α_1、β肾上腺素受体调控快激活延迟整流钾电流的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景室性心律失常往往继发于运动和情绪激动等交感神经兴奋的情况下,循环及组织局部儿茶酚胺浓度的增高改变了心肌细胞离子通道的特性,是导致恶性室性心律失常发生的重要原因。心肌细胞膜上分布着大量离子通道,作为参与心肌细胞动作电位的主要电流,快激活延迟整流钾电流I__kr是心肌细胞复极化的主要电流,它的抑制可使动作电位时程延长。编码人类快激活延迟整流钾电流α亚单位的基因为hERG基因,该通道的基因突变导致的I__kr电流减少是遗传性长QT综合征-2(LQTS-2)的发病因素。另外,hERG基因是临床广泛应用的I__I__I__类抗心律失常药物的作用靶点之一。许多抗心律失常药物及非抗心律失常药物对hERG通道的过度抑制是获得性长QT综合征的主要发病机制。由运动或情绪激动引起的交感神经兴奋激活心肌细胞的α和β肾上腺素受体。目前至少有9种肾上腺素受体已被明确:α1A、α1B、α1D、α2A、α2B、α2C、β1、β2及β3。人类心肌细胞上主要为α1及β肾上腺素受体,近期研究表明α1和β肾上腺素受体激活后可调控hERG/I__kr电流的大小,但α1及β肾上腺素受体通过何种亚型调控hERG/I__kr电流以及确切的调控机制尚需进一步的研究来阐明。
     目的采用全细胞膜片钳技术研究α1和β肾上腺素受体及其亚型对豚鼠心室肌细胞快激活延迟整流钾电流的调控及可能的机制,探讨应激触发室性心律失常发生的机制。
     内容与方法
     1.成年豚鼠心室肌细胞的分离:雄性豚鼠,体重250-300g,采用Langendorff灌流装置逆行灌流心脏,酶解分离出单个心室肌细胞。
     2.豚鼠心室肌细胞快激活延迟整流钾电流(I__kkr)的记录:分离出的细胞悬液置于细胞池中,采用全细胞方式膜片钳技术记录豚鼠心室肌细胞的快激活延迟整流钾电流。膜片钳参数为:钳制电压-40mv,预刺激从-40mv至+40mv,脉宽200ms,刺激从相应电压降至-40mv,脉宽600ms,记录I__kr尾电流。
     3.α1肾上腺素受体激活对豚鼠心室肌细胞I__kkr电流的调控:
     3.1.α1肾上腺素受体激活对I__kkr电流的影响:持续灌流含有选择性α1肾上腺素受体激动剂苯肾上腺素(0.0001μmol/L-100μmol/L)的细胞外液,记录苯肾上腺素灌流前后的I__kr电流。分别由灌流系统持续灌流含有哌唑嗪(α1肾上腺素受体阻断剂)或5-甲基乌拉地尔(α1A肾上腺素受体阻断剂)或chlorethylclonidine(α1B肾上腺素受体阻断剂)或BMY7378(α1D肾上腺素受体阻断剂)的细胞外液;再给予苯肾上腺素干预,记录苯肾上腺素灌流前后的I__kr电流。
     3.2.蛋白激酶A和蛋白激酶C在α1肾上腺素受体激动剂影响I__kkr电流中的作用:分离出的单个心室肌细胞室温分别与特异性蛋白激酶A(PKA)抑制剂KT5720(2.5μmol/L)或特异性蛋白激酶C(PKC)抑制剂chelerythrine(1μmol/L)共同孵育1小时后灌流含有苯肾上腺素的细胞外液,记录苯肾上腺素灌流前后的I__kr电流。
     4.β肾上腺素受体激活对豚鼠心室肌细胞I__kkr电流的调控:
     4.1.β肾上腺素受体激活对I__kkr电流的影响:持续灌流含有非选择性β肾上腺素受体激动剂异丙肾上腺素(0.001μmol/L-100μmol/L)的细胞外液,记录异丙肾上腺素灌流前后的I__kr电流。分别由灌流系统持续灌流含有普萘洛尔(β肾上腺素受体阻断剂)或CGP20712A(β1肾上腺素受体阻断剂)或I__CI__118551(β2肾上腺素受体阻断剂)的细胞外液;再给予异丙肾上腺素干预,记录异丙肾上腺素灌流前后的I__kr电流。
     4.2.β1肾上腺素受体激动剂对I__kkr电流的影响:持续灌流含有选择性β1肾上腺素受体激动剂扎莫特罗(0.01μmol/L-100μmol/L)的细胞外液,记录扎莫特罗灌流前后的I__kr电流。
     4.3.蛋白激酶A、蛋白激酶C、磷脂酶C和钙/钙调蛋白依赖性蛋白激酶在β1肾上腺素受体激动剂影响I__kkr电流中的作用:分离出的单个心室肌细胞分别用特异性PKA抑制剂KT5720(2.5μmol/L)或特异性PKC抑制剂chelerythrine(1μmol/L)或特异性PLC抑制剂U73122(100nmmol/L)孵育1小时或特异性CaMKI__I__抑制剂KN93(10μmol/L)孵育30小时,灌流含有扎莫特罗的细胞外液,记录扎莫特罗灌流前后的I__kr电流。
     5.α1和β肾上腺素受体在调控I__kr电流中的交互作用
     5.1.急性激活α1肾上腺素受体对β肾上腺素受体激动剂调控I__kkr电流的影响:先灌流含有苯肾上腺素的细胞外液10min,记录苯肾上腺素灌流前后的I__kr电流;再灌流含有异丙肾上腺素的细胞外液10min,记录异丙肾上腺素作用后的I__kr电流。
     5.2.急性激活β肾上腺素受体对α1肾上腺素受体激动剂调控I__kkr电流的影响:先灌流含有异丙肾上腺素的细胞外液10min,记录异丙肾上腺素灌流前后的I__kr电流。再灌流含有苯肾上腺素的细胞外液10min,记录苯肾上腺素作用后的I__kr电流。
     结果
     1.豚鼠心室肌细胞I__kkr电流的记录:用全细胞膜片钳技术可记录到豚鼠心室肌细胞的I__kr尾电流,该电流可被1μmol/L的多非立特完全阻断。I__kr电流受温度影响,当灌流槽温度由22℃逐渐升高至37℃,I__kr电流亦逐渐增大。当预刺激电压为+40mV时,I__kr电流电流密度由22℃时的0.28±0.07pA/pC增加到37℃时的0.62±0.07pA/pC。
     2.α1肾上腺素受体激活对豚鼠心室肌细胞I__kkr电流的调控:
     2.1.α1肾上腺素受体及其亚型对豚鼠心室肌细胞I__kr电流的影响:选择性α1上腺素对I__kr电流的减低作用;而β2肾上腺素受体阻断剂I__CI__118551不能减弱异丙肾上腺素对I__kr电流的减低作用。
     3.2.β1肾上腺素受体对豚鼠心室肌细胞I__kkr电流的影响:选择性β1肾上腺素受体激动剂扎莫特罗也可剂量依赖性地降低I__kr电流。依次灌流含0.01、0.1、1、10、100μmol/L的扎莫特罗可使I__kr电流降为原来的基础电流大小的0.96±0.12、0.85±0.13、0.67±0.12、0.59±0.10、0.55±0.11。开始即灌流10μmol/L扎莫特罗可使I__kr电流减低到基础电流大小的0.56±0.04。
     3.3.蛋白激酶A、磷脂酶C/蛋白激酶C和钙/钙调蛋白依赖性蛋白激酶在β1肾上腺素受体激动剂影响I__kkr电流中的作用:(1)正常对照组(细胞未用任何蛋白酶抑制剂预处理):10μmol/L扎莫特罗可使I__kr电流减低到原基础电流大小的0.56±0.04。(2)KT5720组(细胞先用特异性PKA抑制剂KT5720预孵育1小时):10μmol/L扎莫特罗能使I__kr电流减低到基础电流大小0.87±0.03,与正常对照组相比有明显统计学差异。(3)U73122组(细胞先用PLC抑制剂U73122预孵育1小时):10μmol/L扎莫特罗能使I__kr电流减低到基础电流大小的0.91±0.07,与正常对照组相比有明显统计学差异。(4)Chelerythrine组(细胞先用特异性PKC抑制剂chelerythrine预孵育1小时):10μmol/L扎莫特罗仅能使I__kr电流减低到基础电流大小的0.71±0.01,与正常对照组相比有明显统计学差异。(5)KN93组(细胞用特异性CaMKI__I__抑制剂KN93预孵育30分钟):10μmol/L扎莫特罗仍能使I__kr电流减低到原电流大小的0.68±0.07,与正常对照组相比相比无统计学差异。
     4.α1和β肾上腺素受体在调控豚鼠心室肌细胞I__kkr电流中的交互作用:
     4.1.急性激活α1肾上腺素受体对β肾上腺素受体激动剂调控I__kkr电流的影响:若细胞未先加用α1肾上腺素受体激动剂苯肾上腺素,β肾上腺素受体激动剂异丙肾上腺素能使I__kr电流降为基础电流大小的0.55±0.06。若细胞先加用苯肾上腺素,异丙肾上腺素则不能降低I__kr电流的大小,提示α1肾上上腺素对I_kr电流的减低作用;而β2肾上腺素受体阻断剂I_CI_118551不能减弱异丙肾上腺素对I_kr电流的减低作用。
     3.2.β1肾上腺素受体对豚鼠心室肌细胞I_kkr电流的影响:选择性β1肾上腺素受体激动剂扎莫特罗也可剂量依赖性地降低I_kr电流。依次灌流含0.01、0.1、1、10、100μmol/L的扎莫特罗可使I_kr电流降为原来的基础电流大小的0.96±0.12、0.85±0.13、0.67±0.12、0.59±0.10、0.55±0.11。开始即灌流10μmol/L扎莫特罗可使I_kr电流减低到基础电流大小的0.56±0.04。
     3.3.蛋白激酶A、磷脂酶C/蛋白激酶C和钙/钙调蛋白依赖性蛋白激酶在β1肾上腺素受体激动剂影响I_kkr电流中的作用:(1)正常对照组(细胞未用任何蛋白酶抑制剂预处理):10μmol/L扎莫特罗可使I_kr电流减低到原基础电流大小的0.56±0.04。(2)KT5720组(细胞先用特异性PKA抑制剂KT5720预孵育1小时):10μmol/L扎莫特罗能使I_kr电流减低到基础电流大小0.87±0.03,与正常对照组相比有明显统计学差异。(3)U73122组(细胞先用PLC抑制剂U73122预孵育1小时):10μmol/L扎莫特罗能使I_kr电流减低到基础电流大小的0.91±0.07,与正常对照组相比有明显统计学差异。(4)Chelerythrine组(细胞先用特异性PKC抑制剂chelerythrine预孵育1小时):10μmol/L扎莫特罗仅能使I_kr电流减低到基础电流大小的0.71±0.01,与正常对照组相比有明显统计学差异。(5)KN93组(细胞用特异性CaMKI_I_抑制剂KN93预孵育30分钟):10μmol/L扎莫特罗仍能使I_kr电流减低到原电流大小的0.68±0.07,与正常对照组相比相比无统计学差异。
     4.α1和β肾上腺素受体在调控豚鼠心室肌细胞I_kkr电流中的交互作用:
     4.1.急性激活α1肾上腺素受体对β肾上腺素受体激动剂调控I_kkr电流的影响:若细胞未先加用α1肾上腺素受体激动剂苯肾上腺素,β肾上腺素受体激动剂异丙肾上腺素能使I_kr电流降为基础电流大小的0.55±0.06。若细胞先加用苯肾上腺素,异丙肾上腺素则不能降低I_kr电流的大小,提示α1肾上腺素受体激活可抑制β肾上腺素受体激活对I_kr电流的降低作用。4.2.急性激活β肾上腺素受体对α1肾上腺素受体激动剂调控I_kkr电流的影响:细胞若未预先加用β肾上腺素受体激动剂异丙肾上腺素,α1肾上腺素受体激动剂苯肾上腺素能使I_kr电流降为基础电流大小的0.58±0.04。若细胞先加用了异丙肾上腺素,苯肾上腺素能使I_kr电流降为基础电流大小的0.80±0.02,提示β肾上腺素受体激活可减弱α1肾上腺素受体激活对I_kr电流的降低作用。
     结论
     1.α1肾上腺素受体激活可浓度依赖性地减弱豚鼠心肌细胞的I_kr电流,此作用主要通过α1A肾上腺素受体介导。
     2.特异性PKA和PKC抑制剂均可减弱苯肾上腺素对I_kr电流的降低作用,提示α1A受体激活对I_kr电流的调控依赖于PKA以及PKC的激活。
     3.β肾上腺素受体激活可剂量依赖性地减弱豚鼠心肌细胞的I_kr电流,此作用主要通过β1肾上腺素受体介导。
     4.β1肾上腺素受体的瞬时激活对I_kr电流的调控作用依赖于PKA、PLC以及PKC的激活,而与CaMKI_I_的激活无关。
     5.α1肾上腺素受体激活可抑制β肾上腺素受体激活对I_kr电流的降低作用,β肾上腺素受体激活亦可减弱α1肾上腺素受体激活对I_kr电流的降低作用;提示α1和β肾上腺素受体在对I_kr电流的调控上可能存在交互作用。
Background Ventricular arrhythmias are often precipitated by physical oremotional stress. An increased release of the endogenous catecholamines changes thecharacteristics of ionic currents in the cardiomyocytes, which is an important reasonfor ventricular arrhythmia. There are many ionic currents in the cardiomyocytemembrane. The rapid component of the delayed rectifier potassium current, Ikr, is themajor outward current involved in ventricular repolarization and inhibiton of Ikr maylead to action potential duration prolongation. The human ether-a-go-go-related gene(hERG) encodes the voltage-gated potassium channelα-subunit underlying Ikr.Reduction of hERG currents due to mutations in hERG produces congenital long QTsyndrome (LQTS-2). On the other hand, hERG channels are a primary target for thepharmacological management of cardiac arrhythmias with class III antiarrhythmicagents. Excessive blockade of hERG channels by antiarrhythmic or nonantiarrhythmicdrugs may lead to acquired long QT syndrome (aLQTS). Stimulationof the sympathetic nervous system (SNS) in response to exercise or emotional stresscauses stimulation of adrenergic receptors. At least nine adrenoceptor subtypes havebeen identified:α1A,α1B,α1D,α2A,α2B,α2C,β1,β2 andβ3. In human heart, the mainlypresence of adrenoceptor subtypes areα1 andβadrenoceptors. Recent investigationsrevealed that the rapid component of the delayed rectifier potassium current may beinhibited by eitherα1 orβadrenergic stimulation. However, the effects of adrenergicreceptor subtypes on the Ikr and the underlying mechanisms need further study.
