荔枝壳功能性成分制备与生理活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荔枝属无患子科,有“岭南果王”之称,为广东四大名果之一。我国是世界上栽培荔枝最早的国家,已知的种植品种有一百多个。2005年产量约165万吨,种植面积约60万公顷,分别占世界荔枝总产量的70.5%和荔枝栽培总面积的84.5%。荔枝壳重量占果实总重的16%左右,富含黄烷醇类和水溶性多糖等生理活性物质,具有很高的药用价值。而在荔枝加工和消费过程中,荔枝壳通常作为废弃物直接清理掉,造成了很大的资源浪费。因此,对这一资源进行深度开发,对于提高荔枝产品附加值、促进农业经济发展和保护环境具有重要意义。
     本课题首先选取广东省常见的六个荔枝品种(槐枝、白蜡、三月红、妃子笑、糯米糍和桂味),测定其总黄酮含量、水溶性多糖含量和体外抗氧化性指标,比较结果得出,槐枝品种荔枝壳的总黄酮含量和水溶性多糖含量最高,分别为32.16 mg/g和5.51mg/g,各品种荔枝壳粗黄酮的抗氧化活性相当。因此,选取槐枝荔枝壳进行后续的分离纯化和生理活性研究。
     在荔枝壳黄酮提取工艺试验中,分别探索了溶剂(水、60%乙醇溶液和乙酸乙酯)、盐酸、浸提时间、浸提温度、液料比、乙醇溶液浓度和浸提次数对提取效果的影响,并在单因素试验基础上,设计响应面分析方案,确定四个因素(浸提时间、浸提温度、液料比和乙醇溶液浓度),以总黄酮提取率为响应指标,建立该指标与四个因素间的数学模型,分析因素间的交互作用,并得出取得最高总黄酮提取率所需的工艺参数为:浸提时间3.9h,浸提温度78.2℃,液料比20.0mL/g,乙醇溶液浓度为80.0%。
     在荔枝壳粗黄酮分离纯化过程中,首先采用有机溶剂(正己烷、乙酸乙酯、正丁醇和水)初步分级,测定各级分的总黄酮含量和抗氧化性,最终确定乙酸乙酯相进入下一步纯化工序。采用反相高效液相色谱柱纯化出三种物质,通过液质联用技术、核磁共振波谱技术和紫外可见光扫描技术鉴定为表儿茶素、原花青素B2和原花青素B4。
     通过体外抗氧化试验、免疫细胞增殖试验和乳腺癌细胞增殖试验研究表明,这三种黄烷醇具有很强的自由基清除能力;乙酸乙酯相粗黄烷醇和表儿茶素的脾脏淋巴细胞增殖促进能力显著(P<0.05);表儿茶素和原花青素B2的乳腺癌细胞增殖抑制能力虽然低于对照品紫杉醇,但也具有显著效果(P<0.01)。
     在荔枝壳水溶性多糖提取试验中,以水为提取溶剂,研究了浸提时间、浸提温度、液料比和浸提次数对提取效果的影响。并且在单因素试验基础上,设计响应面分析方案,确定三个因素(浸提时间、浸提温度和液料比),以水溶性多糖提取率为响应指标,建立响应指标与三个因素间的数学模型,分析因素间的交互关系,计算出取得最高水溶性多糖提取率所需的工艺参数为:浸提时间2.7h,浸提温度75.1℃,液料比13.8mL/g。
     在水溶性多糖结构鉴定试验中,分别采用阴离子交换色谱和凝胶过滤色谱技术纯化出分子量均一多糖组分,通过气相色谱技术鉴定出该多糖由甘露糖(65.6%)、半乳糖(33.0%)和阿拉伯糖(1.4%)组成, 1→2糖苷键、1→3糖苷键和1→6糖苷键摩尔百分比约为8.7%:83.3%:8.0%。凝胶渗透色谱测定其分子量为14kDa,红外光谱分析表明甘露糖以β形式存在。比较不同纯化阶段的多糖样品自由基清除能力发现,随着纯化步骤的进行,多糖抗氧化性不断提高。
Litchi (Litchi Chinensis Sonn.), called fruit king of south China, is a world-wide famous fruit. China is the first country planting litchi in the world. There are more than one hundred of cultivars in China. In 2005, the yield and planting area in China are 1,650,000 tuns and 600,000 hectares, accounting for 70.5% of total yield and 84.5% of total area in the world, respectively. The pericarp tissues account for 16% of total weight of litchi fruit. They enrich in flavanols and water-soluble polysaccharides, and can be employed to produce healthful food and medicine. But, during the programme of direct consumption and agro-industrial process, litchi pericarp is eliminated as waste. Therefore, further development of this material means much for improving the by-product value of litchi fruit, facilitating the development of related agro-industry and enviroment protection.
     Six well-known litchi cultivars (Huaizhi, Baila, Sanyuehong, Feizixiao, Nuomici and Guiwei) were chosed in this project. The total flavonoid content, water-soluble polysaccharide content and in vitro antioxidant activities were determined. The results showed Huaizhi litchi pericarp had the highest total flavonoid content and water-soluble polysaccharide content with the value of 32.16 mg/g and 5.51 mg/g, respectively. The antioxidant activities of crude flavonoids from these six cultivar were not significantly different. Thus, Huaizhi was selected for the following trials.
     In the experiments of developing the extraction program of flavonoids from litchi pericarp tissues, the effects of solvent (water, 60% (v/v) of ethanol solution and ethyl acetate), hydrochloric acid, extraction time, extraction temperature, solvent-material ratio, ethanol solution concentration and extraction times on extraction program were studied. Response surface methodology was further taken basing on the single factor experiments. Extraction time, extraction temperature, solvent-material ratio and ethanol solution concentration were chosed in this programme. The mathematic model was built between the response, total flavonoids yield, and four factors. The interactions between every two factors were analysed. The optimal conditions for obtaining the highest total flavonoid yield were as follows: 3.9h of extraction time, 78.2℃of extraction temperature, 20.0 ml/g of solvent-material ratio and 80.0% of ethanol solution concentration.
     In the experiments of isolation and purification of crude flavonoids, they were classified into four fractions depending on solubility by hexane, ethyl acetate, butanol and water. The ethyl acetate phase was chosen for further purification for its high total flavonoid content and antioxidant activity. Three compounds were isolated and collected by reverse-phase high performance liquid chromatography (HPLC). They were identified as epicatechin, proanthocyanidin B2 and proanthocyanidin B4 by HPLC-mass spectrometry, nuclear magnetic resonnance spectrometry and ultraviolet-visible light spectrophotometer.
     In vitro trials of determination of antioxidant activities, immune cell proliferation and breast cancer cell proliferation were made. The results showed these three flavanols had strong radical-scavenging activities. The ethyl acetate fraction and epicatechin had significant capacities of promoting spleen lymphocyte proliferation. Epicatechin and proanthocyanidin B2 had significant capacities of inhibiting breast cancer cell proliferation, though lower than that of paclitaxel.
