, ZENG X C. Search for global minimum geometries for medium sized germanium clusters: Ge12–Ge20 [J]. J. Chem. Phys., 2005, 122: 164305(1-5).
    [18] ??üT S, CHELIKOWSKY J R. Ab initio investigation of point defects in bulk Si and Ge using a cluster method [J]. Phys. Rev. B, 2001, 64: 245206(1-11).
    [19] SIECK A, FRAUENHEIM T, JACKSON K A. Shape transition of medium-sized neutral silicon clusters [J]. Phys. stat. sol. (b), 2003, 240: 537-548.
    [20] LI S, VAN ZEE R J, WELTNER W, et al. Si3-Si7. Experimental and theoretical infrared spectra [J]. Chem. Phys. Lett., 1995, 243: 275-280.
    [21] MELNIKOV D V, CHELIKOWSKY J R. Electron affinities and ionization energies in Si and Ge nanocrystals [J]. Phys. Rev. B, 2004, 69: 113305(1-4).
    [22] JACKSON K A, HOROI M H. Unraveling the Shape Transformation in Silicon Clusters [J]. Phys. Rev. Lett., 2004, 93: 013401(1-4).
    [23] BERNSTEIN N, AZIZ M J, KAXIRAS E. Atomistic simulations of solid-phase epitaxial growth in silicon [J]. Phys. Rev. B, 2000, 61: 6696-6700.
    [24] BERNSTEIN N, MEHL M J, PAPACONSTANTOPOULOS D A, et al. Energetic, vibrational, and electronic properties of silicon using a nonorthogonal tight-binding model [J]. Phys. Rev. B, 2000, 62: 4477-4487.
    [25] WANG C Z, PAN B C, HO K M. An environment-dependent tight-binding potential for Si [J]. J. Phys.: Condens. Matter, 1999, 11: 2043-2049.
    [26] TANG M S, WANG C Z, CHAN C T, et al. Environment-dependent tight-binding potential model [J]. Phys. Rev. B, 1996, 53: 979-982.
    [27] ZHAO L Z, LU W C, QIN W, et al. Comparison of the Growth Patterns of Sin and Gen Clusters (n = 25 ? 33) [J]. J. Phys. Chem. A, 2008, 112: 5815-5823.
    [28] QIN W, LU WC, ZHAO LZ, et al. Platelike structures of semiconductor clusters Gen (n = 40– 44) [J]. J. Chem. Phys., 2009, 131: 124507(1-5).
    [29] ZHAO L Z, LU W C, QIN W, et al. Fragmentation behavior of Gen clusters (2≤n≤33) [J]. Chem. Phys. Lett., 2008, 455: 225-231.
    [1] UGRINOV A, SEVOV S C. [Ge9=Ge9=Ge9]6-: A Linear Trimer of 27 Germanium Atoms [J]. J. Am. Chem. Soc., 2002, 124: 10990-10991.
    [2] UGRINOV A, SEVOV S C. [Ge9=Ge9=Ge9=Ge9]8-: A Linear Tetramer of Nine-Atom Germanium Clusters, a Nanorod [J]. Inorg. Chem., 2003, 42: 5789-5791.
    [3] HUNTER J M, FYE J L, JARROLD M F, et al. Structural Transitions in Size-Selected Germanium Cluster Ions [J]. Phys. Rev. Lett., 1994, 73: 2063-2066.
    [4] SHVARTSBURG A A, HUDGINS R R, DUGOURDB P, et al. Structural information from ion mobility measurements: applications to semiconductor clusters [J]. Chem. Soc. Rev., 2001, 30: 26-35.
    [5] JARROLD M F, CONSTANT V A. Silicon cluster ions: Evidence for a structural transition [J]. Phys. Rev. Lett., 1991, 67: 2994-2997.
    [6] HAGEN D F. Characterization of isomeric compounds by gas and plasma chromatography [J]. Anal. Chem., 1979, 51: 870-874.