     Objectives 1. Whole-cell patch clamp techniques were used to investigate the regulation of Ikr in guinea pig cardiomyocytes byα1 andβadrenergic receptor andtheir subtypes. 2. Their underlying signal pathway involved in Ikr were studied,which may help us to study the mechanism that stress induced ventriculararrhythmias.
     MaterialMaterials and Methods
     1. Myocyte isolation: Single ventricular myocytes were isolated from male guineapig(weighted 250-300g)hearts using a standard enzymatic technique withLangendorff perfusion.
     2. Patch clamp recording of Ikr tail currents in guinea pig ventricular myocytes:Isolated ventriular myocytes were placed in experimental chammber and wholecellpatch clamp recording technique was used to record Ikr. Ikr was elicited usingthe following test pulse protocol: after a holding potential of ?40 mV, test pulseswere applied at various voltages from ?40mV to +40mV (step width 20 mV, stepduration 200 ms) before returning to ?40mV for tail current recording.
     3. Regulation of Ikr currents byα1-adrenergic stimulation.
     3.1.α1-adrenergic effects on Ikr currents: Ikr currents were recorded before andafter application of specificα1-adrenergic receptor agonist phenylephrine(0.0001μmol/L-100μmol/L). The ventricular myocytes were applicatedprazosin (α1-adrenergic antagonist), 5-MU (α1A-adrenergic antagonist),chloroethylclonidine (α1B-adrenergic antagonist) or BMY7378 (α1Dadrenergicantagonist) respectively before phenylephrine application and Ikrcurrents were recorded before and after application of phenylephrine.
     3.2. Role of protein kinase A (PKA) and protein kinase C (PKC) inα1-adrenergic effects on Ikr currents: The ventricular myocytes werepretreated with specific PKA inhibitor (KT5720, 2.5μmol/L) or specific PKC inhibitor (chelerythrine, 1μmol/L) for 1 hour. Then Ikr currents wererecorded before and after application of phenylephrine.
     4. Regulation of Ikr currents byβ-adrenergic stimulation.
     4.1.β-adrenergic effects on Ikr currents: Ikr currents were recorded before andafter application of unspecificβ-adrenergic receptor agonist isoproterenol(0.001μmol/L-100μmol/L). The ventricular myocytes were applicatedpropranolol (β-adrenergic antagonist), CGP20712A (β1-adrenergicantagonist) or ICI118551 (β2-adrenergic antagonist) before isoproterenolapplication and Ikr currents were recorded before and after application ofisoproterenol.
     4.2.β1-adrenergic effects on Ikr currents: Ikr currents were recorded before andafter application of specificβ1-adrenergic receptor agonist xamotorol (0.01μmol/L-100μmol/L).
     4.3. Role of protein kinase A (PKA), phospholipase C (PLC) protein kinase C(PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII) inβ1-adrenergic effects on Ikr currents: Cardiomyocytes were pretreated withspecific PKA inhibitor (KT5720, 2.5μmol/L), specific PLC inhibitior(U73122, 100nmol/L), specific PKC inhibitor (chelerythrine, 1μmol/L) for1 hour respectively, or specific CaMKII inbitor KN93 (10μmol/L) for 30minutes. Then, Ikr currents were recorded before and after application ofβ1-adrenergic receptor agonist xamotorol.
     5. Cross talk betweenα1 andβadrenergic effects on Ikr currents.
     5.1. Effects of isoproterenol on Ikr in the presence of phenylephrine: Theventricular myocytes were application of phenylephrine for 10 min beforeapplication of isoproterenol. Ikr currents were recorded before and afterapplication of phenylephrine and after application of isoproterenol.
     5.2. EffectEffects of phenylephrine on Ikr in the presence of isoproterenol: Theventricular myocytes were application of isoproterenol for 10 min beforeapplication of phenylephrine. Ikr currents were recorded before and afterapplication of isoproterenol and after application of phenylephrine.
     Results
     1. Patch clamp recording of Ikr tail currents in guinea pig ventricular myocytes: Ikrtail current of guinea pig ventricular myocyte was recorded using whole cell patchclamp and it can be completely blocked by 1μmol/L dofetilide. Ikr tail currents aremarkedly sensitive to temperature changes. The Ikr tail current density at +40 mVincreased from 0.28±0.07 pA/pC at 22°C to 0.62±0.07 pA/pC at 37°C.
     2. Regulation of Ikr currents byα1-adrenergic stimulation.
     2.1.α1-adrenergic effects on Ikr currents: The dose-dependent effect ofphenylephrine, anα1-adrenoreceptor agonist, on Ikr was examined infreshly isolated guinea pig ventricular myocytes. The amplitude of Ikr wasreduced to 0.67±0.03 in response to 0.1μmol/L phenylephrine. This effect wasblocked by theα-adrenoreceptor antagonist prazosin and the selectiveα1Aadrenoreceptorantagonist 5-MU, but not by theα1B-adrenoreceptor antagonistchlorethylclonidine or theα1D-adrenoreceptor antagonist BMY7378.
     2.2. Role of protein kinase A (PKA) and protein kinase C (PKC) inα1-adrenergic effects on Ikr currents: When cardiomyocytes were pretreatedwith chelerythrine or KT5720 for 1 hour, the amplitude of Ikr was reduced to0.98±0.02 and 0.77±0.03 respectively in response to 0.1μmol/L phenylephrine.By comparison, phenylephrine elicited a reduction to 0.67±0.03 on Ikr in theabsence of chelerythrine and KT5720.
     3. Regulation of Ikr currents byβ-adrenergic stimulation.
     3.1.β-adrenergi-adrenergic effects on Ikr currents: The dose-dependent effect ofisoproterenol, a nonspecificβ-adrenoreceptor agonist, on Ikr was alsoexamined in freshly isolated guinea pig ventricular myocytes. The amplitudeof Ikr was reduced to 0.62±0.03 in response to 10μmol/L isoproterenol. Thiseffect was blocked by theβ-adrenoreceptor antagonist propranolol and theselectiveβ1-adrenoreceptor antagonist CGP20712A, but not by theβ2-adrenoreceptor antagonist ICI118551.
