SF_6局部放电分解特性及碳纳米管气敏传感器检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
h
     气体绝缘组合电器(Gas Insulated Switchgear,简称GIS)因稳定性好、占地面积小、可靠性高等优点,在电力工业中得到了广泛的应用。然而,GIS设备因安装、检修和长期运行等原因不可避免会存在各种内部绝缘缺陷,这些绝缘缺陷在长期运行中,有的会逐渐发展扩大,以致最终可能导致GIS设备绝缘故障。大量的研究表明,不同程度的绝缘缺陷大都会激发局部放电(Partial Discharge,简称PD),可用检测PD的程度和特征来判断设备的绝缘状况。传统检测局部放电方法有脉冲电流法、超声法以及超高频法等,他们都有各自的特点,得到了不同程度的应用。但共同存在难以摆脱现场强烈电磁干扰的问题,使得他们用于在线检测的准确度受到质疑。由于非电检测不受电磁干扰,近年来,国内外对因PD导致SF_6气体发生分解的研究非常关注,初步研究结果表明,不同绝缘缺陷产生的PD使SF_6的分解特性有较大差异,且SF_6分解组分与绝缘缺陷之间存在一定关系,可用来诊断GIS绝缘状况,对提高GIS设备的稳定性具有较高的理论价值和重要的工程实用意义。因此,用检测SF_6的分解特性来诊断GIS内部绝缘缺陷已成为目前研究的热点问题。本文在课题组已有的研究基础上,开展了PD对SF_6分解特性和用于在线检测微量组分气体的碳纳米管传感器研究,初步提出了适用于SF_6组分分析的特征气体,得到了碳纳米管对SF_6分解组分的气敏特性,并从理论上计算和模拟了SF_6分解组分的吸附过程。具体工作如下:
     ①构建了四种典型绝缘缺陷模型,对其进行了电场仿真。同时,设计了PD分解气室,建立了能对SF_6分解组分进行有效分离的气相色谱定量检测系统,并基于此平台,进行了不同典型绝缘缺陷产生PD下的SF_6分解气体实验,测量了分解组分中SOF_2、SO_2F_2、CF_4和CO_2的含量。研究表明,四种典型缺陷模型在预定位置和一定电压下均能产生PD,其中高压导体突出物缺陷产生的PD最稳定,并且其放电能量大,PD下SF_6产气量和分解速率高;自由导电微粒缺陷单次PD放电强度高,SOF_2、SO_2F_2两种气体组分含量较高;绝缘子表面金属污染缺陷由于PD发生时涉及与固体绝缘材料产生反应,故其CF_4含量增加明显;绝缘子外气隙缺陷虽然PD强度较高,但产气量相对较小。
     ②不同绝缘缺陷产生的PD使SF_6发生分解的特性和产气的规律存在明显差异,初步提出将SOF_2/SO_2F_2、CO_2/CF_4、(SOF_2+SO_2F_2)/(CO_2+CF_4)三组气体含量比值作为统计特征量,用于对四种典型绝缘缺陷类型进行分析判断,指出可用SOF_2/SO_2F_2来表征PD强度及放电发展趋势,CF_4组分含量变化一定程度上可以说明GIS内绝缘材料的劣化状况。
     ③采用叉指电极为基底,制备了SWNT-OH及本征SWNT碳纳米微量气敏传感器,对其进行了SOF_2、SO_2F_2、SO_2、CF_4四种分解组分的气性敏实验,对比了两者的气敏特性,重点研究和分析了SWNT-OH传感器对分解组分的的气敏特性、稳定性和恢复特性。结果表明,对于四种分解组分,SWNT-OH对SO_2响应速度最快,灵敏度最高,电阻变化率与SO_2的气体浓度满足一定的线性关系,且在空气中可以自恢复,恢复时间短,可初步满足检测稳定性要求。
     ④利用Materials Studio(MS)建立了SF_6分解组分(SOF_2、SO_2F_2、SO_2、CF_4)与单壁碳纳米管的微观吸附模型,并根据密度泛函理论(DFT)对吸附过程进行理论仿真和计算,分析了羟基修饰单壁碳纳米管(hydroxylation single-wall carbon nanobutes,SWNT-OH)的微观气敏机理。首先,根据计算结果对SWNT-OH与四种分子的吸附能力进行了判断;其次,根据分子前线轨道理论分析了SWNT-OH与四种分子发生吸附作用的难易程度;再次,根据能隙计算结果研究了气体分子吸附在SWNT-OH上对其表面载流子转移能力的影响,并结合态密度计算结果分析了SO_2与SWNT-OH吸附过程中的原子轨道杂化情况;最后,将SWNT-OH与本征SWNT的计算结果进行对比,结果表明,四种分子中,SWNT-OH最容易与SO_2发生吸附作用,吸附能力最强,且吸附SO_2后能隙减小,导致其电子转移能力提高;另外,研究发现两者原子的部分轨道在吸附过程中,趋于杂化形成的电子输运通道有利于两者之间的电子转移,SWNT-OH对四种分子的吸附能力高于本征SWNT的吸附能力。
Gas Insulated Switchgear (GIS) is widely used in electrical industry for its stability and compactness. However, there might be insulation defects formed in the processes of manufacture, transportation, installation and long term of operation. Those defects will develop and may finally lead to serious insulation faults. It has been shown by lots of research that most insulation defects lead to partial discharge (PD). Detecting the characteristics of PD can reflect the insulation condition. The traditional methods to detect PD include pulse current method, ultrasonic method, UHF method, and so on. Each of them has its own features, and has been applied at different degree. However, the traditional measurement method is difficult to get rid of the electromagnetic disturbance. Because of what, the online detection veracity is doubtable. Since the non-electric methods don’t affected by electromagnetic