     Four factors, extraction time, extraction temperature, water-material ratio and extraction times, were selected for exploring the water-soluble polysaccharide extraction process. Response surface methodology was taken to optimize the process conditions basing on single factor trials. Extraction time, extraction temperature and solvent-material ratio were set. The mathetical model of water-soluble polysaccharide yield as a function of extraction time, extraction temperature and solvent-material ratio was built. The interactions between factors of each other were analysed and the optimal conditions for obtaining highest water-soluble polysaccharide yield were computed as follows: 2.7 h of extraction time, 75.1℃of extraction temperature and 13.8 ml/g of solvent-material ratio.
     Even-molecular-weight water-soluble polysaccharides were obtained by using techniques of DEAE anion-exchanging chromatography and gel filtration chromatography. It comprised mannose (65.6%), galactose (33.0%) and arabinose (1.4%). The molar percentage ratio of (1→2)-glycosidic linkages, (1→3)-glycosidic linkages and (1→6)-glycosidic linkages was about 8.7%:83.3%:8.0%. The molecular weight was determined as 14 kDa by gel permeation chromatography. The infra-red spectra showed mannose existed asβtype. By comparison of antioxidant activities of water-soluble polysaccharides from each purification step, we found that the antioxidant activity kept increasing as purification went on.
引文
[1] Peter K C O. The flavor chemistry of rambutan (Nephelium lappaceum L.) and lychee (Litchi Chinesis Sonn.). Cornell University. Doctor Dissertation. 1998:1-6.
    [2] Xu J, Chen S B, Hu Q H. Antioxidant activity of brown pigment and extracts from black sesame seed (Sesamum indicum L.). Food Chem. 2005,91:79-83.
    [3] Jiang Y M. Role of anthocyanins, polypehnol oxidase and phenols in lychee pericarp browning. J Sci Food Agric. 2000,80:305-310.
    [4] Jiang Y M, Chen F A. Study on polyamine change and browning of fruit during cold storage of litchi(Litchi chinensis Sonn.). Postharvest Bio Technol. 1995,5:245-250.
    [5] Jiang Y M, Fu J R, Giora Z,et al. Purification of polyphenol oxidase and the browning control of litchi fruit by glutathione and citric acid. J Sci Food Agric. 1999,79:950-954.
    [6] Pascale S M, Erwan L R, Christine L G, et al. Phenolic composition of litchi fruit pericarp. J Agric Food Chem. 2000,48:5995-6002.
    [7] Zhaoqi Z, Xuequn P, Zuoliang J, et al. Role of anthocyanin degradation in litchi pericarp browning. Food Chem. 2001,75:217-221.
    [8] Lee H S, Wicker L. Anthocyanin pigments in the skin of lychee fruit. J Food Sci. 1991,56:466-468.
    [9] Tan X J, Li Y B. The partial purification and properties of polyphenol oxidase from the pericarp of litchi (Litchi chinensis). Acta Phytophysiol Sin. 1984,10:339-345.
    [10] Zhaoqi Z, Xuequn P, Zuoliang J, et al. Role of anthocyanin degradation in litchi pericarp browning. Food Chem. 2001,75:217-221.
    [11] 张 前 军 , 陈 青 , 伍 静 . 荔 枝 壳 棕 色 素 的 提 取 及 稳 定 性 研 究 . 贵州 化 工 . 2000:19-21.
    [12] 何战胜, 李贵荣, 刘传湘.荔枝壳红色素的提取及稳定性观察. 南华大学学报(医学版).2002,30:269-271.
    [13] Javier R L, Cesar O F, Pedro W E. Changes in anthocyanin concentration in lychee (Litchi chinensis Sonn.) pericarp during maturation. Food Chem. 1999,65:195-200.
    [14] Chyau C C, Ko P T, Chang C H,et al. Free and glycosidically bound aroma compounds in lychee (Litchi chinensis Sonn.). Food Chem. 2003,80:387-392.
    [15] Phillips D A. Flavonoids:Plant signals to soil microbes. In:Phenolic metabolism in plants. Plenum Press, New York. 1992:126-127.
    [16] Mazza G, Miniata E. Anthocyanins in fruits, vegetables, and grains. CRC Press, London. 1993:1-28.
    [17] Dixon R A, Paiva N L.Stress-induced phenylpropanoid metabolism. Plant Cell. 1995,7:1085-1097.
    [18] Sticher L, Mauch-Mani B, Metraux J P. Systemic acquired resistance. Annu. Rev. Phytopathol. 1997,35:325-357.
    [19] Spaink H A. Flavonoids as regulators of plant development: New insights from studies of plant-rhizobia interations. In:Phytochemical signals and plant-microbe interactions. Plenum Press,New York. 1998:312-314.
    [20] Hoch W A, Zeldin E L, McCown B H. Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol. 2001,21:1-8.
    [21] Macheix J J, Fleuriet A.Polyphenolic phenomena. INRA Editions. Paris. 1993:157-163.
    [22] Maga J A. Simple phenol and phenolic compounds in food flavor. CRC Crit Rev Food Sci Nutr. 1978,10:323-372.
    [23] Amiot M J, Fleuriet A, Cheynier V, et al. Phytochemistry of fruits and vegetables. Oxford Science Publications. 1997:51-85.
    [24] Harborne J B. Methods in plant biochemistry. Academic Press, London. 1989:287-292.
    [25] Harborne J B. Comparative biochemistry of flavonoids. Academic Press, London and New York. 1967:331-335.
    [26] Main J H, Clydesdale F M, Francis F J. Spray drying anthocyanin concentrate for use as food colorants. J Food Sci. 1978,43:1693-1698.
    [27] Jackman R L, Smith J L. Natural food colorants. Blackie, Glasgow. 1994:87-89.
    [28] Hostettmann K, Hostettmann M and Marston N. Preparative chromatography techniques. Aplication in natural products isolation. Springer, Berlin and Heidelberg. 1986:207-211.
    [29] Hrazdina G.The Flavonoids advances in research. Chapman&Hall, London. 1982:135-151.
    [30] Strack D, Wray V. Methods in plant biochemistry. Academic Press, London. 1989:325-356.
    [31] Van Sumere C F, Vande Casteele K, De Loose R, et al. The biochemistry of plant phenolics. Clarendon Press, Oxford. 1985:17-43.
    [32] Markham K R. Techniques of flavonoid identification. Academic Press, London. 1982:262-274.
    [33] Harborne J B. The natural distribution in angiosperms of anthocyanins acylated with aliphatic dicarboxylic acids. Phytochem. 1986,25:1887-1890.
    [34] Kondo T, Kawai T, Tamura H, et al. Structure determination of heavenly blue anthocyanin, a complex monomeric anthocyanin from the morning glory ipomoea tricolor, by means of the negative NOE method. Tetrahedron Lett. 1987,28:2273-2276.
    [35] Terahara N, Toki K, Saito N, et al. Structures of campanin and rubrocampanin, two novel acylated anthocyanins with p-hydroxybenzoic acid from the flowers of bellflower. Campanula Medium L, J Chem Soc. 1990:3327-3332.
    [36] Ashcroft A E. Ionization methods in organic mass spectrometry. RSC Analytical Spectroscopy Monographs, Cambridge. 1997:198-203.