     3.2.β1-adrenergic effects on Ikr currents: Stimulation ofβ1-adrenergic receptorsusing xamotorol also reduced Ikr current in a dose-dependent manner. 10μmol/L xamotorol decreased Ikr current to 0.56±0.04.
     3.3. Role of protein kinase A (PKA), phospholipase C (PLC) protein kinase C(PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII) inβ1-adrenergic effects on Ikr currents: When xamotorol was combined withKT5720 (2.5μmol/L), a specific inhibitor of PKA, the inhibitory effect wasdrastically reduced. The amplitude of Ikr relative current was reduced to0.87±0.03, it was significantly different from xamotorol elicited a reductionto 0.56±0.04 on Ikr in absence of KT5720. When cardiomyocytes were pretreatedwith PLC inhibitor, U73122 (100 nmol/L) or a general PKC inhibitor,chelerythrine (1μmol/L) for 1 hour prior to the recording the xamotoroleffect on Ikr. Xamotorol inhibited Ikr to 0.91±0.07 or 0.71±0.01, respectivelyin the presence of U73122 or chelerythrine. They were both significantlydifferent from xamotorol elicited a reduction to 0.56±0.04 on Ikr in theabsence of chelerythrine and U73122. When cardiomyocytes were pretreatedwith KN93 (10μmol/L for 30 minutes), a synthetic CaMKIIinhibitor, the inhibitory effect of xamotorol on Ikr was unaffected by KN93,xamotorol inhibited Ikr to 0.68±0.07 compared to 0.56±0.04 without KN93.
     4. Cross talk betweenα1 andβadrenergic effects on Ikr currents.
     4.1. Effects of isoproterenol on Ikr in the presence of phenylephrine: Whencardiomyocytes were firstly acute stimulated by phenylephrine, anα1-adrenoreceptor agonist, the Ikr tail currents were not decreased byisoproterenol, aβ-adrenoreceptor agonist. In an other word, isoproterenol cannot reduce Ikr tail currents in cardiomyocytes pretreated with phenylephrinebefore. It was significantly different from the cardiomyocytes not firstly acutestimulated by phenylephrine group.
     4.2. Effects of phenylephrine on Ikr in the presence of isoproterenol: Whencardiomyocytes were firstly acute stimulated by isoproterenol, aβ-adrenoreceptor agonist, the Ikr tail currents were only deceased to 0.80±0.02by phenylephrine, anα1-adrenoreceptor agonist, which was significantlydifferent from the cardiomyocytes not firstly acute stimulated by isoproterenolgroup.
     Conclusions
     1. Phenylephrine, anα1-adrenoreceptor agonist, can reduce Ikr current in a dosedependentmanner. This effect is mediated by theα1A-adrenoreceptor subtyperather than otherα1-adrenoreceptor subtypes.
     2. When cardiomyocytes were pre-treated with chelerythrine or KT5720 for 1 hour,both chelerythrine and KT5720 drastically reduced the phenylephrine-inducedeffects, indicating possible involvement of PKC and PKA in theα1-adrenergicinhibition of Ikr.
     3. Isoproterenol reduced Ikr current in a dose-dependent manner. This effect ismediated byβ1-adrenoreceptor subtype rather than otherβ2-adrenoreceptorsubtype.
     4. When xamotorol was combined with KT5720, a specific inhibitor of PKA, theinhibitory effect was drastically reduced. Both Chelerythrine, a specific inhibitorof PKC, and U73122, a inhibitor of phospholipase C (PLC) inhibited thecurrent decreasing induced by xamotorol. However, KN93, an inhibitorCaMKII, may not attenuate the inhibtory effects of xamotorol on Ikr. Our datasuggest a link between Ikr and theβ1-adrenergic receptor, involving activationPKA , PLC and PKC.
     5. Signaling“cross talk”betweenα1- andβ-adrenergic cascades might be involvedin regulation of Ikr tail current in guinea pig ventricular myocyte.
引文
1. Myerburg RJ, Interian A Jr, Mitrani RM, Kessler KM, Castellanos A. Frequency ofsudden cardiac death and profiles of risk. Am J Cardiol, 1997, 80: 10F-19F.
    2. Kamarck T, Jennings JR. Biobehavioral factors in sudden cardiac death. PsycholBull, 1991, 109: 42-75.
    3. Loen B. Sudden Cardiac death:biobehavioral perspective. Circulation, 1987; 76:1186-1196.
    4. Zeng J, Laurita KR, Rosenbaum DS, Rudy Y. Two components of the delayedrectifier K+ current in ventricular myocytes of the guinea pig type: theoreticalformulation and their role in repolarization. Cic Res, 1995, 77: 140-152.
    5. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between aninherited and an acquired cardiac arrhythmia: hERG encodes the Ikr potassiumchannel. Cell, 1995, 81: 299-307.
    6. Spector PS, Curran ME, Keating MT, Sanguinetti MC. Class III antiarrhythmicdrugs block hERG, a human cardiac delayed rectifier K+ channel. Open-channelblock by methanesulfonanilides. Circ Res, 1996, 78: 499-503.
    7. Ficker E, Thomas D, Viswanathan PC, Dennis AT, Priori SG, Napolitano C,Memmi M, Wible BA, Kaufman ES, Iyengar S, Schwartz PJ, Rudy Y, BrownAM. Novel characteristics of a misprocessed mutant hERG channel linked tohereditary long QT syndrome. Am J Physiol, 2000, 279: H1748-H1756.
    8. Thomas D, Kiehn J, Katus HA, Karle CA. Defective protein trafficking in hERGassociatedhereditary long QT syndrome (LQT2): Molecular mechanisms andrestoration of intracellular protein processing. Cardiovasc Res, 2003, 60: 239-245.
    9. Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, TesterDJ, GongQ,Zhou Z, Ackerman MJ, January CT. Most LQT2 mutations reduce Kv11.1 (hERG)current by a class 2 (trafficking-deficient) mechanism. Circ, 2006, 113: 365-373.
    10. Priori S, Aliot E, Blomstrom-Lundqvist C, Blomstrom-Lundqvist C, Bossaert L,Breithardt G, Brugada P, Camm AJ, Cappato R, Cobbe SM, DiMario C, MaronBJ, McKenna WJ, Pedersen AK, Ravens U, Schwartz PJ, Trusz-Gluza M, VardasP, Wellens HJ, Zipes DP. Task force on sudden cardiac death of the EuropeanSociety of Cardiology. Eur Heart J, 2001, 22: 1374-1450.
    11. Michael C, Sanguinetti, Martin Tristani-Firouzi. hERG potassium channels andcardiac arrhythmia. Nature, 2006, 440: 463-469.
    12. Lacerda AE, Kramer J, Shen KZ, ThomasD, Brown AM. Comparison of blockamong cloned cardiac potassium channels by non-antiarrhythmic drugs. Eur HeartJ, 2001, 3: K23-K30.
    13. Napolitano C, Priori S, Schwartz P. Torsade de pointes. Mechanisms andmanagement. Drugs, 1994, 47: 51-65.
    14. Thomas D, Gut B, Wendt-Nordahl G, Kiehn J. The antidepressant drug fluoxetineis an inhibitor of human ether a-go-go-related gene (hERG) potassium channels. JPharmacol Exp Ther, 2002, 300: 543-548.
    15. Mitcheson J, Perry M, Stansfeld P, Sanguinetti MC, Witchel H, Hancox J.Structural determinants for high-affinity block of hERG potassium channels.Novartis Found Symp, 2005, 266: 136-50; discussion 150-8.
    16. Borchert B, Lawrenz T, Stellbrink C. Long and short QT syndrome.Herzschrittmacherther Elektrophysiol, 2006, 17(4): 205-210.
    17. Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, Grossi S,Richiardi E, Borggrefe M. Short QT syndrome: a familial cause of sudden death.Circulation, 2003, 108(8): 965-970.
    18. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM,Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Wu YS,Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C.Sudden death associated with short-QT syndrome linked to mutations in hERG.Circulation, 2004, 109(1): 30-35.
    19. Kaumann AJ, Molenaar P. Modulation of human cardiac function through 4β-adrenoceptor populations. Naunyn-Schmiedeberg’s Arch Pharmacol, 1997, 355:667-681.
    20. Kaumann AJ, Engelhardt S, Hein L, Molenaar P, Lohse M. Abolition of (-)-CGP12177-evoked cardiostimulation in doubleβ1/β2-adrenoceptor knockout mice.Obligatory role ofβ1-adrenoceptors for putativeβ4-adrenoceptor pharmacology.Naunyn-Schmiedeberg’s Arch Pharmacol, 2001, 363: 87-93.
    21. Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart.Pharmacol Rev, 1999, 51: 651-689.
    22. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. Amolecular basis for cardiac arrhythmia: hERG mutations cause long QT syndrome.Cell, 1995, 80:795-803.
    23. Roden DM, Lazzara R, Rosen M, Schwartz PJ, Towbin J, Vincent GM. Multiplemechanisms in the long-QT syndrome. Current knowledge, gaps, and futuredirections. The SADS Foundation Task Force on LQTS. Circulation, 1996, 94(8):1996-2012.
    24. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PK. Isoproterenol antagonizesprolongation of refractory period by the class III antiarrhythmic agent E-4031 inguinea pig myocytes. Mechanism of action. Circ Res, 1991, 68: 77-84.
    25. Bian J, Cui J, McDonald TV. HERG K+ channel activity is regulated by changesin phosphatidyl inositol 4,5-bisphosphate. Circ Res, 2001, 89: 1168-1176.
    26. Jiang M, Dun W, Fan JS, Tseng GN. Use-dependent 'agonist' effect of azimilide onthe HERG channel. J Pharmacol Exp Ther, 1999, 291: 1324-36.
    27. Barros F, Gomez-Varela D, Viloria CG, Palomero T, Giráldez T, de la Pe?a P.Modulation of human erg K+ channel gating by activation of a G protein-coupledreceptor and protein kinase C. J Physiol. 1998, 511, 333-346.
    28. Thomas D, Zhang W, Wu K, Wimmer AB, Gut B, Wendt-Nordahl G, Kath?fer S,Kreye VA, Katus HA, Schoels W, Kiehn J, Karle CA. Regulation of hERGpotassium channel activation by protein kinase C independent of directphosphorylation of the channel protein. Cardiovasc Res, 2003, 59: 14-26.