disturbance, SF_6 decomposition components detection has drawn lots of attention recently. Preliminary study has shown that SF_6 decomposition characteristics are different in various insulation defects. And the SF_6 decomposition components are related to the insulation defect types, which make it possible to detect the insulation condition by analyzing the components. Study on this method has great value in both theory and engineering. In this article, based on the reaches have been done, SF_6 decomposition characteristics were studied, and a carbon nanotube gas sensor for trace gas online detection is developed. In the study, the characteristic components of SF_6 decomposition were selected preliminary, and the micro-sensing mechanisms and macro-sensing characteristics of carbon nanotube gas sensor have been investigated through theoretical simulation and experiments. The specific work is as follows.
     1) Four kinds of physical models of typical insulation defects were constructed and the distribution of electric field of these models was analyzed by Finite Element Simulation. A PD decomposition chamber was built. A gas chromatography detection system was built to separate and analyze the components. In these four models the decomposition experiments were carried out, SOF_2, SO_2F_2, CF_4 and CO_2 from the decomposition components were detected. The result shows that PDs happen in all four models at the certain positions and expected voltage ranges. The N-type defect has large discharge energy and high values in decomposition quantities and speed. In the P-type defect, every PD pulse has a high altitude. And the value of SOF_2, SO_2F_2 is high. The M-type defect produces more and more CF_4 as experiment time goes on. The G-type defect shows a high PD level but produce little decomposition.
     2) Different defects make the decomposition characteristics quite different. It was suggested preliminary to use SOF_2/SO_2F_2, CO_2/CF_4 and (SOF_2+SO_2F_2)/(CO_2+CF_4) three values as the characteristic quantities to identify these four kinds of defects. SOF_2/SO_2F_2 was explained to represent the PD intensity. And the content of CF_4 can reflects the level of insulation ageing.
     3) Using interdigitated electrodes printed circuit board as the base SWNT-OH and SWNT sensors were made. SOF_2, SO_2F_2, CF_4 and SO_2 four components were experimented on the sensors. After comparing their performances, we paid special attention to SWNT-OH. Its sensitivity, stability and recovery characteristics were studied. The result shows SWNT-OH sensor has high reacting speed and high sensitivity to SO_2 in those four components. It satisfied certain linear relations between the resistance change rate of SWNT-OH and SO_2 gas concentration. And the SWNT-OH sensor can self-recovery in the air costing a short time. To a certain extent, the SWNT-OH sensor meets the stability requirements.