    [37] Kaufmann R. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry:a novel analytical tool in molecular biology and biotechnology. J Biotech. 1995,41:155-161.
    [38] Bors W, Heller W, Michel C,et al. Flavonoids as antioxidants: determination ofradical scavenging efficiencies. Meth Enzymol. 1990,186:343-355.
    [39] Rice-Evans C A, Miller N J, Bolwell P G, et al. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Rad Res. 1995,22(4):375-383.
    [40] Jovanovic S V, Steenken S, Tosic M,et al. Flavonoids as antioxidants. J Am Chem Soc. 1994,116:4846-4851.
    [41] Jovanovic S V, Steenken S, Tosic M,et al. Antioxidant potential of gallocatechins. A pulse radiolysis and laser photolysis study. J Am Chem Soc. 1995,117:9881-9888.
    [42] Cao G, Sofic E, Prior R L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Rad Biol Med. 1997,22:749-760.
    [43] Wang H, Cao G, Prior R L. Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem. 1997,45:304-309.
    [44] Morel J, Lescoat G, Cogrel P,et al. Antioxidant and iron chelating activities of the flavonols catechin, quercetin, and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol. 1993,45(1):13-19.
    [45] Afanas'ev I B, Ostrachovitch E A, Abramova N E,et al. Different antioxidant acitvities of bioflavonoid rutin in normal and iron overloaded rats. Biochem Pharmacol. 1995,50(5):627-635.
    [46] Le Nest G, Caille O, Woudstra M, et al. Zn-polyphenol chelation: complexes with quecetin, (+)-catechin, and derivatives: I optical and NMR studies. Inorg Chim Acta. 2004,357:775-784.
    [47] Heinonen I M, Meyer A S, Frankel E N. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J Agric Food Chem. 1998,46:4107-4112.
    [48] Aruoma O I, Murcia A, Butler J,et al. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J Agric Food Chem. 1993,41:1880-1885.
    [49] Cao G, Prior R L. Measurement of anthocyanins in plasma: the direct evidence of their absorption in humans. FASEB J. 1999,13: 885-889.
    [50] Fukumoto L R, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds, J Agric Food Chem. 2000,48:3597-3604.
    [51] Esterbauer H, Gebichi J, Puhl H,et al. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Rad Biol Med. 1992,13:341-390.
    [52] Wulf L W, Nagel C W. High-pressure liquid chromatography separation ofanthocyanins of vitis vinifera. Am J Enol Vitic. 1978,29:42-47.
    [53] Leake D S. Oxidised low density lipoproteins and atherogenesis. Br Heart J. 1993,69:476-478.
    [54] Heinecke J W, Rosen H, Chait A. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest. 1984,74:1890-1894.
    [55] Leake D S, Rankin S M. The oxidative modification of low density lipoproteins by macrophages. Biochem J. 1990,270:741-748.
    [56] Leake D S. Flavonoids in health and disease. Marcel Dekker Inc, New York. 1998:251-257.
    [57] de Whalley C V, Rankin S M, Hoult J R S, et al. Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem Pharmacol. 1990,39:1743-1750.
    [58] Castelluccio C, Paganga G. Melikian N, et al. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Letters. 1995,368:188-192.
    [59] Meyer A S, Donovan J L. Pearson D A, et al. Fruit hydroxycinnamic acids inhibit low-density lipoprotein in vitro. J Agric Food Sci. 1998,46:1783-1787.
    [60] Miura S, Watanabe J, Sano T,et al. Effects of various natural antioxidants on the Cu2+-mediated oxidative modification of low density lipoprotein. Biol Pharm Bull. 1995,18:1-4.
    [61] Schulz J B, Lindenau J, Seyfried J,et al. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem. 2000,267:4904-4911.
    [62] Markesbery W W. Oxidative stress hypothesis in Alzheimer's disease. Free Rad Biol Med. 1997,23:134-147.
    [63] Morrison B M, Morison J H. Amyotrophic lateral sclerosis associated with mutations in superoxide dismutase: a putative mechanism of degeneration. Brain Res Rev. 1999,29:121-135.
    [64] Sian J, Dexter D T, Lees A J,et al. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting the basal ganglia. Ann Neurol. 1994,36:348-355.
    [65] Sian J, Dexter D T, Lees A J,et al. Glutathione-related enzymes in brain in Parkinson's disease. Ann Neurol. 1994,36:356-361.
    [66] Nakao N, Frodl E M, Widner H,et al. Overexpressing Cu/Zn-superoxide dismutase enhances survival of transplanted neurons in a rat model ofParkinson's disease. Nat Med. 1995,1:226-331.
    [67] Selley M L. (E)-4-hydroxy-2-nonenal may be involved in the pathogenesis of Parkinson's disease. Free Radical Biol Med. 1998,25:169-174.
    [68] Roghani M, Behzadi G. Neuroprotective effect of vitamin E in the early model of Parkinson's disease in rat: behavioral and histochemical evidence. Brain Res. 2001,892:211-217.
    [69] Butterfield D A. Beta-amyloid associated free redical oxidative stress and neurotoxicity: Implications for Alzheimer's disease. Chem Res Toxicol. 1997,10:495-506.
    [70] Varadarajan S,Yatin S, Aksenova M, et al. Review: Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol. 2000,130:184-208.
    [71] Schroeter H, Williams R J, Matin R,et al. Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Rad Biol Med. 2000,29:1222-1233.
    [72] Bickford P C, Chadman K, Taglialatela G, et al. Dietary strawberr supplementation protects against the age-accelerated CNS effects of oxidative stress. FASEB J. 1997,11:176-181.
    [73] Dreosti I E. Trace elements, micronutrients and free radicals. Humana Press, Inc. Totowa, 1991:142-143.
    [74] Sun Y, Oberley L W. Redox regulation of transcriptional activators. Free Radical Biol Med. 1996,21:335-348.
    [75] Diplock A T, Charleux J L, Crozier-Willi, et al. Functional food science and defence against reactive oxidative species. Br J Nutr. 1998,80:77-112.
    [76] Duthie G G, Duthie S J, Kyle J A M. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev. 2000,13:79-106.
    [77] Cai Q Y, Rahn R O, Zhang R W. Dietary flavonoids quercetin, luteolin, and genistein reduce oxidative DNA damage and lipid peroxidation and quench free redicals. Cancer Lett. 1997,119:99-107.
    [78] Duthie S J, Dobson V L. Dietary flavonoids protect human colonocyte DNA from oxidative attack in vitro. Euro J Nutr. 1999,38:28-34.
    [79] Duthie S J, Collins A R, Duthie G G,et al. Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage(strand breaks and oxidized pyrimidines) in human lymphocytes. Mutat Res. 1997,393:223-231.
    [80] O'Brien N M, Woods J A, Aherne S A,et al. Cytotoxicity, genotoxicity andoxidative reactions in cell-culture models:modulatory effects of phytochemicals. Biochem Soc Transac. 2000,28:22-26.
    [81] Abalea V, Cillard J, Dubos M P,et al. Repair of iron-induced DNA oxidation by the flavonoid myricetin in primary rat hepatocytes cultures. Free Rad biol Med. 1999,26:1457-1466.
