局部放电下六氟化硫分解特性与放电类型辨识及影响因素校正
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的局部放电检测和识别方法均存在各种不足,难以满足气体绝缘组合电器(Gas Insulated Switchgear,GIS)局部放电在线监测的要求。脉冲电流法、超声波法和光测法抗干扰能力较弱,测量精度不高,且超声波法和光测法都不能进行放电量的标定,超高频法抗电磁干扰能力强,但其模式识别的性能还需继续提高才能满足现场应用的要求,其放电量标定问题也未完全解决。
     国内外大量研究表明,SF6气体在局部放电下会发生分解并与GIS气室中的微量水分和氧气发生反应,生成一系列化学物质,通过检测GIS气室中的SF6分解组分即可判断是否有局部放电发生,且不同类型绝缘缺陷引起的局部放电,其导致SF6分解产生的组分在含量、产气速率、含量比值等各方面会有所差异,可以通过检测SF6分解组分对放电故障类型进行识别。此外SF6气体的分解总量与放电量之间存在联系,通过检测SF6气体的分解速率及放电重复率可以大致判断放电量水平。这种局部放电检测和识别方法本质上是一种化学方法,可以避免现场强烈的电磁干扰和噪声干扰,具有较高的理论研究意义和良好的应用前景。但选取何种分解组分作为特征分解组分,如何利用组分分析来诊断故障类别,如何消除各种因素对识别的影响,以及如何利用分解速率来确定放电量,目前还没有得到解决。
     本文综合考虑分解组分的稳定性、易检测性以及所表征的物理意义等各方面,从SF6众多的分解组分中选取了SO2F2、SOF2、CF4和CO2作为特征分解组分,用于分析各种局部放电下SF6的分解特性。利用SF6局部放电分解实验装置,进行了包括金属突出物、自由导电微粒、绝缘子表面污秽和绝缘子气隙四种绝缘缺陷引起的局部放电下的SF6分解实验,在每种局部放电下都测量了四种特征分解组分的含量,分析了各种局部放电下特征分解组分含量以及特征组分含量比值的特点,发现各种局部放电下特征分解组分在含量、产气率以及含量比值等方面存在明显的差异,可以用SF6分解组分对局部放电类型进行识别。
     采用模糊C均值聚类作为分析方法,分别以四种特征分解组分含量和三组特征组分含量比值作为特征量,对四种局部放电下得到的SF6分解组分数据进行了聚类分析,结果表明以特征组分含量比值作为特征量时的聚类结果要优于以特征分解组分含量作为特征量时的结果,因此本文选择特征组分含量比值作为识别局部放电的特征量,所选取的三组特征组分含量比值为c(SO2F2)/c(SOF2)、c(CF4)/c(CO2)和c(CF4+CO2)/c(SO2F2+SOF2),结合SF6在局部放电下的分解过程,分析了它们所对应的物理意义。利用决策树理论,以上述的特征量作为输入量,构建了用于局部放电识别的决策树,并取得了良好的识别效果。同时基于支持向量机理论,构建了用于识别不同局部放电的智能识别系统,采用粒子群优化理论对支持向量机的参数进行了优化,验证结果显示,该智能识别系统比决策树具有更好的识别效果。
     利用金属突出物缺陷,进行了不同微水和微氧含量下的SF6分解实验,得到了不同微水和微氧含量下的四种特征分解组分含量随时间变化的规律,分析发现,SOF2、SO2F2和CO2三种特征分解组分的含量都是随着水分和氧气含量的增加而增加的,CF4的含量几乎不随着水分和氧气含量的变化而变化。通过对不同微水和微氧含量下的c(SO2F2)/c(SOF2)、 c(CF4)/c(CO2)和c(CF4+CO2)/c(SO2F2+SOF2)三组特征组分含量比值的分析可以发现,它们的值都是随微水和微氧含量的增加而逐渐减小的。微水微氧含量对基于SF6分解组分的局部放电识别系统影响非常显著,当微水微氧含量变化时,所建立的支持向量机识别系统的识别率大幅下降,甚至完全不能识别。
     结合各种分解产物的生成过程,并利用化学动力学理论分析发现,SF6与O2和H2O反应生成SOF2和SO2F2的化学反应属于二级反应,有机绝缘材料和金属中所含有的C与O2和F原子反应生成CO2和CF4的化学反应也为二级反应。基于二级反应的反应物与生成物浓度之间的数学关系,推导得出三组特征组分含量比值与气室中初始O2和H2O含量的关系可以统一写成幂函数的形式,结合各种O2和H2O含量下特征组分含量比值的数据,采用最小二乘拟合的方法,得到了O2和H2O含量对特征组分含量比值影响规律的数学模型。根据数学模型,提出了通过校正来消除微水微氧影响的思想,并建立了微水和微氧对特征组分含量比值影响的校正方法,给出了相应的校正公式,可以将一种水分和氧气含量下得到的特征组分含量比值数据校正到另外一种氧气和水分含量下。利用构建的局部放电支持向量机识别系统,对比了数据在校正前和校正后的识别正确率,结果显示,通过所提出的微水微氧校正方法校正后,识别正确率大幅提升,表明所提出的微水微氧校正方法具有良好的校正效果。
The existing partial discharge detecting methods for gas insulated switchgear (GIS)have some kinds of disadvantages. For pulse current method, ultrasonic method, andoptic detecting method, the problems of anti-jamming capability, detection accuracy,and costing make them not suitable for accurate on-line partial discharge monitoring.Though ultrahigh frequency method has lots of advantages, its pattern recognitioncapability has a far way to meet the industry requirement. Also discharge capabilitycalibration has not been solved yet for ultrasonic method, optic detecting method, andultrahigh frequency method. Therefore, the partial discharge detecting methods usednow can not completely meet the requirement of on-ling partial discharge monitoring.