     4) Adsorption models, between four types of gas components (SOF_2, SO_2F_2, SO_2, CF_4) and SWNT, SWNT-OH, have been established by Materials Studio. Based on density functional theory (DFT) theoretical calculations were carried on. The micro-sensing mechanism of SWNT-OH was analyzed. First, the absorption capacity of SWNT-OH on the four types of gas molecules was judged according to the calculation results. Second, the difficulty levels of interaction between SWNT-OH and four types of molecules have been analyzed according to the molecular frontier orbital theory. Third, how gas molecules adsorbed on the SWNT-OH to influence electron transfer ability was investigated according to the results of energy gaps. Combined with the results of density of states, the hybridization of atomic orbitals was also investigated during the adsorption process between SWNT-OH and SO_2. Finally, the calculation results of SWNT-OH were compared with that of SWNT. Simulation results show that SO_2 was the most easily adsorbed on SWNT-OH, and the adsorption capacity of SWNT-OH on SO_2 was the largest among the molecules; the energy gap of SWNT-OH was reduced after adsorbing SO_2, which improved its ability of electron transfer; during the adsorption process, atom partial orbits tend to hybridization between SO_2 and SWNT-OH, which could help form electron transport channel, conducive to electron transfer between SWNT-OH and SO_2. Simulation results also indicated that the adsorption capacity of SWNT-OH on gas components was larger than that of SWNT.
引文
[1]邱毓昌. GIS装置及其绝缘技术[M].水利水电出版社,1994.06.
    [2] H. M. Heise, R. Kurte, P. Fischer, et al.“Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF_6 insulated equipment[J]. Fresenius Journal of Analytical Chemistry, Vol.358, No.7-8, Mar. 1997:793-799.
    [3]苏舜. GIS内部放电监测方法的分析[J].东北电力技术. 1997.7, No.7: 7-11.
    [4] M. Piemontesi, L. Niemeyer. Sorption of SF_6 and SF_6 decomposition products by activated alumina and molecular sieve 13X[C]. IEEE International Symposium on Electrical Insulation, Montreal, Quebec, Canada, Jun. 16-19, 1996:828-838.
    [5] C.Beyer,H.Jenett and D.KFOCKOW. Influence of Reactive SFX Gases on Electrode Surfaces after Electrical Discharge ender SF_6 Atmosphere[J]. IEEE Transactions on Dielectrics and Electrical Insulation, Vol.7, No.2, April 2000:234-240.
    [6]国际电工委员会标准IEC60480-2004[S],中国电机工程学会高压专委会,2004.
    [7]孙军彦.一起GIS设备放电事故的分析及处理[J].广西电力,2008,31(2):32-33.
    [8]李英奇.渭南变电站330kV GIS历次事故简况及对策探讨[J].西安电力高等专科学校学报, 2008,3(1):53-55.
    [9]梁之林,朱大铭,张英杰等.两起GIS组合电器事故原因分析及建议[J].电力设备,2007, 8(7):63-65.
    [10]唐炬,李涛,万凌云等. SF_6气体分解组分的多功能试验装置研制[J].高电压技术,2008, 34(8):52-57.
    [11]张晓星,姚尧,唐炬等. SF_6放电分解气体组分分析的现状和发展[J].高电压技术,2008, 34(4):37-42.
    [12]连鸿松.根据SF_6气体分解产物诊断电气设备故障[J].福建电力与电工, 2005, (3):21-24.
    [13]刘有为,吴立远,肖燕等.输变电设备特征参量的研究[R].北京:中国电力科学研究院, 2009.
    [14]刘卫东,金立军等.日本SF_6电器局部放电监测技术研究近况[J].高电压技术, 2001, Vol.27, No.2: 76-77.
    [15] D. Edelson, et al..Electrical Decomposition of SF_6"[J]. Industrial and Engineering Chemistry, Vol.45, NO.19, September 1953:2094-2096.