    29. Thomas D, Wu K, Wimmer AB, Zitron E, Hammerling BC, Kath?fer S, Lueck S,Bloehs R, Kreye VA, Kiehn J, Katus HA, Schoels W, Karle CA. Activation ofcardiac human ether-a-go-go related gene potassium currents is regulated byalpha(1A)-adrenoceptors. J Mol Med, 2004, 82: 826-837.
    30. Bian JS, Kagan A, McDonald TV. Molecular analysis of PIP2 regulation ofHERG and IKr. Am J Physiol Heart Circ Physiol, 2004, 287: H2154-2163.
    31. Bian JS, McDonald TV. Phosphatidylinositol 4,5-bisphosphate interactions withthe HERG K(+) channel. Pflugers Arch, 2007, 455: 105-113.
    32. Heath BM, Terrar DA. Protein kinase C enhances the rapidly activating delayedrectifier potassium current, IKr, through a reduction in C-type inactivation inguinea-pig ventricular myocytes. J Physiol, 2000, 522:391-402.
    33. Karle CA, Zitron E, Zhang W, Kath?fer S, Schoels W, Kiehn J. Rapid componentI(Kr) of the guinea-pig cardiac delayed rectifier K(+) current is inhibited bybeta(1)-adrenoreceptor activation, via cAMP/protein kinase A-dependentpathways. Cardiovasc Res, 2002, 53: 355-62.
    34. Cui J, Melman Y, Palma E, Fishman GI, McDonald TV. Cyclic AMP regulates theHERG K(+) channel by dual pathways. Curr Biol, 2000, 10: 671-674.
    35. Tutor AS, Delpón E, Caballero R, Gómez R, Nú?ez L, Vaquero M, Tamargo J,Mayor F Jr, Penela P. Association of 14-3-3 proteins to beta1-adrenergicreceptors modulates Kv11.1 K+ channel activity in recombinant systems. MolBiol Cell, 2006, 17(11): 4666-74.
    36. Kagan A, McDonald TV. Dynamic control of hERG/I(Kr) by PKA-mediatedinteractions with 14-3-3. Novartis Found Symp, 2005, 266: 75-89.
    37. Kagan A, Melman YF, Krumerman A, McDonald TV. 14-3-3 amplifies andprolongs adrenergic stimulation of hERG K+ channel activity. EMBO J, 2002,21(8): 1889-98.
    38. Cockerill SL, Tobin AB, Torrecilla I, Willars GB, Standen NB, Mitcheson JS.Modulation of hERG potassium currents in HEK-293 cells by protein kinase C.Evidence for direct phosphorylation of pore forming subunits. J Physiol, 2007,581: 479-493.
    
    1. Myerburg RJ, Interian A Jr, Mitrani RM, Kessler KM, Castellanos A. Frequencyof sudden cardiac death and profiles of risk. Am J Cardiol, 1997, 80: 10F-19F.
    2. Carmeliet E. Mechanisms and control of repolarization. Eur Heart J, 1993, 14(Suppl H): 3-13.
    3. Zeng J, Laurita KR, Rosenbaum DS, Rudy Y. Two components of the delayedrectifier K+ current in ventricular myocytes of the guinea pig type: theoreticalformulation and their role in repolarization. Cicc Res, 1995, 77: 140-152.
    4. Tristani-Firouzi M, Sanguinetti MC. Structural determinants and bio-physicalproperties of hERG and KCNQ1 channel gating. J Mol Cell Cardiol, 2003, 35(1):27-35.
    5. Jiang M, Zhang M, Tang DG, Clemo HF, Liu J, Holwitt D, Kasirajan V, PondAL, Wettwer E, Tseng GN. KCNE2 protein is expressed in ventricles of differentspecies,and changes in its expression contribute to electrical remodeling indiseased hearts. Circ, 2004, 109 (14): 1783-1788.
    6. Spector PS, Curran ME, Keating MT, Sanguinetti MC. Class III antiarrhythmicdrugs block hERG, a human cardiac delayed rectifier K+ channel. Open-channelblock by methanesulfonanilides. Circ Res, 1996, 78: 499-503.
    7. Lacerda AE, Kramer J, Shen KZ, ThomasD, Brown AM. Comparison of blockamong cloned cardiac potassium channels by non-antiarrhythmic drugs. EurHeart J, 2001, 3: K23-K30.
    8. Napolitano C, Priori S, Schwartz P. Torsade de pointes. Mechanisms andmanagement. Drugs, 1994, 47: 51-65.
    9. Thomas D, Gut B, Wendt-Nordahl G, Kiehn J. The antidepressant drugfluoxetine is an inhibitor of human ether a-go-go-related gene (hERG) potassiumchannels. J Pharmacol Exp Ther, 2002, 300: 543-548.
    10. Dong DL, Liu Y, Zhou YH, Song WH, Wang H, Yang BF. Decreases of voltagedependentK+ currents densities in ventricular myocytes of guinea pigs bychronic oxidant stress. Acta Pharmacol Sin, 2004, 25: 751-755.
    11. Yang BF, Luo DL, Bao LH, Zhang YC, Wang HZ. Artemisinin blocks activatingand slowly activating K+ current in guinea pig ventricular myocytes. ZhongguoYao Li Xue Bao, 1998, 19: 269-72.
    12. Neher E, Sakmann B. Single-channel currents recorded from membrane ofdenervated frog muscle fibres. Nature, 1976, 260 (5554): 799-802.
    13.刘振伟.实用膜片钳技术.北京:军事医学科出版社, 2006, 2-4.
    14. Wymore RS, Gintant GA, Wymore RT, Dixon JE, McKinnon D, Cohen IS.Tissue and species distribution of mRNA for the Ikr-like K+ channel, erg. CircRes, 1997, 80(2): 261-8.
    15. Pond AL, Scheve BK, Benedict AT, Petrecca K, Van Wagoner DR, Shrier A,Nerbonne JM. Expression of distinct ERG proteins in rat, mouse, and humanheart. Relation to functional I(Kr) channels. J Biol Chem, 2000, 275(8): 5997-6006.
    16. Tamargo J, Caballero R, Gómez R, Valenzuela C, Delpón E. Pharmacology ofcardiac potassium channels. Cardiovasc Res, 2004, 62(1): 9-33.
    17. Fountoulakis KN, Kantartzis S, Siamouli M, Panagiotidis P, Kaprinis S,Iacovides A, Kaprinis G. Peripheral thyroid dysfunction in depression. World JBiol Psychiatry, 2006, 7(3): 131-137.
    18. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT.Properties of HERG channels stably expressed in HEK 293 cells studied atphysiological temperature Biophys J, 1998, 74(1): 230-41.
    19. Vandenberg JI, Varghese A, Lu Y, Bursill JA, Mahaut-Smith MP, Huang CL.Temperature dependence of human ether-a-go-go-related gene K+ currents. Am JPhysiol Cell Physiol. 2006, 291(1): C165-75.
    20. Guo J, Zhan S, Lees-Miller JP, Teng G, Duff HJ. Exaggerated block of hERG(KCNH2) and prolongation of action potential duration by erythromycin attemperatures between 37 degrees C and 42 degrees C. Heart Rhythm. 2005, 2(8):860-6.
    21. Svoboda P, Unelius L, Dicker A, Cannon B, Milligan G, Nedergaard J. Coldinducedreduction in Gi alpha proteins in brown adipose tissue. Effects on thecellular hypersensitization to noradrenaline caused by pertussis-toxin treatment.Biochem J, 1996, 314 ( Pt 3): 761-8.
    22. Walsh KB, Begenisich TB, Kass RS. Beta-adrenergic modulation of cardiac ionchannels. Differential temperature sensitivity of potassium and calcium currents.J Gen Physiol, 1989, 93(5): 841-54.
    23. Chemin J, Mezghrani A, Bidaud I, Dupasquier S, Marger F, Barrère C, NargeotJ, Lory P. Temperature-dependent modulation of CaV3 T-type calcium channelsby protein kinases C and A in mammalian cells. J Biol Chem, 2007, 282(45):32710-8.
    1.李和旺,韩启德.α1-AR的信号转导.生理科学进展,1998, 29(1): 17-23.
    2. T(?)lg R, Kurz T, Ungerer M, Schreieck J, G(?)rge B, Richardt G. Influence of alphaand beta-adrenoceptor antagonists on ventricular fibrillation in ischemic rathearts. Naunyn-Schmiedeberg’s Arch Pharmacol, 1997, 356: 62-68.
    3. T(?)lg R, Schreieck J, Kurz T, Katus HA, Richardt G. Ischemia-induced ventricularfibrillation in isolated perfused rat heart:role of alpha1A- adrenoceptor mediatedactivation of protein kinase C. Basic Res Cardiol, 2001, 96(1): 68-74.
    4. Billman GE. Efect of alpha-adrenergic receptor antagonists on susceptibility tomalignant arrhythmias: protection from ventricular fibrillation. J Cardiovascpharmacol, 1994, 24: 394-402.
    5. Yasutake M, Avkiran M. Efects of selective alpha1A-adrenoceptor antagonistson reperfusion arrhythmias in isolated rat hearts. Mol Cell Biochem, 1995, 147(1-2): 173-80.
    6. Vanoli E, Hull SS Jr, Foreman RD, Ferrari A, Schwartz PJ. Alpha1–adrenergicblockade and sudden cardiac death. J Cardiovasc Electrophysiol, 1994, 5(1): 76 -89.
    7. Chess-Williams R, Milton HL. Arrhythmogenesis in isolated rat hearts withenhanced alpha-adrenoceptor-mediated responsiveness. J Auton Pharmacol, 2001,21 (1): 39-45.
    8. Bian J, Cui J, McDonald TV. HERG K+ channel activity is regulated by changesin phosphatidyl inositol 4,5-bisphosphate. Circ Res, 2001, 89: 1168-1176.
    9. Jiang M, Dun W, Fan JS, Tseng GN. Use-dependent 'agonist' effect of azimilideon the HERG channel. J Pharmacol Exp Ther, 1999, 291:1324-36.
    10. Myerburg RJ, Interian A Jr, Mitrani RM, Kessler KM, Castellanos A.. Frequencyof sudden cardiac death and profiles of risk. Am J Cardiol, 1997, 80: 10F-19F.
    11. Kamarck T, Jennings JR. Biobehavioral factors in sudden cardiac death. PsycholBull, 1991, 109: 42-75.
    12. Loen B. Sudden Cardiac death: biobehavioral perspective. Circulation, 1987, 76:1186-1196.
    13. Zeng J, Laurita KR, Rosenbaum DS, Rudy Y. Two components of the delayedrectifier K+ current in ventricular myocytes of the guinea pig type: theoreticalformulation and their role in repolarization. Cic Res, 1995, 77: 140-152.