     Research shows that partial discharge can decompose SF6. The decomposedproducts continue to react with moisture and oxygen in GIS and lots of chemicals aregenerated. Therefore, partial discharge in GIS can be discovered by detecting SF6decomposition products. As the SF6decomposition products generated by differentkinds of partial discharge are different in concentration, generation rate, andconcentration ratio, it is also possible to recognize partial discharge category by SF6decomposition products. It is essentially a kind of chemical method to detect partialdischarge by SF6decomposition products, which has the capability to resist the strongelectromagnetic and noise interference in field. So this method is significant in boththeory and application. But lots of problems have not been solved yet for this method,such as which decomposition product should be chose as the feature decompositionproduct, how to use the decomposition product to recognize the partial dischargecategory, severity and development trend, and what is the specific criteria.
     Based on stability, how easy to detect, and physical significance, four kinds of SF6decomposition products, namely, SO2F2、SOF2、CF4and CO2, were chose as thefeature decomposition products to analyze the SF6decomposition characteristic underdifferent kinds of partial discharge. The SF6decomposition experiments were conductedon the SF6decomposition device under four kinds of partial discharge including metalprotrusion, free conductive particle, contamination on insulator surface, and gap oninsulator-conductor interface. The concentration of the four kinds of featuredecomposition products were measured under each experiment. The characteristic of thefeature decomposition products concentration and feature concentration ratio was analyzed. Also the decomposition characteristics of SF6under each kind of partialdischarge were compared. It is found that the decomposition products are obviouslydifferent in concentration, generation rate, and concentration ratio under the four kindsof partial discharge. It is feasible to use SF6decomposition products to recognize thepartial discharge category.
     The concentration data of the feature decomposition products from the four kindsof partial discharge were clustered be fuzzy C-means clustering. And the concentrationand concentration ratio were used as the feature parameter respectively. The comparisonof the results shows that the performance using the concentration ratio as the featureparameter is much better than that of the concentration. So the concentration ratio waschose as the feature parameter for partial discharge recognition in this paper. Threeconcentration ratios were employed, namely, c(SO2F2)/c(SOF2), c(CF4)/c(CO2), andc(CF4+CO2)/c(SO2F2+SOF2). The physical significance of the three concentration ratioswas also analyzed. A decision tree was established for partial discharge recognition bydecision tree theory, using the three concentration ratios as the feature parameters. Thetest result shows that the decision tree has a good performance on partial dischargerecognition. Meanwhile, a smart recognition system was established for partialdischarge recognition, based on support vector machine theory. The parameters of thesupport vector machine were optimized by particle swarm optimization theory. The testresult shows that this smart system has a better performance than that of decision tree.
     The SF6decomposition experiments were conducted under different moisture andoxygen contents. Partial discharge was generated by the protrusion defect. And theconcentration of the four feature decomposition products was measured in eachexperiment. Through analysis of the data, it is found that the concentration of SOF2,SO2F2, and CO2increases with the initial content of moisture and oxygen. And theconcentration of CF4barely changes with the content of moisture and oxygen. After that,the characteristic of the three concentration ratios was also analyzed. It is shown that thevalue of the three concentration ratios all decreases with the content of moisture andoxygen. The content of moisture and oxygen has a strong influence on the partialdischarge recognition system. The recognition accuracy decreases dramatically whenthe content of moisture and oxygen changes.