    [16] W. Leeds, F. Browne, and A. Strom.The Use of SF_6 -Cor High Power Arc Quenching[J]. Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers.Vol. 76, NO.6, 1957:906-909.
    [17] B. Gerasimov and T. Sidorkina.Kinetics and mechanism of crack growth during stress corrosi- on cracking of zirconium alloys[J]. Materials and Corrosion.Vol. 32, NO.11,1982:485-488.
    [18] W. Becher and J. Massonne.Contribution to the Study of the Decomposition of SF_6 in Electric Arcs and Sparks[J].Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers,Vol. 91, No. 11.1970:605-610.
    [19] B. Bartakova, J. Krump and V. Vosahlik. Effect of Electric Partial Discharge in SF_6[C]. Electrotechnichy Obzor, Prague, 67, 1978:230-233.
    [20] C. Boudene, J-L Cluet, G. Keib, and G. Wind,"Identification and Study of Some Properties of Compounds Resulting from the Decomposition of SF_6 under the Effect of Electrical Arcing in Circuit-Breakers[J] Revue Generale Electricite– Special Issue, June 1974:45-78.
    [21] J. Kulseta, A. Rein, and P. A. Holt.Arcing in SF_6 Insulated Equipment, Decomposition Products and Pressure Rise[J].Proc. Nordic Insulation Symposium, NORD-IS, Vol. 78, June 1978.
    [22] H. Grasselt, W. Ecknig, and H. J. Polster,"Applications of Gas Chromatography for the Development of SF_6 Insulated Switchgear and Equipment[J] Elektrie, Vol. 32, 1978:369-371.
    [23] A. Baker, R. Dethlefsen, J. Dodds, N. Oswalt and P. Vouros.Study of Arc By-Products in Gas-Insulated Equipment[C].EPRI Report No. EL-1646, December 1980.
    [24] J. Manion, J. Philosophos, and M. Robinson.Arc Stability of Electronegative Gases[J]. IEEE Transactions on Dielectrics and Electrical Insulation.Vol.1, No.1 1967:1-10.
    [25] F. Y. Chu, H. Stuckless, and J. M. Braun,"Generation and Effects of Low Level Contamination in SF_6 Insulated Equipment[M].Gaseous Dielectrics IV, L. G. Christophorou and M. O. Pace (Eds.) Pergamon Press, 1984:462-472.
    [26] K. Hirooka and M. Shirai.Thermal Characteristics of SF_6[J]. Chem. Soc. Japan, Vol.2, NO.25, 1980:165-169.
    [27] P. G. Ashbaugh, D. W. McAdam and M. F. James,"SF_6 - Its Properties and Uses as a Gaseous Insulator in Van der Graaf Accelerators"[J].IEEE Trans on Nuclear Science, NS-12, June 1965:266.
    [28] R. R. Smardzewski, R. E. Noftle, and W. B. Fox,"Argon Matric Raman and Infrared Spectra of SF5Cl, SF5Br and S2Fl0[J].Journal of Molecular Spectroscopy, Vol.62, NO.12, 1976:449-457.
    [29] R, J. Van Brunt and D. A. Leep.Corona-Induced decomposition of SF_6 [M].Gaseous Dielectrics IV,L. G. Christophorou and M. O. Pace (Eds.) Pergamon Press, N.Y,1982: 402-409.
    [30] R. J. Van Brunt and M. Mashikian.Mechanisms for Inception of DC and 60-Hz AC Corona in SF_6[J]. IEEE Transaction on Electrical Insulation, Vol.17, No.2, 1982: 106-120.
    [31] R. J. Van Brunt and M. Mashikian.Role of Photodetachment in Initiation of Electric Discharges in SF_6 and O_2[J].Journal of Applied Physics Vol.54,NO.6, June 1983: 3074-3079.
    [32] R. J. Van Brunt, T. C. Lazo, and W. E. Anderson,"Production Rates for Discharge Generated SOF_2, SO_2F_2 and SO_2 in SF_6 and SF_6/H2O Mixtures[M].Gaseous Dielectrics IV, L. G. Christophorou and M. O. Pace (Eds.) Pergamon Press, 1984: 276-285.