    14. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between aninherited and an acquired cardiac arrhythmia: hERG encodes the Ikr potassiumchannel. Cell, 1995, 81: 299-307.
    15. Thomas D, Kale CA, Kiehn J. The cardiac hERG/Ikr Potassium Channel asPharmacological Target Structure, Function, Regulation, and ClinicalApplications. Current Pharmaceutical Design, 2006, 12: 2271-2283.
    16. Spector PS, Curran ME, Keating MT, Sanguinetti MC. Class III antiarrhythmicdrugs block hERG, a human cardiac delayed rectifier K+ channel. Open-channelblock by methanesulfonanilides. Circ Res, 1996, 78: 499-503.
    17. Viskin S. Long QT syndrome and torsade de points. Lancet. 1999; 354: 1625-1633.
    18.张坦,陈凤英,张幼怡.肾上腺素受体的生物进化.生理学进展, 2002, 3 3(4):349-351.
    19. Loeb HS, Johnson G, Henrick A, Smith R, Wilson J, Cremo R, Cohn JN. Effect ofenalapril, hydralazine plus isosorbide dinitrate, and prazosin on hospitalization inpatients with chronic congestive heart failure. The V-HeFTVA cooperativestudies group. Circ, 1993, 87: VI78-VI87.
    20. Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, KomajdaM, Lubsen J, Lutiger B, Metra M, Remme WJ, Torp-Pedersen C, Scherhag A,Skene A; Carvedilol Or Metoprolol European Trial Investigators. Comparison ofcarvedilol and metoprolol on clinical outcomes in patients with chronic heartfailure in the Carvedilol or Metoprolol European Trial (COMET): randomisedcontrolled trial. Lancet, 2003, 362: 7-13.
    21. Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwinn DA. Localization ofmRNA for three distinct alpha1-adrenergic receptor subtypes in human tissues:implications for human alphaadrenergic physiology. Mol Pharmacol, 1994, 45:171-175.
    22. Steinfath M, Chen YY, Lavicky J, Magnussen O, Nose M, Rosswag S, Schmitz W,Scholz H. Cardiac alpha1-adrenoceptor densities in different mammalian species.Br J Pharmacol, 1992, 107: 185-188.
    23. Gallego M, Setién R, Puebla L, Boyano-Adánez Mdel C, Arilla E, Casis O.alpha1-Adrenoceptors stimulate a Galphas protein and reduce the transientoutward K+ current via a cAMP/PKA-mediated pathway in the rat heart. Am JPhysiol Cell Physiol, 2005, 288(3): C577-85.
    24. O-Uchi J, Sasaki H, Morimoto S, Kusakari Y, Shinji H, Obata T, Hongo K,Komukai K, Kurihara S. Interaction of alpha1-adrenoceptor subtypes withdifferent G proteins induces opposite effects on cardiac L-type Ca2+ channel. CircRes, 2008, 102(11): 1378-88.
    25. O-Uchi J, Komukai K, Kusakari Y, Obata T, Hongo K, Sasaki H, Kurihara S.Alpha1-adrenoceptor stimulation potentiates L-type Ca2+ current throughCa2+/calmodulin-dependent protein kinase II (CaMKII) activation in ratventricular myocytes. Proc Natl Acad Sci USA, 2005, 102: 9400–9405.
    26. Zhang S, Lin J, Hirano Y, Hiraoka M. Modulation of ICa-L by alpha1-adrenergicstimulation in rat ventricular myocytes. Can J Physiol Pharmacol, 2005, 83(11):1015-24.
    27. Ravens U, Wang XL, and Wettwer E. Alpha-Adrenoceptor stimulation reducesoutward currents in rat ventricular myocytes. J Pharmacol Exp Ther, 1989, 250:364-370.
    28. Tohse N, Nakaya H, Hattori Y, Endou M, and Kanno M. Inhibitory effectmediated by alpha1-adrenoceptors on transient outward current in isolated ratventricular cells. Pflu¨gers Arch, 1990, 415: 575-581.
    29. Gallego M, Setién R, Puebla L, Boyano-Adánez Mdel C, Arilla E, Casis O.alpha1-Adrenoceptors stimulate a Galphas protein and reduce the transientoutward K+ current via a cAMP/PKA-mediated pathway in the rat heart. Am JPhysiol Cell Physiol, 2005, 288(3): C577-85.
    30. Wang Y, Gao J, Mathias RT, Cohen IS, Sun X, Baldo GJ. alpha-Adrenergic effectson Na+-K+ pump current in guinea-pig ventricular myocytes. J Physiol, 1998, 509( Pt 1): 117-28.
    31. Haruna T, Yoshida H, Nakamura TY, Xie LH, Otani H, Ninomiya T, Takano M,Coetzee WA, Horie M. Alpha1-adrenoceptor-mediated breakdown ofphosphatidylinositol 4,5-bisphosphate inhibits pinacidil-activated ATP-sensitiveK+ currents in rat ventricular myocytes. Circ Res, 2002, 91(3): 232-9.
    32. Thomas D, Wu K, Wimmer AB, Zitron E, Hammerling BC, Kath?fer S, Lueck S,Bloehs R, Kreye VA, Kiehn J, Katus HA, Schoels W, Karle CA. Activation ofcardiac human ether-a-go-go related gene potassium currents is regulated byalpha1A-adrenoceptors. J Mol Med, 2004, 82: 826-837.
    33. Martínez ML, Delgado C. Methoxamine inhibits transient outward potassiumcurrent through alpha1A-adrenoceptors in rat ventricular myocytes. J CardiovascPharmacol, 2000, 35(2): 212-8.
    34. Cockerill SL, Tobin AB, Torrecilla I, Willars GB, Standen NB, Mitcheson JS.Modulation of hERG potassium currents in HEK-293 cells by protein kinase C.Evidence for direct phosphorylation of pore forming subunits. J Physiol, 2007,581: 479-493.
    35. Bian JS, Kagan A, McDonald TV. Molecular analysis of PIP2 regulation ofhERG and IKr. Am J Physiol Heart Circ Physiol, 2004, 287: H2154-2163.
    36. Bian JS, McDonald TV. Phosphatidylinositol 4,5-bisphosphate interactions withthe hERG K(+) channel. Pflugers Arch, 2007, 455: 105-113.
    37. McFerran BW, MacEwan DJ, Guild SB. Involvement of multiple protein kinaseC isozymes in the ACTH secretory pathway of AtT-20 cells. Br J Pharmacol,1995, 115: 307-315.
    38. Puceat M, Hilal-Dandan R, Strulovici B, Brunton LL, Brown JH. Differentialregulation of protein kinase C isoforms in isolated neonatal and adult ratcardiomyocytes. J Biol Chem, 1994, 269: 16938-16944.
    39. Rybin VO, Steinberg SF. Protein kinase C isoform expression and regulation inthe developing rat heart. Circ Res, 1994, 74: 299-309.
    40. Kiehn J, Karle C, Thomas D, Yao X, Brachmann J, Kübler W. HERG potassiumchannel activation is shifted by phorbol esters via protein kinase Adependentpathways. J Biol Chem, 1998, 273: 25285-25291.
    41. Schafer R, Wolfsen I, Behrens S, Weinsberg F, Bauer CK, Schwarz JR. The erglikepotassium current in rat lactotrophs. J Physiol, 1999, 518: 401-416.
    42. Schledermann W, Wulfsen I, Schwarz JR, Bauer CK. Modulation of rat erg1,erg2, erg3 and hERG K+ currents by thyrotropin- releasing hormone in anteriorpituitary cells via the native signal cascade. J Physiol, 2001, 532: 143-163.
    43. Zhang S. Isolation and characterization of I(Kr) in cardiac myocytes by Cs+permeation. Am J Physiol Heart Circ Physiol, 2006, 290: H1038-49.
    44. Thomas D, Zhang W, Karle CA, Kath?fer S, Sch?ls W, Kübler W, Kiehn J.Deletion of protein kinase A phosphorylation sites in the hERG potassiumchannel inhibits activation shift by protein kinase A. J Biol Chem 1999 274:27457-27462.
    45. Gusovsky F, Gutkind JS. Selective effects of activation of protein kinase Cisoenzymes on cyclic AMP accumulation. Mol Pharmacol, 1991, 39: 124-129.
    46. Sugita S, Baxter DA, Byrne JH. Modulation of a cAMP/protein kinase A cascadeby protein kinase C in sensory neurons of Aphysia. J Neurosci, 1997, 17: 7237-7244.
    1. Zheng M, Han QD, Xiao RP. Distinct beta-adrenergic receptor subtype signalingin the heart and their pathophysiological relevance. Sheng Li Xue Bao, 2004,56(1): 1-15.
    2. Xiao RP, Lakatta EG. Beta1-adrenoceptor stimulation and beta2-adrenoceptorstimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ currentin single rat ventricular cells. Circ Res, 1993, 73(2): 286-300.
    3. Akuzawa-Tateyama M, Tateyama M, Ochi R. Sustained beta-adrenergicstimulation increased L-type Ca2+ channel expression in cultured quiescentventricular myocytes. J Physiol Sci, 2006, 56(2): 165-72.
    4. Imredy JP, Penniman JR, Dech SJ, Irving WD, Salata JJ. Modeling of theadrenergic response of the human Iks current (hKCNQ1/hKCNE1) stablyexpressed in HEK-293 cells. Am J Physiol Heart Circ Physiol, 2008, 295(5):H1867-81.
    5. Knollmann BC, Casimiro MC, Katchman AN, Sirenko SG, Schober T, Rong Q,Pfeifer K, Ebert SN.Isoproterenol exacerbates a long QT phenotype in Kcnq1-deficient neonatal mice: possible roles for human-like Kcnq1 isoform 1 and slowdelayed rectifier K+ current. J Pharmacol Exp Ther, 2004, 310(1): 311-8.
    6. Stimers JR, Dobretsov M. Adrenergic stimulation of Na/K pump current in adultrat cardiac myocytes in short-term culture. J Membr Biol, 1998, 163(3): 205-16.
    7. Dobretsov M, Hastings SL, Stimers JR. Na+-K+ pump cycle during betaadrenergicstimulation of adult rat cardiac myocytes. J Physiol, 1998, 507(Pt 2):527-39.