    [82] Bomser J, Madhavi D L, Singletary K,et al. In vitro anticancer activity of fruit extracts from Vaccinium species. Planta Medica. 1996,62:212-216.
    [83] Yoshida M, Yamamoto M, Nikaido T. Quercetin arrests human leukemic T-cells in late G1 phase of the cell cycle. Canc Res. 1992,52:6676-6681.
    [84] Scambia G, Ranelletti F O, Benedetti P P,et al. Quercetin inhibits the growth of a multidrug resistant estrogen-receptor-negative MCF-7 human breast cancer cell line expressing type II estrogen binding sites. Can Chem Pharmacol. 1991,28:255-258.
    [85] Ranelletti F O, Ricci R, Larocca L M,et al. Growth inhibitory effect of quercetin and presence of type II estrogen binding sites in human colon cancer cell lines and primary colorectal tumors. Int J Cancer. 1992,50:486-492.
    [86] Boyle S P, Dobson V L, Duthie S J,et al. Absorption and DNA protective effects of flavonoid glycosides from an onion meal. Euro J Nutr. 2000,39:213-223.
    [87] Beatty E R, O'Reilly J D, England T G,et al. Effect of dietary quercetin on oxidation DNA damage in healthy human subjects. Br J Nutr. 2000,84:919-925.
    [88] 沈同,王镜岩.生物化学.高等教育出版社.1990:31-38.
    [89] 王志忠.螺旋藻多糖提取新工艺的研究及其多糖的分离纯化.内蒙古农业大学硕士学位论文. 2005:1-10.
    [90] Navarini L, Gilli R, Gombac V. Polysaccharide from hot water extracts of roasted Coffea arabica beans: isolation and characterization. Carbohydr Polym. 1999,40: 71-81.
    [91] 王 卫 国 , 赵 永 亮 . 一 种 在 多 糖 分 离 纯 化 过 程 中 新 的 脱 蛋 白 方 法 . 中 草 药 . 2003,34(10):891-895.
    [92] 张 继 . 沙 蒿 多 糖 结 构 及 降 血 糖 作 用 研 究 . 西 北 师 范 大 学 博 士 学 位 论 文 . 2005:10-15.
    [93] Zhu W. Antiviral activities of selected Hong Kong marine algae against herpes simplex viruses and other viruses and their possible antiviral mechanisms. Chinese University of Hong Kong. Doctor dissertation. 2002:1-8.
    [94] 包 东 武 , 赵 永 亮 , 王 卫 国 . 灰 树 花 多 糖 脱 色 技 术 研 究 . 中 国 食 用 菌 . 2003,22(6):49-51.
    [95] Erbing B, Jansson P E, Widmalm G, et al. Structure of the capsular polysaccharide from the Klebsiella K8 reference strain 1015. Carbohydr Res. 1995,273:197-205.
    [96] Guentas L, Pheulpin P, Michaud P, et al. Structure of a polysaccharide from a rhizobium species containing 2-deoxy-β-D-arabino-hexuronic acid. Carbohydr Res. 2001,332:167-173.
    [97] Jimmy M. Structure of an acidic polysaccharide from the marine bacterium Pseudoalteromonas flavipulchra NCIMB 2033T. Carbohydr Res. 2003,338(5):459-462.
    [98] Golovchenko V V, Ovodova R G, Shashkov A S, et al. Structural studies of the pectic polysaccharide from duckweed Lemna minor L.. Phytochem. 2002,60: 89-97.
    [99] Goubet F. Analysis of methylated and unmethylated polygalacturonic acid structure by polysaccharide analysis using carbohydrate gel electrophoresis. Anal Biochem. 2003,321:174-182.
    [100] Sof'ya N S. Structure of the’ 0-polysaccharide of Xanthomonas cassavae GSPB 2137. Carbohy Res. 2004,339(1):157-160.
    [101] Jones C,Whitley C, Lemercinier X. Full assignment of the proton and carbon NMR spectra and revised structure for capsular polysaccharide from Streptococcus pneumoniae type 17F. Carbohydr Res. 2000,325:192-201.
    [102] Sheng S, Cherniak R. Structure of the capsular polysaccharide of Clostridium perfringens Hobbs 10 determined by NMR spectroscopy. Carbohydr Res. 1998,305:65-72.
    [103] Kumar C G, Joo H S, Choi J W, et al. Purification and characterization of extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Microb. 2004,34: 673-681.
    [104] Muldoon J, Shashkov A S, Moran A P, et al. Structures of two polysaccharides of Campylobacter jejuni 81116. Carbohydr Res. 2002,337:2223-2229.
    [105] Fernandez L E, Valiente O G, Mainardi V, et al. Isolation and characterization of an antitumor active agra-type polysaccharide of Gracilaria dominguensis. Carbohydr Res. 1989,190:77-83.
    [106] Franz G. Polysaccharides in pharmacy: current applications and future concepts. Planta Med. 1989,55:493-497.
    [107] Hamasuna R, Eizuru Y, Shishime Y, et al. Protective effect of carrageenan against murine cytomegalovirus infection in mice. Antiviral Chem Chemother.1993,4:353-360.
    [108] Harada H, Noro T, Kamei Y. Selective antitumor activity in vitro from marine algae from Japan Coasts. Biol Pharm Bull. 1997,20:541-546.
    [109] 陈庆伟,陈志桃.枸杞多糖药理作用研究进展.海峡药学. 2005,4:4-7.
    [110] 包文奇,吕美,王志祥.黄芪多糖的药理研究进展.河南农业科学. 2005,4:78-80.
    [111] 韩春姬,李铉万,李莲姬,朴永泉.轮叶党参多糖对小鼠 s_(180)肉瘤的抑制作用.延边大学医学学报. 2000,4:249-250.
    [112] Hasui M, Matsude M, Okutaini K, et al. In vitro antiviral activities of sulfated polysaccharides from a marine microalga against human immunodeficiency virus and other enveloped viruses. Int J Biol Macromol. 1995,17:293-297.
    [113] 戴寿芝 ,文润玲 ,李为等 .枸杞和枸杞多糖与抗衰延寿 .中国老年学杂志 . 1994,1:33-37.
    [114] 冯国宣.抗癌植物资源与天然产物研究.湖北民族学院学报(自然科学版). 2001,3:29-32.
    [115] 梁永欣,潘国庆.黑木耳多糖研究概况.青海师专学报. 2005,4:76-78.
    [116] 王瑞芳,蓝伟光,张世文等.茶叶中有效成分的开发利用进展.亚热带农业研究. 2005,3:64-69.
    [117] 涂 芳 , 杨 芳 , 郑 文 杰 等 . 螺 旋 藻 多 糖 的 研 究 进 展 . 天 然 产 物 研 究 与 开 发 . 2005,1:115-118.
    [118] 黄莹,古英明.低分子肝素在肾衰并活动性出血病人血透中的应用.中国医学物理学杂志. 2005,4:587-588.
    [119] 丁仁凤 ,何普明 ,揭国良 .茶多糖和茶多酚的降血糖作用研究 .茶叶科学 . 2005,3:219-224.