    [33] R. J. Van Brunt.Production Rates for Oxy-fluorides SOF_2, SO_2F_2 and SOF_4 in SF_6 Corona Discharge [J] National Bureau of Standards of Reserach,Vol. 90, No. 3, May 1985:229-253.
    [34] F. Y. Chu, H. Stuckless, and J. M. Braun,"Generation and Effects of Low Level Contamination in SF_6 Insulated Equipment[M].Gaseous Dielectrics IV, L. G. Christophorou and M. O. Pace (Eds.) Pergamon Press, 1984:462-472.
    [35] S. Kusumoto, S. Itoh, Y. Tsuchiya, H. Mukae, and K. Takahashi.Diagnostic Technique of Gas Insulated Substation by Partial Discharge Detection[J].IEEE Transactions on Power Apparatus and Systems, Vol.99,No.4, July/August 1980: 1456.
    [36] L.M.Babcock and G.E. Streit. Negative Ion-Molecule Reactions of SF_4[J]. Chem.Phys, Vol.75, No.8, 1981:3864-3870.
    [37] R, J. Van Brunt and I, T. Herron. Plasma chemical model for decomposition of SF_6 in a negative glow corona discharge[J], Phys.Scripta, Vol.53,1994:9-29.
    [38]孟庆红.不同绝缘缺陷局部放电下SF_6分解特性与特征组分检测研究[D].重庆:重庆大学,2010.
    [39] L.G. Christophorou and J.K. Olthoff. Electron interactions with SF_6[J]. Phys. Chem. Ref.Data, Vol.29,2000:267-330.
    [40] R. J. Van Brunt. Physics and chemistry of partial discharge and corona-Recent advances and future challenges. IEEE Trans. Dielectrics Electrical Insulation, Vol.1,1994.Oct:761-784.
    [41]刘有为,吴立远,弓艳朋. GIS设备气体分解物及其影响因素研究[J].电网技术, 2009.3,33(5): 58-61.
    [42] L. J. Jin, J.Q.Huang, W.D.Liu, J.L.Qian. Diagnosis of Partial Discharge in GIS based on UHF Sensing Technique[C]. Proceedings of 2001 International Symposium on Electrical Insulating Materials, November, 2001, Himeji, Japan: 251~253.
    [43] Masatake Kawada, Zen-Ichiro Kawasaki and Kenji Matsu-ura. A New on-line Insulation Diagnostic Technique for Power Apparatus by Detecting Electromagnetic Signals Emitted frim PD[C]. 1996 Asian International Conference on Dielectrics and Electrical Insulation, 4thJapan-China Conference on Electrical Insulation Diagnosis, Xi'an, China, October, 1996: 325~328.
    [44] Uwe Schichler, J?rg Gorablenkow. Experience with UHF PD Detection in GIS Substations[C]. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, Xi’an, China, June, 2000: 286~289.
    [45]罗学琛. SF_6气体绝缘全封闭组合电器[M].中国电力出版社,1998.11.
    [46] I.J. Kemp. Partical discharge plant-monitoring technology:Present and future developments[J] IEE Proc.-Sci. Mens. Technol, Vol.142, No.1, January 1995:4-10.
    [47] R.Kurte.C. Beyer H. M. Heise D. Klockow Application of infrared spectroscopy to monitoring gas insulated high-voltage equipment:electrode material-dependent SF_6 decomposition[J] Anal Bioanal Chem.(2002)373:639-646.
    [48]陈家斌. SF_6断路器实用技术[M].中国水利水电出版社, 2004,4.
    [49] D. Edelson, K. B. McAffe.Notes on the Infrared Spectrum of SF_6,[J].Chem. Phys, Vol.19, No.10, October 1951:1311.
    [50] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.
    [51] O.K. Varghese, P.D. Kichambre, D. Gong, et al. Gas sensing characteristics of multi-wall carbon nanotubes[J]. Sensors and Actuators B, 2001, 81: 32-41.
    [52]王晓峰.碳纳米管超级电容器的研制和应用[J].电源技术, 2005, 29(1): 27-30.