    8. Dun W, Wu BW, Zhao RR. Effects of norepinephrine and isopentenyladenosineon Na+/Ca2+ exchange currents in isolated guinea pig ventricular myocytes.Zhongguo Yao Li Xue Bao, 1998, 19(2): 141-4.
    9. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PK. Isoproterenol antagonizesprolongation of refractory period by the class III antiarrhythmic agent E-4031 inguinea pig myocytes. Mechanism of action. Circ research, 1991, 68: 77-84.
    10. Heath BM, Terrar DA. Protein kinase C enhances the rapidly activating delayedrectifier potassium current, Ikr, through a reduction in C-type inactivation inguinea-pig ventricular myocytes. The Journal of physiology, 2000, 522(3): 391-402.
    11. Karle CA, Zitron E, Zhang W, Kathofer S, Schoels W, Kiehn J. Rapid componentI(Kr) of the guinea-pig cardiac delayed rectifier K(+) current is inhibited bybeta(1)-adrenoreceptor activation, via cAMP/protein kinase A-dependentpathways. Cardiovascular research, 2002, 53: 355-362.
    12. Horn R, Marty. A Muscrinic action of ionic currents measured by a new wholecell recording method. J Gen Physiol, 1988, 94: 145-159.
    13. Kleiberg ME, Finkelstein A. Single length and double length channels formed bynystatin in liqid bilayer membranes. J Membr Biol, 1984, 80: 257-269.
    14.李鹏云,曾晓荣,杨艳,蔡芳.穿孔膜片钳技术在离子通道电流研究中的应用.四川生理科学杂志, 2006, 28(2): 62-64.
    15. Cui J, Melman Y, Palma E, Fishman GI, McDonald TV. Cyclic AMP regulates thehERG K(+) channel by dual pathways. Curr Biol, 2000, 10: 671-674.
    16. Kiehn J. Regulation of the cardiac repolarizing HERG potassium channel byprotein kinase A. Trends Cardiovasc Med, 2000, 10: 205-209.
    17. Scherer CR, Lerche C, Decher N, Dennis AT, Maier P, Ficker E, Busch AE,Wollnik B, Steinmeyer K. The antihistamine fexofenadine does not affect Ikrcurrents in a case report of drug-induced cardiac arrhythmia. Br J Pharmacol,2002, 137: 892-900.
    18. Wei Z, Thomas D, Karle CA, Kathofer S, Schenkel J, Kreye VA, Ficker E, WibleBA, Kiehn J. Protein kinase A-mediated phosphorylation of hERG potassiumchannels in a human cell line. Chin Med J, 2002, 115: 668-676.
    19. Li Y, Sroubek J, Krishnan Y, McDonald TV. A-kinase anchoring protein targetingof protein kinase A and regulation of hERG channels. J Membr Biol, 2008, 223(2):107-16.
    20. Warmke JW, Ganetzky B. A family of potassium channel genes related to eag inDrosophila and mammals. Proc Natl Acad Sci USA, 1994, 91(8): 3438-42.
    21. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. Amolecular basis for cardiac arrhythmia: hERG mutations cause long QTsyndrome. Cell, 1995, 80(5): 795-803.
    22. Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, Moss AJ,Schwartz PJ, Towbin JA, Vincent GM, Keating MT. Spectrum of mutations inlong-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circ,2000, 102(10): 1178-85.
    23. Satler CA, Walsh EP, Vesely MR, Plummer MH, Ginsburg GS, Jacob HJ. Novelmissense mutation in the cyclic nucleotide-binding domain of HERG causes longQT syndrome. Am J Med Genet, 1996, 65(1): 27-35.
    24. Berthet M, Denjoy I, Donger C, Demay L, Hammoude H, Klug D, Schulze-BahrE, Richard P, Funke H, Schwartz K, Coumel P, Hainque B, Guicheney P. CterminalHERG mutations: the role of hypokalemia and a KCNQ1-associatedmutation in cardiac event occurrence. Circ, 1999, 99(11): 1464-70.
    25. Al-Owais M, Bracey K, Wray D. Role of intracellular domains in the function ofthe hERG potassium channel. Eur Biophys J, 2009 Jan 27. [Epub ahead of print].
    26. Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q. Subtype-specificalpha1- and beta-adrenoceptor signaling in the heart. Trends in pharmacologicalsciences, 2006, 27: 330-337.
    27. Xiao RP, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG, Cheng H. Subtypespecificbeta-adrenoceptor signaling pathways in the heart and their potentialclinical implications. Trends Pharmacol Sci, 2004, 25: 358-365.
    28.赵兰平,马建伟,张晓云,陈立锋,葛赋贵.心脏神经支配和受体分布.医学研究杂志, 2007, 3.
    29. Brodde OE. Beta1- and beta2-adrenoceptors in the human heart: properties,function, and alterations in chronic heart failure. Pharmacol Rev, 1991, 43: 203-242.
    30. Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL,Le Marec H. The negative inotropic effect of beta3-adrenoceptor stimulation ismediated by activation of a nitric oxide synthase pathway in human ventricule. JClin Invest, 1998, 102(7): 1377-1384.
    31. Xiao RP, Hohl C, Altschuld R, Jones L, Livingston B, Ziman B, Tantini B, LakattaEG. Beta2-adrenergic receptor-stimulated increase in cAMP in rat heart cells isnot coupled to changes in Ca2+ dynamics, contractility, or phospholambanphosphorylation. J Biol Chem, 1994, 269: 19151-19156.
    32. Kuschel M, Zhou YY, Spurgeon HA, Bartel S, Karczewski P, Zhang SJ, KrauseEG, Lakatta EG, Xiao RP. Beta2-adrenergic cAMP signaling is uncoupled fromphosphorylation of cytoplasmic proteins in canine heart. Circulation, 1999, 99(18): 2458-2465.
    33. Kuschel M, Zhou YY, Cheng H, Zhang SJ, Chen Y, Lakatta EG, Xiao RP. Giprotein-mediated functional compartmentalization of cardiac beta2-adrenergicsignaling. J Biol Chem, 1999, 274: 22048-22052.
    34. Chen-Izu Y, Xiao RP, Izu LT, Cheng H, Kuschel M, Spurgeon H, Lakatta EG. Gidependentlocalization of beta2-adrenergic receptor signaling to L-type Ca2+channels. Biophys J, 2000, 79: 2547-2556.
    35. Kaumann AJ, Sanders L, Lynham JA, Bartel S, Kuschel M, Karczewski P, KrauseEG. Beta2-adrenoceptor activation by zinterol causes protein phosphorylation,contractile effects and relaxant effects through a cAMP pathway in human atrium.Mol Cell Biochem, 1996, 163-164: 113-23.
    36. Kaumann A, Bartel S, Molenaar P, Sanders L, Burrell K, Vetter D, Hempel P,Karczewski P, Krause EG. Activation of beta2-adrenergic receptors hastensrelaxation and mediates phosphorylation of phospholamban, troponin I, and Cproteinin ventricular myocardium from patients with terminal heart failure. Circ,1999, 99: 65-72.
    37. Altschuld RA, Starling RC, Hamlin RL, Billman GE, Hensley J, Castillo L, FertelRH, Hohl CM, Robitaille PM, Jones LR. Response of failing canine and humanheart cells to beta2-adrenergic stimulation. Circ, 1995, 92: 1612-1618.
    38. Kuznetsov V, Pak E, Robinson RB, Steinberg SF. Beta2-adrenergic receptoractions in neonatal and adult rat ventricular myocytes. Circ Res, 1995, 76 (1): 40-52.
    39. Zhou YY, Cheng H, Bogdanov KY, Hohl C, Altschuld R, Lakatta EG, Xiao R P.Localized cAMP-dependent signaling mediates beta2- adrenergic modulation ofcardiac excitation-contraction coupling. Am J Physiol, 1997, 273: H1611-H1618.
    40. Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK,Cheng H, Xiao R P. Linkage of beta1-adrenergic stimulation to apoptotic heart celldeath through protein kinase A-independent activation of Ca2+/CalmodulinKinase II. J Clin Invest, 2003, 111: 617-625.
    41. Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH. Thedelta C isoform of CaMKII is activated in cardiac hypertrophy and inducesdilated cardiomyopathy and heart failure. Circ Res, 2003, 92: 912-919.
    42. Chen-Izu Y, Xiao RP, Izu LT, Cheng H, Kuschel M, Spurgeon H, Lakatta EG. Gidependentlocalization of beta2-adrenergic receptor signaling to L-type Ca2+channels. Biophys J, 2000, 79: 2547-2556.
    43. Skeberdis VA, Jurevicius J, Fischmeister R. Beta-2 adrenergic activation of L-typeCa2+ current in cardiac myocytes. J Pharmacol Exp Ther, 1997, 283(2): 452-61.
    44. Sanguinetti MC, Tristani-Firouzi M. HERG potassium channels and cardiacarrhythmia. Nature, 2006, 440: 463-469.
    45. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between aninherited and an acquired cardiac arrhythmia: hERG encodes the Ikr potassiumchannel. Cell, 1995, 81: 299-307.
    46. Ficker E, Thomas D, Viswanathan PC, Dennis AT, Priori SG, Napolitano C,Memmi M, Wible BA, Kaufman ES, Iyengar S, Schwartz PJ, Rudy Y, Brown AM.Novel characteristics of a misprocessed mutant hERG channel linked tohereditary long QT syndrome. Am J Physiol Heart Circ Physiol, 2000, 279:H1748-56.
    47. Spector PS, Curran ME, Keating MT, Sanguinetti MC. Class III antiarrhythmicdrugs block hERG, a human cardiac delayed rectifier K+ channel. Open-channelblock by methanesulfonanilides. Circ Res, 1996, 78:499-503.
    48. Sanguinetti MC, Curran ME, Spector PS, Keating MT. Spectrum of hERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA,1996, 93: 2208-12.
    49. Viskin S. Long QT syndrome and torsade de points. Lancet, 1999, 354: 1625-1633.
    50. Karle CA, Zitron E, Zhang W, Kathofer S, Schoels W, Kiehn J. Rapid componentI(Kr) of the guinea-pig cardiac delayed rectifier K(+) current is inhibited bybeta(1)-adrenoreceptor activation, via cAMP/protein kinase A-dependentpathways. Cardiovascular research, 2002, 53: 355-362.