    [7] JARROLD M F, BOWER J E. Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres [J]. J. Chem. Phys., 1992, 96: 9180-9190.
    [8] HUDGINS R R, IMAI M, JARROLD M F. High-resolution ion mobility measurements for silicon cluster anions and cations [J]. J. Chem. Phys., 1999, 111: 7865-7870.
    [9] SHVARTSBURG A A, LIU B, LU Y, et al. Structures of Germanium Clusters: Where the Growth Patterns of Silicon and Germanium Clusters Diverge [J]. Phys. Rev. Lett., 1999, 83: 2167-2170.
    [10] WANG J L, WANG G H, ZHAO J J. Structure and electronic properties of Gen (n = 2– 25) clusters from density-functional theory [J]. Phys. Rev. B, 2001, 64: 205411(1-5).
    [11] YOO S, ZENG X C. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21– Ge29 [J]. J. Chem. Phys., 2006, 124: 184309(1-5).
    [12] WANG L, ZHAO J J. Competition between supercluster and stuffed cage structures in medium-sized Gen (n = 30– 39) clusters [J]. J. Chem. Phys., 2008, 128: 024302(1-5).
    [13] CHUANG F C, WANG C Z, HO K H. Structure of neutral aluminum clusters Aln (2≤n≤23): Genetic algorithm tight-binding calculations [J]. Phys. Rev. B, 2006, 73: 125431(1-7).
    [14] DAVEN D M, TIT N, MORRIS J R, et al. Structural optimization of Lennard-Jones clusters by a genetic algorithm [J]. Chem. Phys. Lett., 1996, 256: 195-200.
    [15] MESLEH M F, HUNTER J M, SHVARTSBURG A A, et al. Structural Information from Ion Mobility Measurements: Effects of the Long-Range Potential [J]. J. Chem. Phys., 1996, 100: 16082-16086.
    [16] SHVARTSBURG A A, JARROLD M F. An exact hard-spheres scattering model for the mobilities of polyatomic ions [J]. Chem. Phys. Lett., 1996, 261: 86-91.
    [17] BUSULU S, YOO S, ZENG X C. Search for global minimum geometries for medium sized germanium clusters: Ge12–Ge20 [J]. J. Chem. Phys., 2005, 122: 164305(1-5).
    [18] ??üT S, CHELIKOWSKY J R. Ab initio investigation of point defects in bulk Si and Ge using a cluster method [J]. Phys. Rev. B, 2001, 64 : 245206(1-11).
    [19] SIECK A, FRAUENHEIM1 T, JACKSON K A. Shape transition of medium-sized neutral silicon clusters [J]. Phys. stat. sol. (b), 2003, 240: 537-548.
    [20] LI S, VAN ZEE R J, WELTNER W, et al. Si3-Si7. Experimental and theoretical infrared spectra [J]. Chem. Phys. Lett., 1995, 243: 275-280.
    [21] MELNIKOV D V, CHELIKOWSKY J R. Electron affinities and ionization energies in Si and Ge nanocrystals [J]. Phys. Rev. B, 2004, 69: 113305(1-4).
    [22] JACKSON K A, HOROI M H. Unraveling the Shape Transformation in Silicon Clusters [J]. Phys. Rev. Lett., 2004, 93: 013401(1-4).
    [23] BERNSTEIN N, AZIZ M J, KAXIRAS E. Atomistic simulations of solid-phase epitaxial growth in silicon [J]. Phys. Rev. B, 2000, 61: 6696-6700.
    [24] BERNSTEIN N, MEHL M J, PAPACONSTANTOPOULOS D A, et al. Energetic, vibrational, and electronic properties of silicon using a nonorthogonal tight-binding model [J]. Phys. Rev. B, 2000, 62: 4477-4487.
    [25] WANG C Z, PAN B C, HO K M. An environment-dependent tight-binding potential for Si [J]. J. Phys.: Condens. Matter, 1999, 11: 2043-2049.