    [53] Pan H, Feng Y P, Lin J Y. Ab initio study of OH-functionalized single-wall carbon nanotubes[J]. Phys. Rev. B. 2004,70: 245421-245425
    [54]牛莉,罗延龄,李利维.碳纳米管气敏传感器响应机理研究进展[J].材料导报, 2006, 20: 103-170.
    [55] Goldoni A, Larciprete R, et al. Single-wall carbon nabotube interaction with gases: sample contaminants and environmental monitoring[J]. J Am Chem Soc, 2003, 125: 11329–11333.
    [56] Li J, Lu Y, Ye Q ,et al. Carbon nanotube sensors for gas and organic vapor detection[J]. Nano Lett, 2003, 3 (7): 929-933.
    [57] Zhou Z, Gao X P, Yan J, SongD Y. Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations[J]. Carbon, 2006, 44: 939-947.
    [58] Kong J. Franklin N.R. Zhou C. et al. Nanotube Molecular Wires as Chemical Sensors[J]. Science, 2000, 287:622-625.
    [59] Kong J. Chapline M.G. Dai H.J .Functionlized Carbon Nanotubes For Molecular Hydrogen Sensors[J]. Adc Mater ,2001,13(18):1384.
    [60] O.K.Varghesea, Kichambreb D. Gongc, K.G. et al. Gas sensing characteristics of multi-wallcarbon nanotubes[J]. Sensors and Actuators B,2001,81:32-41.
    [61] Modi A, Koratkar N, Lass E, Wei B, Ajayan PM. Miniaturized gas ionization sensors using carbon nanotubes[J]. Nature, 2003, 424: 171-174.
    [62]李昕,刘君华,张勇等.催化剂颗粒对自持放电型碳纳米管气敏传感器电极的影响[J].仪器仪表学报, 2003, 24(1): 4952-4956.
    [63]惠国华,吴莉莉,潘敏等.基于定向纳米碳管气体放电的气敏传感器研究[J].分析化学, 2006, 34(12): 1813-1816.
    [64]李昕,刘君华,朱长纯.基于碳纳米管薄膜的吸附式气敏传感器的研究[J].中国科学E辑工程学科, 2005, 35(7): 689-700.
    [65]胡陈果,王万录.碳纳米管的电化学性质及其应用研究[J].功能材料,2005, 36(5): 730-733.
    [66] Yunhuai Zhang, Jian He, Peng Xiao, Yun Gong, Flow sensing characteristics of thin film based on multi-wall carbon nanotubes[J]. International Journal of Modern Physics B, 2007, 21(18&19): 3473-3476.
    [67]刘璐琪,郭志新,戴黎明,等.碳纳米管的有机化学修饰[J].科学通报, 2001, 46 (19): 1590-1596.
    [68] L. Valentini, V. Bavastrello, E. Stura, et al. Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material[J]. Chemical Physics Letters, 2004, 383(5-6): 617-622.
    [69]方向生,郭淼,陈文菊,等.碳纳米管及其修饰物对挥发性有机物气敏性的研究[J].传感技术学报, 2006, 5: 2130-2134.
    [70] Lu Y J, Li J, Han J, et al. Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors[J]. Chemical Physics Letters, 2004, 391: 344-348.
    [71]郭淼,潘敏,陈金霞,等.室温下镀钯多壁碳纳米管对苯的气敏响应特性[J].分析化学, 2006, 34(12): 1755-1758.
    [72] Ding W, Hayashi R, Suehiro J, et al. Calibration methods of carbon nanotube gas sensor for partial discharge detection in SF_6[J]. IEEE Trans. Dielectr. Electr. Insul. 2006,13: 353-361.
    [73] Ding W, Hayashi R, Ochi K, et al. Analysis of PD-generated SF_6 decomposition gases adsorbed on carbon nanotubes[J]. IEEE Trans. Dielectr. Electr. Insul. 2006,13: 1200-1207.
    [74] Ding W, Ochi K, Suehiro J. Factors Affecting PD Detection in GIS Using a Carbon Nanotube Gas Sensor[J]. IEEE Trans. Dielectr. Electr. Insul. 2007,25: 718-725.