    51. Thomas D, Zhang W, Wu K, Wimmer AB, Gut B, Wendt-Nordahl G, Kath?fer S,Kreye VA, Katus HA, Schoels W, Kiehn J, Karle CA. Regulation of hERGpotassium channel activation by protein kinase C independent of directphosphorylation of the channel protein. Cardiovascular research, 2003, 59: 14-26.
    52. Cockerill SL, Tobin AB, Torrecilla I, Willars GB, Standen NB, Mitcheson JS.Modulation of hERG potassium currents in HEK-293 cells by protein kinase C.Evidence for direct phosphorylation of pore forming subunits. The Journal ofphysiology, 2007, 581: 479-493.
    53. Zhang S, 2006. Isolation and characterization of I(Kr) in cardiac myocytes byCs+ permeation. Am J Physiol Heart Circ Physiol, 2006, 290: H1038-49.
    54. Bian JS, McDonald TV. Phosphatidylinositol 4,5-bisphosphate interactions withthe hERG K(+) channel. Pflugers Arch, 2007, 455: 105-113.
    55. Bian J, Cui J, McDonald TV. HERG K(+) channel activity is regulated bychanges in phosphatidyl inositol 4,5-bisphosphate. Circ Res, 2001, 89(12): 1168-76.
    56. Potet F, Petersen CI, Boutaud O, Shuai W, Stepanovic SZ, Balser JR, KupershmidtS. Genetic screening in C. elegans identifies rho-GTPase activating protein 6 asnovel hERG regulator. Journal of Molecular and Cellular Cardiology, 2009, 46:257-267.
    57. Simpson PC. The alpha1-adrenergic receptors: lessons from knockouts. In TheAdrenergic Receptors in the 21st Century, 2005, 207-240.
    58. Danziger RS, Sakai M, Lakatta EG, Hansford RG. Interactive alpha- and betaadrenergicactions of norepinephrine in rat cardiac myocytes. J Mol Cell Cardiol,1990, 22: 111-123.
    59. Zhang YY, Yu GS, Cheng MZ, Han QD. The effect of alpha1-adrenoceptorsubtypes on the beta-adrenoceptor-mediated positive inotropic response in rat leftatria. Sheng Li Xue Bao, 1994, 46: 473-479.
    60. Zhang YZ, Zhang YY, Chen MZ, Han QD. Beta-adrenoceptors potentiate alpha1-adrenoceptor mediated inotropic response in rat left atria. Acta Pharmacol Sin,2004, 25 (1): 29-34.
    61. Anderson ME. Calmodulin kinase signaling in heart: an intriguing candidatetarget for therapy of myocardial dysfunction and arrhythmias. Pharmacol Ther,2005, 106: 39-55.
    62. Deschênes I, Neyroud N, DiSilvestre D, Marbán E, Yue DT, Tomaselli GF.Isoform-specific modulation of voltage-gated Na(+) channels by calmodulin. CircRes, 2002, 90(4): E49-57.
    63. Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H. Calmodulin supports bothinactivation and facilitation of L-type calcium channels. Nature, 1999, 399(6732):159-62.
    64. Yuan W, Bers DM. Ca-dependent facilitation of cardiac Ca current is due to Cacalmodulin-dependent protein kinase. Am J Physiol, 1994, 267: H982-93.
    65. Wu Y, Kimbrough JT, Colbran RJ, Anderson ME. Calmodulin kinase isfunctionally targeted to the action potential plateau for regulation of L-type Ca2+current in rabbit cardiomyocytes. J Physiol, 2004, 554: 145-55.
    66. Varga AW, Yuan LL, Anderson AE, Schrader LA, Wu GY, Gatchel JR, Johnston D,Sweatt JD. Calcium-calmodulin-dependent kinase II modulates Kv4.2 channelexpression and upregulates neuronal A-type potassium currents. J Neurosci, 2004,24(14): 3643-54.
    67. Tessier S, Karczewski P, Krause EG, Pansard Y, Acar C, Lang-Lazdunski M,Mercadier JJ, Hatem SN. Regulation of the transient outward K(+) current byCa(2+)/calmodulin-dependent protein kinases II in human atrial myocytes. CircRes, 1999, 85(9): 810-9.
    68. Pitt GS. Calmodulin and CaMKII as molecular switches for cardiac ion channels.Cardiovasc Res, 2007, 73(4): 641-7.
    69. Wang W, Zhu W, Wang S, Yang D, Crow MT, Xiao RP, Cheng H. Sustained beta1-adrenergic stimulation modulates Cardiac contractility by Ca2+/Calmodulinkinase signaling pathway. Circ Res, 2004, 95(8): 798-806.
    1. Takata Y, Kato H. Adrenoceptors in SHR: alterations in binding characteristicsand intracellular signal transduction pathways. Life sci, 1996, 58(2): 91-106.
    2. Osnes JB, Aass H, Skomedal T. Adrenoceptors in myocardial regulation:concomitant contribution from both alpha- and beta-adrenoceptor stimulation tothe inotropic response. Basic Res Cardiol, 1989, 84: 9-17.
    3. Chalothorn D, McCune DF, Edelmann SE, Tobita K, Keller BB, Lasley RD, PerezDM, Tanoue A, Tsujimoto G, Post GR, Piascik MT. Differential cardiovascularregulatory activities of the alpha1B- and alpha1D-adrenoceptor subtypes. JPharmacol Exp Ther, 2003, 305: 1045-53.
    4. Akhter SA, Milano CA, Shotwell KF, Cho MC, Rockman HA, Lefkowitz RJ,Koch WJ. Transgenic mice with cardiac overexpression of alpha1B adrenergicreceptors. In vivo alpha1-adrenergic receptor-mediated regulation of betaadrenergicsignaling. J Biol Chem, 1997, 72 (34): 21253-9.
    5. Lemire I, Allen BG, Rindt H, Hebert TE. Cardiac-specific overexpression ofα1B-AR regulatesβ-AR activity via molecular crosstalk. J Mol Cell Cardiol,1998, 30: 1827-39.
    6. Rorabaugh BR, Gaivin RJ, Papay RS, Shi T, Simpson PC, Perez DM. Bothalpha(1A)- and alpha(1B)-adrenergic receptors crosstalk to down regulatebeta(1)-ARs in mouse heart: coupling to differential PTX-sensitive pathways. JMol Cell Cardiol, 2005, 39(5): 777-84.
    7. Buxton IL, Brunton LL. Alpha-adrenergic receptors on rat ventricular myocytes:characteristics and linkage to cAMP metabolism. Am J Physiol, 1986, 251: H307-13.
    8. Barrett S, Honbo N, Karliner JS. Alpha 1-adrenoceptor-mediated inhibition ofcellular cAMP accumulation in neonatal rat ventricular myocytes. NaunynSchmiedebergs Arch Pharmacol, 1993, 347(4): 384-93.
    9. Simpson PC. The alpha1-adrenergic receptors: lessons from knockouts. In TheAdrenergic Receptors in the 21st Century, 2005, 207-240.
    10. Boutjdir M, Restivo M, Wei Y, el-Sherif N. Alpha1- and beta-adrenergicinteractions on L-type calcium current in cardiac myocytes. Pflugers Arch, 1992,421(4): 397-9.
    11. Yue Y, Qu Y, Boutjdir M. Beta- and alpha-adrenergic cross-signaling for L-typeCa current is impaired in transgenic mice with constitutive activation ofepsilonPKC. Biochem Biophys Res Commun, 2004, 314(3): 749-54.
    12. Borthne K, H?g? P, Langslet A, Lindberg H, Skomedal T, Osnes JB. Endogenousnorepinephrine stimulates both alpha 1- and beta-adrenoceptors in myocardiumfrom children with congenital heart defects. J Mol Cell Cardiol, 1995, 27(1): 693-9.
    13. Guse AH, Berg I, Gercken G. Inhibition of alpha 1-adrenoceptor-mediated inositolphosphate accumulation in cultured cardiac myocytes by cyclic AMP-generatingcompounds. J Mol Cell Cardiol, 1991, 23(12): 1375-82.
    14. Thomas D, Kiehn J, Katus HA, Karle CA. Adrenergic regulation of the rapidcomponent of the cardiac delayed rectifier potassium current, I(Kr), and theunderlying hERG ion channel. Basic Res Cardiol, 2004, 99(4):279-87.
    15. Büscher R, Erdbrügger W, Philipp T, Brodde OE, Michel MC. Comparison ofalpha 1A- and alpha 1B-adrenoceptor coupling to inositol phosphate formation inrat kidney. Naunyn Schmiedebergs Arch Pharmacol, 1994, 350(6): 592-8.
    16. Calil I, Tineli RA, Vicente WV, Rodrigues AJ, Evora PR. The concept of crosstalkand its implications for cardiovascular function and disease. Arq Bras Cardiol,2007, 88(1): 26-31.
    17. Yamazaki T, Komuro I, Zou Y, Kudoh S, Shiojima I, Hiroi Y, Mizuno T, Aikawa R,Takano H, Yazaki Y. Norepinephrine induces the raf-1 kinase/mitogen-activatedprotein kinase cascade through both alpha1- and beta-adrenoceptors. Circ, 1997,95(5): 1260-8.
    18. Rapacciuolo A, Esposito G, Caron K, Mao L, Thomas SA, Rockman HA.Important role of endogenous norepinephrine and epinephrine in the developmentof in vivo pressure-overload cardiac hypertrophy. J Am Coll Cardiol, 2001, 38(3):876-82.
    19.张幼怡,田斌,韩启德.慢性心功能不全大鼠心脏α1受体对β受体正性变力效应调节作用的改变.中国病理生理杂志, 1995, 11: 567-571.
    20.李艳芳,张幼怡,吕志珍,韩启德.长期服用心得安大鼠心脏α1肾上腺素受体的改变.中国药理学与毒理学杂志, 1996, 10: 281-284.
    1. Myerburg RJ, Interian A Jr, Mitrani RM, Kessler KM, Castellanos A. Frequency ofsudden cardiac death and profiles of risk. Am J Cardiol, 1997, 80 (5B): 10F-19F.
    2. Carmeliet E. Mechanisms and control of repolarization. Eur Heart J, 1993,14(Suppl H): 3-13.
    3. Thomas D, Karle CA, Kiehn J. The cardiac hERG/Ikr Potassium Channel asPharmacological Target Structure, Function, Regulation, and ClinicalApplications. Current Pharmaceutical Design, 2006, 12: 2271-2283.
    4. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between aninherited and an acquired cardiac arrhythmia: hERG encodes the IKr potassiumchannel. Cell, 1995, 81: 299-307.