    [26] TANG M S, WANG C Z, CHAN C T, et al. Environment-dependent tight-binding potential model [J]. Phys. Rev. B, 1996, 53: 979-982.
    [1] Sha Peng-Yu(沙鹏宇), Liu Yan(刘岩), Xie Lei(谢雷), et al.亲水性有机硅杂化防雾涂料的制备及性能[J]. Chem. J. Chinese. Universities (高等学校化学学报), 2007, 28:2205-2209.
    [2] UGRINOV A, SEVOV S C. [Ge9=Ge9=Ge9]6-: A Linear Trimer of 27 Germanium Atoms [J]. J. Am. Chem. Soc., 2002, 124: 10990-10991.
    [3] UGRINOV A, SEVOV S C. [Ge9=Ge9=Ge9=Ge9]8-: A Linear Tetramer of Nine-Atom Germanium Clusters, a Nanorod [J]. Inorg. Chem., 2003, 42: 5789-5791.
    [4] HUNTER J M, FYE J L, JARROLD M F, et al. Structural Transitions in Size-Selected Germanium Cluster Ions [J]. Phys. Rev. Lett., 1994, 73: 2063-2066.
    [5] SHVARTSBURG A A, HUDGINS R R, DUGOURDB P, et al. Structural information from ion mobility measurements: applications to semiconductor clusters [J]. Chem. Soc. Rev., 2001, 30: 26-35.
    [6] JARROLD M F, CONSTANT V A. Silicon cluster ions: Evidence for a structural transition [J]. Phys. Rev. Lett., 1991, 67: 2994-2997.
    [7] HAGEN D F. Characterization of isomeric compounds by gas and plasma chromatography [J]. Anal. Chem., 1979, 51: 870-874.
    [8] JARROLD M F, BOWER J E. Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres [J]. J. Chem. Phys., 1992, 96: 9180-9190.
    [9] HUDGINS R R, IMAI M, JARROLD M F. High-resolution ion mobility measurements for silicon cluster anions and cations [J]. J. Chem. Phys., 1999, 111: 7865-7870.
    [10] SHVARTSBURG A A, LIU B, LU Y, et al. Structures of Germanium Clusters: Where the Growth Patterns of Silicon and Germanium Clusters Diverge [J]. Phys. Rev. Lett., 1999, 83: 2167-2170.
    [11] WANG J L, WANG G H, ZHAO J J. Structure and electronic properties of Gen (n = 2– 25) clusters from density-functional theory [J]. Phys. Rev. B, 2001, 64: 205411(1-5).
    [12] YOO S, ZENG X C. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21– Ge29 [J]. J. Chem. Phys., 2006, 124: 184309(1-5).
    [13] WANG L, ZHAO J J. Competition between supercluster and stuffed cage structures in medium-sized Gen (n = 30– 39) clusters [J]. J. Chem. Phys., 2008, 128: 024302(1-5).
    [14] CHUANG F C, WANG C Z, HO K H. Structure of neutral aluminum clusters Aln (2≤n≤23): Genetic algorithm tight-binding calculations [J]. Phys. Rev. B, 2006, 73: 125431(1-7).
    [15] DAVEN D M, TIT N, MORRIS J R, et al. Structural optimization of Lennard-Jones clusters by a genetic algorithm [J]. Chem. Phys. Lett., 1996, 256: 195-200.
    [16] MESLEH M F, HUNTER J M, SHVARTSBURG A A, et al. Structural Information from Ion Mobility Measurements: Effects of the Long-Range Potential [J]. J. Chem. Phys., 1996, 100: 16082-16086.
    [17] SHVARTSBURG A A, JARROLD M F. An exact hard-spheres scattering model for the mobilities of polyatomic ions [J]. Chem. Phys. Lett., 1996, 261: 86-91.