    [75]张晓星,任江波等.检测SF_6气体局部放电的多壁碳纳米管薄膜传感器[J].中国电机工程学报. 2009, 29(16): 114-118.
    [76]黎明. SF_6气体及气体绝缘变电站的运行[M].水利水电出版社, 1993.12.
    [77] A.Derdouri and J.Casanovas. Spark Decomposition Mixtures of SF_6/H2O[J]. IEEE Transactionson Electrical Insulation, Vol.24, No.6, December 1989:1147-1157.
    [78] Piemontesi, M. and W.Zaengl. Analysis of Decomposition Products of Sulfur Hexafluroride by Spark Discharge at Different Spark Energies[C]. 9th International Symposium on High Voltage Engineering, August 28-September 1, 1995,Graz:2283-1-2283-4.
    [79] S. A. Boggs, F. Y. Chu, and N. Fujimoto.Disconnect Switch Induced Transients and Trapped Charge in GIS[J].IEEE Transection on Power and Systems, Vol.101, October 1982.
    [80] B. Belmadani et al. SF_6 Decomposition under Power Arcs: Physical Aspects. IEEE Transactions on Electrical Insulation, Vol.26, No.6, December 1991:1163-1176.
    [81] N. Fujimoto, S.J. Croall and S.M. Foty,"Techniques for the protention of GIS-insulated of substation to cable interfaces[J].IEEE Transactions on Power Delivery, Vol. 3, No. 4, October 1988:1650-1655.
    [82] J. J. Dodds.Moisture Measurements in GIS[C].Doble Client Conference, Boston, 1985.
    [83] M. Goldman and A. Goldman. The Effects of Pulsed Corona Discharge on SO_2 Absorption into Water"[J].Ind. Eng. Chem. Res.Vol.40, No.24,2001:5822–5830.
    [84] Prakash K S , Srivastava K D, Morcos M M. Movement of particles in compressed SF_6 GIS with dielectric coated enclosure[J] .IEEE Trans on Dielectrics and Eelectrical Insulation , 1997 , 4(3) : 344-347.
    [85] Brunt R J V,Sauers I. Gas-phase hydrolysisof SOF_2 and SOF_4 [J]. Chem Phys, 1986, 85(8): 4377-4380.
    [86] Rapp D, Englander-Golden P. Ionization by electron impact [J]. Chem Phys,1965,43 (5): 1464
    [87] D. Edelson, K. B. McAffe.Notes on the Infrared Spectrum of SF_6,[J].Chem. Phys, Vol.19, No.10, October 1951:1311.
    [88]张国强,张元录,崔翔.高压套管均压球电极形状优化的研究[J].中国电机工程学报,1999, 19 (1): 37-40.
    [89] S. Fukuda. Current-Carrying and Short Circuit Tests on EHV Cables Insulated with SF_6 Gas[J].IEEE Trans. PAS, PAS-88, No. 2, February 1969:147-156.
    [90] Y. Murakami and S. Menju. Fundamental Techniques in Gas-Insulated Apparatus[J].Toshiba Review, Vol.117, September 1978:5.
    [91] A. B. Kaiser, G. U. Flanagan, D. M. Stewart, et al. Heterogeneous model for conduction in conducting polymers and carbon nanotubes[J]. Synthetic Metals, 2001, 117: 67-73.
    [92]孟凡生.单壁碳纳米管传感器检测SF_6局部放电分解组分的气敏性研究[D].重庆:重庆大学,2011.
    [93]胡陈果.碳纳米管的电化学性质及应用研究[D].重庆:重庆大学,2003.
    [94]陈国平.薄膜物理与技术[M].南京:东南大学出版社,1993.
    [95] Peng S, Cho K. Ab initio study of doped carbon nanotube sensors[J]. Nano Lett. 2003,3: 513-517.
    [96] Pan H, Feng Y P, Lin J Y. Ab initio study of OH-functionalized single-wall carbon nanotubes[J]. Phys. Rev. B. 2004,70: 245421-245425

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700