    [120] 葛 玉 , 肖 红 , 张 欣 , 段 玉 峰 . 真 菌 多 糖 的 研 究 开 发 现 状 . 食 品 研 究 与 开 发 . 2005,1:23-25.
    [1] Jiang Y. Role of anthocyanins, polypehnol oxidase and phenols in lychee pericarp browning. J Sci Food Agric. 2000,80:305-310.
    [2] Zhang Z, Pang X, Ji Z, et al. Role of anthocyanin degradation in litchi pericarp browning. Food Chem. 2001,75:217-221.
    [3] Lee H S, Wicker L. Anthocyanin pigments in the skin of lychee fruit. J Food Sci. 1991,56:466-468.
    [4] Qin C, Huang K, Xu H. Isolation and characterization of a novel polysaccharide from the mucus of the loach, Misgurnus anguillicaudatus. Carbohydr Polym. 2002,49:367-371.
    [5] Moreno M I N, Isla M I, Sampietro A R, et al. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol. 2000,71:109-114.
    [6] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956,28: 350-356.
    [7] Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992,40:945-948.
    [8] Jayaprakasha G K, Singh R P, Sakariah K K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001,73:285-290.
    [9] Ghiselli A, Nardini M, Baldi A, et al. Antioxidant activity of different phenolic fractions separated from an Italian red wine. J Agric Food Chem. 1998,46:361-367.
    [10] Robak J, Gryglewski R J. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol. 1988,37:837-841.
    [11] Hertog M G L, Hollman P C H, Katan M B, et al. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr Cancer. 1993,20:21-29.
    [12] Peterson J, Dwyer J, Bhagwat S, et al. Major flavonoids in dry tea. J Food CompAnal. 2005,18:487-501.
    [13] Ewald C, Fjelkner-Modig S, Johansson K, et al. Effect of processing on major flavonoids in processed onions, green beans and peas. Food Chem. 1999,64:231-235.
    [14] Ju Z, Yuan Y, Liu C, et al. Relationships among simple phenol, flavonoid and anthocyanin in apple fruit peel at harvest and scald susceptibility. Postharvest Biol Technol. 1996,8:83-93.
    [15] Lombard K, Peffley E, Geoffriau E, et al. Quercetin in onion (Allium cepa L.) after heat-treatment simulating home preparation. J Food Comp Anal. 2005,18:571-581.
    [16] Price K R, Bacon J R, Rhodes M J C. Effect of storage and domestic processing on the content and composition of flavonol glucosides in onion (Allium cepa). J Agric Food Chem. 1997,45:938-942.
    [17] Price K R, Colquhoun I J, Barnes K A, et al. Composition and content of flavonol glycosides in green beans and their fate during processing. J Agric Food Chem. 1998,46:4898-4903.
    [18] Makris D P, Rossiter J T. Domestic processing of onion bulbs (Allium cepa) and asparagus spears (Asparagus officinalis): effect on flavonol content and antioxidant status. J Agric Food Chem. 2001,49:3216-3222.
    [19] Ioku K, Aoyama Y, Tokuno A, et al. Various cooking methods and the flavonoid content in onion. J Nutr Sci Vitaminol. 2001,47:78-83.
    [20] Javier R L, Cesar O F, Pedro W E. Changes in anthocyanin concentration in lychee (litchi chinensis sonn.) pericarp during maturation. Food Chem. 1999,65:195-200.
    [21] Geetha T, Garg A, Chopra K, et al. Delineation of antimutagenic activity of catechin, epicatechin and green tea extract. Mutat Res. 2004,556:65-74.
    [1] Harborne J B. The natural distribution in angiosperms of anthocyanins acylated with aliphatic dicarboxylic acids. Phytochem. 1986, 25:1887-1892.
    [2] Geetha T, Garg A, Chopra K, et al. Delineation of antimutagenic activity of catechin, epicatechin and green tea extract. Mutat Res. 2004, 556:65-74.
    [3] Macheix J J, Fleuriet A. Phenolic acids in fruits. In:Flavonoids in health and disease. Marcel-Dekker Inc, New York. 1998:241-260.
    [4] Zhang Z Q, Pang X Q, Ji Z L, et al. Role of anthocyanin degradation in litchi pericarp browning. Food Chem. 2001,75:217-221.
    [5] Sin H N, Yusof S, Hamid N A, et al. Optimization of hot water extraction for sapodilla juice using response surface methodology. J Food Eng. 2006,74:352-358.
    [6] Murphy S C, Gilroy D, Kerry J F, et al. Evaluation of surimi, fat and water content in a low/no added pork sausage formulation using response surface methodology. Meat Sci. 2004,66:689-701.
    [7] Giovanni M. Response surface methodology and product optimization. Food Technol. 1983,37:41-45.
    [8] Henika R G. Use of response surface methodology in sensory evaluation. Food Technol. 1982,36:96-101.
    [9] Lee W C, Yusof S, Hamid N S A, et al. Optimizing conditions for hot water extraction of banana juice using response surface methodology (RSM). J Food Eng. 2006,75:473-479.
    [10] Marles M A S. Biochemical and molecular studies of the seed coat of Brassica Carinata (A. Braun.) and other brassicaceae. University of Saskatchewan. Doctor dissertation. 2001:1-7.
    [11] 邓 红 霞 . 笋 壳 和 竹 叶 中 黄 酮 类 物 质 的 提 取 研 究 . 硕 士 学 位 论 文 . 浙 江 大学.2002:3-22.
    [12] Moreno M I N, Isla M I, Sampietro A R, et al. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol. 2000,71: 109-114.
    [13] Jayaprakasha G K, Singh R P, Sakariah K K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001, 73:285-290.
    [14] 杨宝.交联酯化甘薯淀粉研究.硕士学位论文.郑州工程学院.2003:7-11.
    [15] Perva-Uzunalic A, Skerget M, Knez Z, et al. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 2006,96:597-605.
    [16] Li B B, Smith B, Hossain M M. Extraction of phenolics from citrus peels I. Solvent extraction method. Sep Purif Technol. 2006,48:182-188.
    [17] Kallithraka S, Garcia-Viguera C, Bridle P, et al. Survey of solvents for the extraction of grape seed polyphenolics. Phytochem Anal. 1995,6:265-271.
    [18] Sakanaka S, Tachibana Y, Okada Y. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chem. 2005, 89, 569-575.
    [19] Franke A A, Custer L J, Arakaki C, et al. Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. J Food Compo Anal. 2004,17:1-35.
    [20] Cabrera C, Gimenez R, Lopez M C. Determination of tea components with antioxidant activity. J Agric Food Chem. 2003,51:4427-4435.
    [21] 杨宝,赵谋明,李宝珍,彭志英.荔枝壳黄酮类物质的醇提工艺.食品与发酵工业.2005,31:144-146.
    [22] Row K H, Jin Y. Recovery of catechin compounds from Korean tea by solvent extraction. Bioresour Technol. 2006,97:790-793.
    [23] 傅大煦,王玮,程小卫,陈家宽,周铜水.蒲黄的黄酮类成分提取工艺研究.中成药.2005,27:517-520.