    [18] BUSULU S, YOO S, ZENG X C. Search for global minimum geometries for medium sized germanium clusters: Ge12– Ge20 [J]. J. Chem. Phys., 2005, 122: 164305(1-5).
    [19] ??üT S, CHELIKOWSKY J R. Ab initio investigation of point defects in bulk Si and Ge using a cluster method [J]. Phys. Rev. B, 2001, 64: 245206(1-11).
    [20] SIECK A, FRAUENHEIM T, JACKSON K A. Shape transition of medium-sized neutral silicon clusters [J]. Phys. stat. sol. (b), 2003, 240: 537-548.
    [21] LI S, VAN ZEE R J, WELTNER W, et al. Si3-Si7. Experimental and theoretical infrared spectra [J]. Chem. Phys. Lett., 1995, 243: 275-280.
    [22] MELNIKOV D V, CHELIKOWSKY J R. Electron affinities and ionization energies in Si and Ge nanocrystals [J]. Phys. Rev. B, 2004, 69: 113305(1-4).
    [23] JACKSON K A, HOROI M H. Unraveling the Shape Transformation in Silicon Clusters [J]. Phys. Rev. Lett., 2004, 93: 013401(1-4).
    [24] BERNSTEIN N, AZIZ M J, KAXIRAS E. Atomistic simulations of solid-phase epitaxial growth in silicon [J]. Phys. Rev. B, 2000, 61: 6696-6700.
    [25] BERNSTEIN N, MEHL M J, PAPACONSTANTOPOULOS D A, et al. Energetic, vibrational, and electronic properties of silicon using a nonorthogonal tight-binding model [J]. Phys. Rev. B, 2000, 62: 4477-4487.
    [26] WANG C Z, PAN B C, HO K M. An environment-dependent tight-binding potential for Si [J]. J. Phys.: Condens. Matter, 1999, 11: 2043-2049.
    [27] TANG M S, WANG C Z, CHAN C T, et al. Environment-dependent tight-binding potential model [J]. Phys. Rev. B, 1996, 53: 979-982.
    [28] ZHAO L Z, LU W C, QIN W, et al. Comparison of the Growth Patterns of Sin and Gen Clusters (n = 25?33) [J]. J. Phys. Chem. A, 2008, 112: 5815-5823.
    [29] QIN W, LU WC, ZHAO LZ, et al. Platelike structures of semiconductor clusters Gen (n = 40– 44) [J]. J. Chem. Phys., 2009, 131: 124507(1-5).
    [30] ZHAO L Z, LU W C, QIN W, et al. Fragmentation behavior of Gen clusters (2≤n≤33) [J]. Chem. Phys. Lett., 2008, 455: 225-231.
    [31] DEBASHIS B, PRASENJIT S. Density Functional Investigation of Structure andStability of Gen and GenNi (n = 1– 20) Clusters: Validity of the Electron Counting Rule [J]. J. Phys. Chem. A, 2010, 114: 1835-1842.
    [32] Chen Jian-Cheng(陈建成), Xing Xiao-Peng(邢小鹏), Tang Zi-Chao(唐紫超), et al.二元合金团簇CoGen- (n = 1 ~ 12)的结构和稳定性[J]. Chem. J. Chinese. Universities (高等学校化学学报), 2007, 28: 535-538.
    [33] YOO S, ZENG X C. Structures and relative stability of medium-sized silicon clusters. IV. Motif-based low-lying clusters Si21–Si30 [J]. J. Chem. Phys., 2006, 124: 054304 (1-6).
    [34] YOO S, ZENG X C. Structures and stability of medium-sized silicon clusters.Ⅲ. Reexamination of motif transition in growth pattern from Si15 to Si20 [J]. J. Chem. Phys. 2005, 123: 164303(1-6).
    [35] QIN W, LU W C, ZHAO L Z, et al. Stabilities and fragmentation energies of Sin clusters (n = 2– 33) [J]. J. Phys.: Condens. Matter, 2009, 21: 455501(1-7).