    5. Spector PS, Curran ME, Keating MT, Sanguinetti MC. Class III antiarrhythmicdrugs block hERG, a human cardiac delayed rectifier K+ channel. Open-channelblock by methanesulfonanilides. Circ Res, 1996, 78: 499-503.
    6. Ficker E, Thomas D, Viswanathan PC, Dennis AT, Priori SG, Napolitano C,Memmi M, Wible BA, Kaufman ES, Iyengar S, Schwartz PJ, Rudy Y, Brown AM.Novel characteristics of a misprocessed mutant HERG channel linked tohereditary long QT syndrome. Am J Physiol Heart Circ Physiol, 2000, 279: 1748-56.
    7. Sanguinetti MC, Curran ME, Spector PS, Keating MT. Spectrum of hERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA,1996, 93: 2208-12.
    8. Viskin S. Long QT syndrome and torsade de points. Lancet, 1999, 354: 1625-1633.
    9. Barros F, Gomez-Varela D, Vigoria CG, Palomero T, Giraldez T, de la Pena P.Modulation of human erg K+ channel gating by activation of a G protein-coupledreceptor and protein kinase C. J Physiol, 1998, 511: 333-346.
    10. Priori S, Napolitano C, Paganini V, Cantu F, Schwartz PJ. Molecular biology ofthe long QT syndrome: impact on management. Pacing Clin Electrophysiol, 1997,20: 2052-2057.
    11. Priori S, Aliot E, Blomstrom-Lundqvist C, Blomstrom-Lundqvist C, Bossaert L,Breithardt G, Brugada P, Camm AJ, Cappato R, Cobbe SM, DiMario C, MaronBJ, McKenna WJ, Pedersen AK, Ravens U, Schwartz PJ, Trusz-Gluza M, VardasP, Wellens HJ, Zipes DP. Task force on sudden cardiac death of the EuropeanSociety of Cardiology. Eur Heart J, 2001, 22: 1374-1450.
    12. Kath?fer S, Zhang W, Karle C, Thomas D, Schoels W, Kiehn J. Functionalcoupling of humanβ3-adrenoceptors to the KvLQT1/MinK potassium channel. JBiol Chem, 2000, 275: 26743-26747.
    13. Lo CF, Numann R. Independent and exclusive modulation of cardiac delayedrectifying K+ current by protein kinase C and protein kinase A. Circ Res, 1998,83: 995-1002.
    14. Tohse N, Nakaya H, Kanno M. Alpha1-adrenoceptor stimulation enhances thedelayed rectifier K+ current of guinea pig ventricular cells through activation ofprotein kinase C. Circ Res, 1992, 71: 1441-1446.
    15. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, KeatingMT, Goldstein SA. MiRP1 forms Ikr potassium channels and is associated withcardiac arrhythmia. Cell, 1999, 97: 175-187.
    16. McDonald TV, Yu Z, Ming Z, Palma E, Meyers MB, Wang KW, Goldstein SA,Fishman GI. A minK-HERG complex regulates the cardiac potassium currentI(Kr). Nature, 1997, 388: 289-292.
    17. Weerapura M, Nattel S, Chartier D, Caballero R, Hebert TE. A comparison ofcurrents carried by hERG, with and without coexpression of MiRP1, and thenative rapid delayed rectifier current. Is MiRP1 the missing link? J Physiol, 2002,540: 15-27.
    18. Michelotti GA, Price DT, Schwinn DA. Alpha1-adrenergic receptor regulation:basic science and clinical implications. Pharmacol Therapeut, 2000, 88: 281-309.
    19. Piascik MT, Perez DM.α1-adrenergic receptors: new insights and directions. JPharmacol Exp Ther, 2001, 298: 403-410.
    20. Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart.Pharmacol Rev, 1999, 51: 651-689.
    21. Kaumann AJ, Molenaar P. Modulation of human cardiac function through 4β-adrenoceptor populations. Naunyn- Schmiedeberg’s Arch Pharmacol, 1997, 355:667-681.
    22. Kaumann AJ, Engelhardt S, Hein L, Molenaar P, Lohse M. Abolition of (-)-CGP12177-evoked cardiostimulation in doubleβ1/β2-adrenoceptor knockout mice.Obligatory role ofβ1-adrenoceptors for putativeβ4-adrenoceptor pharmacology.Naunyn-Schmiedeberg’s Arch Pharmacol, 2001, 363: 87-93.
    23. León-Velarde F, Bourin MC, Germack R, Mohammadi K, Crozatier B, Richalet JP.Differential alterations in cardiac adrenergic signaling in chronic hypoxia ornorepinephrine infusion. Am J Physiol Regul Integr Comp Physiol, 2001, 280(1):274-281.
    24. Bian J, Cui J, McDonald TV. HERG K+ channel activity is regulated by changesin phosphatidyl inositol 4,5-bisphosphate. Circ Res, 2001, 89: 1168-1176.
    25. Jiang M, Dun W, Fan JS, Tseng GN. Use-dependent 'agonist' effect of azimilideon the hERG channel. J Pharmacol Exp Ther, 1999, 291: 1324-1336.
    26. Thomas D, Zhang W, Wu K, Wimmer AB, Gut B, Wendt-Nordahl G, Kathofer S,Kreye VAW, Katus HA, Schoels W, Kiehn J, Karle CA. Regulation of hERGpotassium channel activation by protein kinase C independent of directphosphorylation of the channel protein. Cardiovasc Res, 2003, 59: 14-26.
    27. Thomas D, Wu K, Wimmer AB, Zitron E, Hammerling BC, Kath?fer S, Lueck S,Bloehs R, Kreye VA, Kiehn J, Katus HA, Schoels W, Karle CA. Activation ofcardiac human ether-a-go-go related gene potassium currents is regulated byalpha(1A)-adrenoceptors. J Mol Med, 2004, 82: 826-837.
    28. Cockerill SL, Tobin AB, Torrecilla I, Willars GB, Standen NB, Mitcheson JS.Modulation of hERG potassium currents in HEK-293 cells by protein kinase C.Evidence for direct phosphorylation of pore forming subunits. J Physiol, 2007,581: 479-493.
    29. Bian JS, Kagan A, McDonald TV. Molecular analysis of PIP2 regulation ofHERG and IKr. Am J Physiol Heart Circ Physiol, 2004, 287: H2154-2163.
    30. Bian JS, McDonald TV. Phosphatidylinositol 4,5-bisphosphate interactions withthe HERG K(+) channel. Pflugers Arch, 2007, 455: 105-113.
    31. Kiehn J, Karle C, Thomas D, Yao X, Brachmann J, Kübler W. HERG potassiumchannel activation is shifted by phorbol esters via protein kinase Adependentpathways. J Biol Chem, 1998, 273: 25285-25291.
    32. Schafer R, Wolfsen I, Behrens S, Weinsberg F, Bauer CK, Schwarz JR. The erglikepotassium current in rat lactotrophs. J Physiol, 1999, 518: 401-416.
    33. Schledermann W, Wulfsen I, Schwarz JR, Bauer CK. Modulation of rat erg1,erg2, erg3 and hERG K+ currents by thyrotropin- releasing hormone in anteriorpituitary cells via the native signal cascade. J Physiol, 2001, 532: 143-163.
    34. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PK. Isoproterenol antagonizesprolongation of refractory period by the class III antiarrhythmic agent E-4031 inguinea pig myocytes. Mechanism of action. Circ Res, 1991, 68: 77-84.
    35. Heath BM, Terrar DA. Protein kinase C enhances the rapidly activating delayedrectifier potassium current, Ikr, through a reduction in C-type inactivation inguinea-pig ventricular myocytes. The Journal of physiology, 2000, 522: 391-402.
    36. Karle CA, Zitron E, Zhang W, Kathofer S, Schoels W, Kiehn J. Rapid componentI(Kr) of the guinea-pig cardiac delayed rectifier K(+) current is inhibited bybeta(1)-adrenoreceptor activation, via cAMP/protein kinase A-dependentpathways. Cardiovascular research, 2002, 53: 355-362.
    37. Cui J, Melman Y, Palma E, Fishman GI, McDonald TV. Cyclic AMP regulates thehERG K(+) channel by dual pathways. Curr Biol, 2000, 10: 671-674.
    38. Tutor AS, Delpón E, Caballero R, Gómez R, Nú?ez L, Vaquero M, Tamargo J,Mayor F Jr, Penela P. Association of 14-3-3 proteins to beta1-adrenergicreceptors modulates Kv11.1 K+ channel activity in recombinant systems. MolBiol Cell, 2006, 17(11): 4666-74.
    39. Kagan A, McDonald TV. Dynamic control of hERG/I(Kr) by PKA-mediatedinteractions with 14-3-3. Novartis Found Symp, 2005, 266: 75-89.
    40. Kagan A, Melman YF, Krumerman A, McDonald TV. 14-3-3 amplifies andprolongs adrenergic stimulation of HERG K+ channel activity. EMBO J, 2002,21(8): 1889-98.
    41. Hjalmarson A. Effects of beta blockade on sudden cardiac death during acutemyocardial infarction and the postinfarction period. Am J Cardiol, 1997, 80:35J–39J.
    42. Hjalmarson A. Prevention of sudden cardiac death with beta blockers. ClinCardiol, 1999, 22: V11–V15.
    43. Kendall MJ. Possible mechanisms of action in the positive effect ofβblockers inheart failure. Heart, 1999, 82: IV5–IV7.
    44. Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, KomajdaM, Lubsen J, Lutiger B, Metra M, Remme WJ, Torp-Pedersen C, Scherhag A,Skene A; Carvedilol Or Metoprolol European Trial Investigators. Comparison ofcarvedilol and metoprolol on clinical outcomes in patients with chronic heartfailure in the Carvedilol or Metoprolol European Trial (COMET): randomisedcontrolled trial. Lancet, 2003, 362: 7-13.
    45. Moss AJ, Zareba W, Hall J, Schwartz PJ, Crampton RS, Benhorin J, Vincent GM,Locati EH, Priori SG, Napolitano C, Medina A, Zhang L, Robinson JL, TimothyK, Towbin JA, Andrews ML. Effectiveness and limitations ofβ-blocker therapyin congenital long-QT syndrome. Circ, 2000, 101: 616-623.
    46. Mazur A, Roden DM, Anderson ME. Systemic administration of calmodulinantagonist W-7 or protein kinase A inhibitor H-8 prevents torsade de pointes inrabbits. Circulation, 1999, 100: 2437–2442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700