    [24] Sun J, Chu Y F, Wu X Z, et al. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem. 2002,50:7449-7456.
    [25] Nawaz H, Shi J, Mittal G S, et al. Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep Purif Technol. 2006,48:176-181.
    [26] Wettasinghe M, Shahidi F. Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted borage (Borago officinalis L.) seeds. Food Chem. 1999,67:399-414.
    [27] Gao L, Mazza G. Extraction of anthocyanin pigments from purple sunflower hulls. J Food Sci. 1996,61:600-603.
    [28] Liyana-Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005,93:47-56.
    [1] Zhang D, Quantick P C, Grigor J M. Changes in phenolic compounds in Litchi (Litchi chinensis Sonn.) fruit during postharvest storage. Postharvest Biol Technol. 2000, 19:165-172.
    [2] Zhang Z Q, Pang X Q, Ji Z L, et al. Role of anthocyanin degradation in litchi pericarp browning. Food Chem. 2001, 75:217-221.
    [3] Li W, Fitzloff J F. High performance liquid chromatographic analysis of St. John’s Wort with photodiode array detection. J Chromatogr B. 2001,765:99-105.
    [4] Vallejo F, Tomas-Barberan F A, Ferreres F. Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromagraphy-UVdiode-array detection electrospray ionisation mass spectrometry. J Chromatogr A. 2004,1054:181-193.
    [5] Klejdus B, Vitamvasova-sterbova D, Kuba V. Identification of isoflavone conjugates in red clover (Trifolium pratense) by liquid chromatography-mass spectrometry after two-dimensional solid-phase extraction. Anal Chim Acta. 2001,450:81-97.
    [6] Lin L Z, He X G, Lindenmaier M, et al. LC-ESI-MS study of the flavonoid glycoside malonates of red clover (Trifolium pratense). J Agric Food Chem. 2000,48:354-365.
    [7] Maciejewicz W, Daniewski M, Bal K, et al. GC-MS identification the flavonoid aglycones isolated from propolis. Chromatographia. 2001,53:343-346.
    [8] Merghem R, Jay M, Brun N, et al. Qualitative analysis and HPLC isolation and identification of procyanidins from Vicia faba. Phytochem Anal. 2004,15:95-99.
    [9] Gallori S, Bilia A R, Bergonzi M C, et al. Polyphenolic constituents of fruit pulp of Euterpe oleracea Mart. (Acai palm). Chromatographia. 2004,59:739-743.
    [10] Middleton E, Kandaswami C. Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol. 1992,43:1167-1179.
    [11] Barbuch R J, Coutant J E, Welsh M B, et al. The use of thermospray liquid chromatography/tandem mass spectrometry for the class identification and structural verification of phytoestrogens in soy protein preparations. Biomed Environ Mass Spectrom. 1989,18:973-977.
    [12] Ma Y L, Vedernikova I, Heuvel H V, et al. Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation. J Am Soc Mass Spectrom. 2000,11:136-144.
    [13] Wang J, Sporn P. Analysis of anthocyanins in red wine and fruit juice using MALDI-MS. J Agric Food Chem. 1999,47:2009-2015.
    [14] Wang J, Sporn P. MALDI-TOF MS analysis of isoflavones in soy products. J Agric Food Chem. 2000,48:5887-5892.
    [15] de Rijke E, Zappey H, Ariese F, et al. Liquid chromatography with atomspheric pressure chemical ionization and electrospray ionization mass spectrometry of flavonoids with triple-quadrupole and ion-trap instruments. J Chromatogr A. 2003,984:45-58.
    [16] Wilson I D, Brinkman U A T. Hyphenation and hypernation: The practice and propects of multiple hyphenation. J Chromatogr A. 2003,1000:325-356.
    [17] Wolfender J L, Ndjoko K, Hostettmann K. Liquid chromatography withultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectrometry: a powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr A. 2003,1000:437-455.
    [18] Joubert E, Winterton P, Britz T J, et al. Superoxide anion and α, α-diphenyl-β-picrylhydrazyl radical scavenging capacity of rooibos ( Aspalathus linearis) aqueous extracts, crude phenolic fractions, tannin and flavonoids. Food Res Int. 2004, 37:133-138.
    [19] Pascale S M, Erwan L R, Christine L G, et al. Phenolic composition of litchi fruit pericarp. J Agric Food Chem. 2000, 48:5995-6002.
    [20] Zhang Z Q, Pang X Q, Yang C, et al. Purification and structural analysis of anthocyanins from litchi pericarp. Food Chem. 2004, 84:601-604.
    [21] Bilia A R, Morelli I, Hamburger M, et al. Flavans and A-type proanthocyanidins from Prunus Prostrata. Phytochem. 1996, 43:887-892.
    [22] Moreno M I N, Isla M I, Sampietro A R, et al. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol. 2000,71:109-114.
    [23] Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992, 40:945–948.
    [24] Ghiselli A, Nardini M, Baldi A, et al. Antioxidant activity of different phenolic fractions separated from an Italian red wine. J Agric Food Chem. 1998, 46: 361-367.
    [25] Robak J, Gryglewski R J. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol. 1988, 37: 837–841.
    [26] Cakir A, Mavi A, Yildirim A, et al. Isolation and characterization of antioxidant phenolic compounds from the aerial parts of Hypericum hyssopifolium L. by activity-guided fractionation. J Ethnopharmacol. 2003, 87:73-83.
    [27] Argolo A C C, Sant’Ana A E G, Pletsch M, et al. Antioxidant activity of leaf extracts from Bauhinia monandra. Bioresour Technol. 2004, 95:229-233.
    [28] Hayder N, Abdelwahed A, Kilani S, et al. Anti-genotoxic and free-radical scavenging activities of extracts from (Tunisian) Myrtus communis. Mutat Res. 2004, 564:89-95.
    [29] Robards K, Antolovich M. Analytical chemistry of fruit bioflavonoids: a review. Analyst. 1997, 122:11-34.
    [30] Lu Y, Foo L Y. Identification and quantification of major polyphenols in applepomace. Food Chem. 1997, 59:187-194.
    [31] Foo L Y, Newman R, Waghorn G, et al. Proanthocyanidins from lotus corniculatus. Phytochem. 1996, 41:617-624.
    [1] Ames N B, Shigenaga M K, Hagen T M. Oxidants, antioxidants, and the degenerative disease of aging. Proc Natl Acad Sci. 1993,90:7915-7922.
    [2] Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004,266:37-56.
    [3] Poli G, Leonarduzzi G, Biasi F, et al. Oxidative stress and cell signalling. Curr Med Chem. 2004,11:1163-1182.
    [4] Halliwell B. Antioxidants in human health and disease. Ann Rev Nutr. 1996,16:33-50.
    [5] Schroeter H, Boyd C, Spencer J P E, et al. MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging. 2002,23:861-880.
    [6] Hughes D A. Effects of dietary antioxidants on the immune function of middle-aged adults. Proc Untr Soc. 1999,58:79-84.