    [36] GINGERICH K A, SCHMUDE R W, BABA M S, et al. Atomization enthalpies and enthalpies of formation of the germanium clusters, Ge5, Ge6, Ge7, and Ge8 by Knudsen effusion mass spectrometry [J]. J. Chem. Phys., 2000, 112: 7443-7448.
    [37] MARTIN T P, SCHABER H. Mass spectra of Si, Ge, and Sn clusters [J]. J. Chem. Phys., 1985, 83: 855-858.
    [38] PHILLIPS J C. Pulsed Gen+ microcluster concentration spectra [J]. J. Chem. Phys., 1986, 85: 5246-5250.
    [39] SCHULZE W, WINTER B, GOLDENFELD I. Generation of germanium clusters using the gas aggregation technique: Stability of small charged clusters [J]. J. Chem. Phys., 1987, 87: 2402-2403.
    [40] HEATH J R, LIU Y, O’BRIEN S C, et al. Semiconductor cluster beams: One and two color ionization studies of Six and Gex [J]. J. Chem. Phys., 1985, 83: 5520-5526.
    [41] YOSHIDA S, FUKE K. Photoionization studies of germanium and tin clusters inthe energy region of 5.0–8.8 eV: Ionization potentials for Gen (n = 2– 57) and Snn (n = 2– 41) [J]. J. Chem. Phys., 1999, 111: 3880-3890.
    [42] ZHANG Q L, LIU Y, CURL R F, et al. Photodissociation of semiconductor positive cluster ions [J]. J. Chem. Phys., 1988, 88: 1670-1677.
    [43] FUKE K, TSUKAMOTO K, MISAIZU F, et al. Near threshold photoionization of silicon clusters in the 248–146 nm region: Ionization potentials for Sin [J]. J. Chem. Phys., 1993, 99: 7807-7812.
    [44] BURTON G R, XU C S, ARNOLD C C, et al. Photoelectron spectroscopy and zero electron kinetic energy spectroscopy of germanium cluster anions [J]. J. Chem. Phys., 1996, 104: 2757-2764.
    [45] MARSEN B, LONFAT M, SCHEIER P, et al. Energy gap of silicon clusters studied by scanning tunneling spectroscopy [J]. Phys. Rev. B, 2000, 62: 6892-6895.
    [46] SCH?FER R, SCHLECHT S, WOENCKHAUS J, et al. Polarizabilities of Isolated Semiconductor Clusters [J]. Phys. Rev. Lett., 1996, 76: 471- 474.
    [47] ALFORD J M, LAAKSONEN R T, SMALLEY R E. Ammonia chemisorption studies on silicon cluster ions [J]. J. Chem. Phys., 1991, 94: 2618-2630.
    [48] RAY U, JARROLD M F. Reactions of silicon cluster ions, Sin+ (n = 10– 65), with water [J]. J. Chem. Phys., 1991, 94: 2631-2639.
    [49] BERGERON D E, CASTLEMAN JR. A W. Insights into the stability of silicon cluster ions: Reactive etching with O2 [J]. J. Chem. Phys., 2002, 117: 3219-3223.
    [50] JARROLD M F, IJIRI Y, RAY U. Interaction of silicon cluster ions with ammonia: Annealing, equilibria, high temperature kinetics, and saturation studies [J]. J. Chem. Phys., 1991, 94: 3607-3618.
    [51] LI B X, CAO P L, SONG B, et al. Electronic and geometric structures of Gen– and Gen+ (n = 5– 10) clusters in comparison with corresponding Sin ions [J]. Phys. Lett. A, 2003, 307: 318-325.
    [52] LYON J T, GRUENE P, FIELICKE A, et al. Structures of Silicon Cluster Cations in the Gas Phase [J]. J. Am. Chem. Soc., 2009, 131: 1115-1121.
    [53] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, Revision B. Gaussian, Inc., Pittsburgh, PA, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700