    [7] Lowell J A, Parnes H L, Blackburn G L. Dietary immunomodulation: beneficial effects on oncogenesis and tumor growth. Crit Care Med. 1990,18:145-148.
    [8] Middleton Jr E. Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol. 1998,439:175-182.
    [9] Zhang R, Li Y, Wang W. Enhancement of immune function in mice fed high doses of soy daidzein. Nutr Cancer. 1997,29:24-28.
    [10] Galati G, O’Brien P J. Potential toxicity of flavonoids and other dietary phenolics:significance for their chemopreventive and anticancer properties. Free Radical Biol Med. 2004,37:287-303.
    [11] Lambert J D. Anticancer pharmacology of natural and semi-synthetic lignans from Larrea Tridentata (MOC & SESS) cov. (Zygophyllaceae). The University of Arizona. Doctor dissertation. 2001:19-31.
    [12] Aziz M H, Kumar R, Ahmad N. Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms. Int J Oncol. 2003,23:17-28.
    [13] Jeong W S. Antioxidant and arachidonic acid modulation properties of the exocarp skin of almond (Prunus Amygdalus). The State University of New Jersey. Doctor dissertation. 2002:1-10.
    [14] Chung J Y. Chemopreventive mechanisms of green tea catechins and black tea theaflavins: Modulation of the ras-activated signal transduction pathway. The State University of New Jersey. Doctor dissertation. 2001:1-4.
    [15] Blot W J, McLaughlin J K, Chow W H. Cancer rates among drinkers of black tea. Crit Rev Food Sci Nutr. 1997,37:739-760.
    [16] Hansson L E, Nyren O, Bergstron R, et al. Diet and risk of gastric cancer. A population-based case-control study in Sweden. Int J Cancer. 1993,55:181-189.
    [17] Hakimuddin F. Wine consumption and breast cancer: an evaluation of the effect of grape wine flavonoids on human mammary cell proliferation. The University of Guelph. Master dissertation. 2002:92-98.
    [18] Galati G, Teng S, Moridani M Y, et al. Cancer chemoprevention and apoptosis mechanisms induced by dietary polyphenolics. Drug Metab Drug Interact. 2000,17:311-349.
    [19] Birt D F, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther. 2001,90:157-177.
    [20] Hansen M B, Nielson S E, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth / cell kill. J Immunol Methods. 1989, 119:302-311.
    [21] Bao J S, Cai Y Z, Sun M, et al. Anthocyanins, flavonols and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J Agric Food Chem. 2005,53:2327?2332.
    [22] Lee C H, Yang L, Xu J Z, et al. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 2005,90:735-741.
    [23] Geetha T, Garg A, chopra K, et al. Delineation of antimutagenic activity of catechin, epicatechin and green tea extract. Mutat Res. 2004,556:65-74.
    [24] Havsteen B H. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002,96:67-202.
    [25] Middleton E Jr. Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol. 1998,439:175-182.
    [26] Trnovsky J, Letourneau R, Haggag E, et al. Quercein-induced expression of rat mast cell protease II and accumulation of secretory granules in rat basophilic leukemia cells. Biochem Pharmacol. 1993,46:2315-2326.
    [27] Mullink H, von Blomberg M. Influence of anti-inflammatory drugs on the interaction of lymphocytes and macrophages. Agents Actions. 1980,10:512-515.
    [28] Hornung R L, Young H A, Urba V J, et al. Immunomodulation of natural killer cell activity by flavone acetic: occurrence via induction of interferon alpha/beta. J Natl Cancer Inst. 1988,80:1226-1231.
    [29] Harper J W, Adami G R, Wei N, et al. The p21 cdk-interacting protein cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993,75:805-816.
    [30] Horisberger J D, Jannin P, Reuben M A, et al. The H+-ATPase β-subunit can act as a surrogate for the β-subunit of Na+/K+-pumps. J Biol Chem. 1991,266:19131-19134.
    [31] Khan S G, Katiyar S K, Agarwal R, et al. Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention. Cancer Res. 1992,52:4050-4052.
    [32] Valerio Jr L G, Kepa J K, Pickwell G V, et al. Induction of human NAD(P)H: quinone oxidoreductase (NQO1) gene expression by the flavonol quercetin. Toxicol Lett. 2001,119:49-57.
    [33] 毛玉昌.沙棘籽渣黄酮对人乳腺癌细胞增殖抑制和凋亡诱导的研究.华东理工大学.硕士学位论文.2005:14-19.
    [34] Srivastava S P, Kumar K U, Kaufman R J. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J Biol Chem. 1998,273:2416-2423.
    [35] Spector M, O’Neal S, Racker E. Reconstitution of the Na+/K+ -Pump of Ehrlich ascites tumor and enhancement of effeciency by quercetin. J Biol Chem. 1980,255:5504-5507.
    [36] Zeva D T, Duwe G. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr Cancer.1997,27:31-40.
    [37] Markaverich B M, Roberts R R, Alejandro G A, et al. Bioflavonoid interaction with rat uterine type II binding sites and cell growth inhibition. J Steroid Biochem. 1988,30:71-78.
    [38] Ranelletti F O, Larocca L M, Maggian O N, et al. Growth-inhibitory effect of quercetin and presence of type II estrogen binding sites in human colon-cancer cell lines and primary colorectal tumors. Int J Cancer. 1992,50:486-492.
    [39] Kioka N, Hostkawa N, Komano T, et al. Quercetin, a bioflavonoid, inhibits the increase of human multi-drug resistance gene (MDR 1) expression caused by arsenite. FEBS Lett. 1992,301:307-309.
    [1] Furuta H, Maeda H. Rheological properties of water-soluble soybean polysaccharides extracted under weak acidic condition. Food Hydrocolloids. 1999,13:267-274.
    [2] Tine M A S, de Lima D U, Buckeridge M S. Galacotose branching modulates the action of cellulase on seed storage xyloglucans. Carbohydr Polym. 2003,52:135-141.
    [3] Hromadkova Z, Ebringerova A, Valachovic P. Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.). Ultrason Sonochem. 2002,9:37-44.
    [4] Hensel A, Schmidgall J, Kreis W. The plant cell wall-A potential source for pharmacologically active polysaccharides. Pharm Acta Helvetiae. 1998,73:37-43.
    [5] Lo Y M, Yang S T, Min D B. Kinetic and feasibility studies of ultrafiltration of viscous xanthan gum fermentation broth. J Membr Sci. 1996,117:237-249.
    [6] Ramesh H R, Tharanathan R N. Water-extracted polysaccharides of selected cereals and influence of temperature on the extractability of polysaccharides in sorghum. Food Chem. 1999,64:345-350.
    [7] Sun R C, Fang J M, Goodwin A, et al. Fractionation and characterization of polysaccharides from abaca fibre. Carbohydr Polym. 1998,37:351-359.
    [8] Staub A M. Removal of proteins from polysaccharides. Methods in Carbohydr Chem. 1965,5:5-7.
    [9] Ramadas Bhat U, Tharanathan R N. Fractionation of okra mucilage and structural investigation of an acidic polysaccharide. Carbohydr Res. 1986,148:143-147.
    [10] Williams D L, McNamee R B, Jones E L, et al. A method for the solubilization of a (1-3)-β-glucan isolated from Saccharomyces cerevisiae. Carbohydr Res. 1991,219:203-213.
    [11] Qin C, Huang K, Xu H. Isolation and characterization of a novel polysaccharide from the mucus of the loach, Misgurnus anguillicaudatus. Carbohydr Polym, 2002,49:367-371.
    [12] 杨宝.交联酯化甘薯淀粉研究. 郑州工程学院.硕士学位论文. 2003:7-11.
    [13] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956,28:350-356.
    [14] 杨宝,赵谋明,李宝珍等. 荔枝壳活性成分提取工艺条件研究.食品与机械.2004,20:28~30.
    [15] Oosterveld A, Harmsen J S, Voragen A G J, et al. Extraction and characterization polysaccharides from green and roasted Coffea arabica beans. Carbohydr Polym. 2003,52:285-296.
    [1] Magdalena L B, Elvira L T, Susana B. Improved size-exclusion high-performance liquid chromatographic method for the simple analysis of grape juice and wine polysaccharides. J Chromatogr A. 1998, 823:339-347.
    [2] Ayestaran B, Guadalupe Z, Leon D. Quantification of major grape polysaccharides (Tempranillo v.) released by maceration enzymes during the fermentation process. Anal Chimica Acta. 2004,513:29-39.
    [3] Lu Rong, Yoshida T. Structure and molecular weight of Asian lacquer polysaccharides. Carbohydr Polym. 2003,54:419-424.
    [4] Erbing B, Jansson P E, Widmalm G, et al. Structure of capsular polysaccharide from the Klebsiella K8 reference strain 1015. Carbohydr Res. 1995,273:197-205.
    [5] Tine M A S, de Lima D U, Buckeridge M S. Galacotose branching modulates the action of cellulase on seed storage xyloglucans. Carbohydr Polym. 2003,52:135-141.
    [6] Golovchenko V V, Ovodova R G, Shashkov A S, et al. Structural studies of the pectic polysaccharide from duckweed Lemna minor L. Phytochem. 2002,60:89-97.
    [7] Odonmazig P, Badga D, Ebringerova A, et al. Structures of pectic polysaccharides isolated from the Siberian apricot (Armaniaca Siberica Lam.). Carbohydr Res. 1992,226:353-358.
    [8] Wang Q J, Fang Y Z. Analysis of sugars in traditional Chinese drugs. J Chromatogr B, Anal Technol Biomed Life. 2004,812:309-324.
    [9] Vinogradov E. Structure of the O-specific polysaccharide chain of the lipopolysaccharide of Bordetella hinzii. Carbohydr Res. 2002,337:961-963.
    [10] Chiovitti A, Bacic A, Craik D J, et al. Cell-wall polysaccharides from Australian red algae of the family Solieriaceae (Gigartinales, Rhodophyta): novel, highly pyruvated carrageenans from the genus Callophycus. Carbohydr Res. 1997,299:229-243.
    [11] Muldoon J, Shashkov A S, Moran A P, et al. Structure of two polysaccharides of Campylobacter jejuni 81116. Carbohydr Res. 2002, 337, 2223-2229.
    [12] Zhang M, Zhang L, Cheung P C K, et al. Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of Pleurotus tuber-regium. Carbohydr Polym. 2004,56:123-128.
    [13] Xu H X, Lee S H S, Lee S F, et al. Isolation and characterization of an anti-HSV polysaccharide from Prunella vulgaris. Antiviral Res. 1999,44:43-54.
    [14] Chen H X, Zhang M, Xie B J. Components and antioxidant activity of polysaccharide conjugate from green tea. Food Chem. 2005,90:17-21.
    [15] Zhang Q B, Li N, Zhou G F, et al. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res. 2003,48:151-155.
    [16] Luo Q, Cai Y Z, Yan J, et al. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci. 2004,76:137-149.
    [17] Strickland F M. Immune regulation by polysaccharides: implications for skin cancer. J Photochem Photobiol B: Biol. 2001,63:132-140.
    [18] Sun R C, Fang J M, Goodwin A, et al. Fractionation and characterization of polysaccharides from abaca fibre. Carbohydr Polym. 1998,37:351-359.
    [19] Yamaguchi F, Ota Y, Hatanaka C. Extraction and purification of pectic polysaccharides from soybean okara and enzymatic analysis of their structures. Carbohydr Polym. 1996,30:265-273.
    [20] Tanizaki M M, Garcia L R, Ramos J B, et al. Purification of meningococcal group C polysaccharide by a procedure suitable for scale-up. J Microbiol Methods. 1996,27:19-23.
    [21] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956,28:350-356.
    [22] Pelkonen S, Finne J. Polyacrylamide gel electrophoresis of capsular polysaccharides of bacteria. Methods in Enzym. 1989,179:104-110.
    [23] 王坚,高向东,沈玲.富锗金针菇多糖的分离纯化及结构的初步鉴定.传染病药学.2002,12:1-4.
    [24] Erbing b, Jansson P E, Widmalm G, et al. Structure of the capsular polysaccharide from the Klebsiella K8 reference strain 1015. Carbohydr Res. 1995,273:197-205.
    [25] Guentas L, Pheulpin P, Michaud P, et al. Structure of a polysaccharide from a rhizobium species containing 2-deoxy-β-D-arabino-hexuronic acid. CarbohydrRes. 2001,332:167-173.
    [26] Yamamoto Y, Nunome T, Yamauchi R, et al. Structure of an exocellular polysaccharide of Lactobacillus helveticus TN-4, a spontaneous mutant strain of Lactobacillus helveticus TY1-2. Carbohydr Res. 1995,275:319-332.
    [27] Kumar C G, Joo H S, Choi J W, et al. Purification and characterization of extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme and Microb Technol. 2004,34:673-681.
    [28] Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 1992,40:945-948.
    [29] Robak J, Gryglewski R J. Flavonoids are scavengers of superoxide anions. Biochem Pharmacol. 1988,37:837-841.
    [30] 莫永炎,陈瑗,周玫等.云芝多糖对脑、肝组织的抗氧化作用研究.中国药理学通报.2001,17:628-631.
    [31] 何云庆,李荣芷,蔡廷威等.灵芝肽多糖的化学研究.中草药.1994,8:395-397.
    [32] 白 日 霞 , 张 翼 伸 . 碱 提 水 溶 小 皮 伞 多 糖 B3 的 研 究 . 生 物 化 学 杂志.1994,10:305-307.
    [33] Kumar C G, Joo H S, Choi J W, et al. Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Microb Technol. 2004,34:673-681.
    [34] Santhiya D, Subramanian S, Natarajan K A. Surface chemical studies on sphalerite and galena using extracellular polysaccharide isolated from Bacillus polymyxa. J Colloid Interface Sci. 2002,256:237-248.
    [35] Chiovitti A, Bacic A, Craik D J, et al. Cell-wall polysaccharide from Australian red algae of the family Solieriaceae (Gigartinales, Rhodophyta): novel, highly pyruvated carrageenans from the genus Callophycus. Carbohydr Res. 1997,299:229-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700