     The chemical reactions generating the four feature decomposition products are allsecond order reactions by chemical kinetics theory. Based on the mathematical relationof reactant and resultant, it is found that the relation of the three concentration ratios and the initial content of moisture and oxygen in the gas chamber can be expressed bypower function. Then the mathematical model of influence rule of moisture and oxygencontent on the feature concentration ratios was developed by least square fitting methodusing the concentration data of feature concentration ratios under different moisture andoxygen content. According to the mathematical model, the calibration method ofinfluence of moisture and oxygen on the feature concentration ratios was proposed,which can calibrate the value of the feature concentration ratios from one moisture andoxygen content to the other content. The recognition accuracy before calibration wascompared with that of after calibration using the partial discharge recognition systembased on support vector machine. The result shows that the recognition accuracyincreases significantly when the input data are calibrated by the calibration method,which means the calibration method has a good performance.
引文
[1]小崎正光.高电压与绝缘技术[M].科学出版社. OHM出版社.2001.7.
    [2]邱毓昌. GIS装置及其绝缘技术[M].水利电力出版社,1994.6.
    [3] D. Kopejtkova, T. Molony, S. kobayashi, and I. M. Welch. A Twenty-five Year Review ofExperience with SF6Gas Insulated Substations(GIS). CIGRE, Paris, France,1992,30th August-5thSeptember: pp23~101.
    [4]罗学琛.变电所使用GIS设备与常规设备的综合比较[J].中国电力,1996.4, Vol.29, No.4:24-26.
    [5]成永红,谢小军,陈玉.气体绝缘系统中典型缺陷的超宽频带放电信号的分形分析[J].中国电机工程学报,2004,24(8):99-102.
    [6] T. Hoshino, K. Nojimak, and M. Hanai. Real-time PD identification in diagnosis of GIS usingsymmetric and asymmetric UHF sensors. IEEE Transactions on Power Delivery, Vol.19, No.3,July.2004:1072-1577.
    [7] C. Chang, C. S. Chang, J. Jin, T. Hoshino, M. Hanai, and N. Kobayashi. Source classification ofpartial discharge for gas insulated substation using wave shape pattern recognition. IEEE Trans.Dielect. Elect. Insulation, Vol.12, No.2, pp.374–386, Apr.2005.
    [8] L. Hao and P. L. Lewin. Partial discharge source discrimination using a support vector machine.IEEE Trans. Dielect. Elect. Insulation, Vol.17, No.1, pp.189–197, Feb.2010.
    [9] CIGRE WG15.03, Diagnostic methods for gas insulating systems, Paris,1992.
    [10] K. Sueo, I. Shunichi, T. Yoshihide, M. Hisao, M. Setuyuki, and T. Kohji. Diagnostic technique ofgas insulated substations by partial discharge detection. IEEE Trans. Power Apparatus Syst., Vol.99,pp.4196-4206,1980.
    [11] IEC60270High–voltage test techniques-partial discharge measurement.2000.
    [12] R. Bozzo,F. Guastavina,and G.Guerra. PD detection and localization by means of acousticmeasurements on hydrogenerator stator bars. IEEE Transactions on Dielectrics and ElectricalInsulation, Vol.2, No4, pp.660-666, Aug.1995.
    [13] L. E. Lundgarrd, M. Runde, and B. Skyberg. Acoustic Diagnosis of Gas Insulated Substations: ATheoretical and Experimental Basis. IEEE Transactions on Dielectrics and Electrical Insulation,1990, Vol.5, No.4: pp1751~1758
    [14] L. E. Lundgaard. Partial discharge. XIV. Acoustic partial discharge detection-practical application.IEEE Electr. Insul. Mag., Vol.8, No.5, pp.34-43,1992.
    [15]郝艳捧,王国利,谢恒堃等.基于PD和超声波法研究大电机定子绝缘的老化特性[J].电工技术学报,2002,17(2): pp1~6
    [16]唐炬,范敏,欧阳有鹏.用于检测变压器PD的荧光光纤传感系统[J].高电压技术,2011,37(5):1129-1135.
    [17]徐阳,喻明,曹晓珑. PD光脉冲测量法及与电测法的比较[J]高电压技术,2001,27(4):3-5.
    [18] A. Beroual and F. Buret. Optical detector of electrical discharges. IEE Proceedings-G: ElectronicCircuit and Systems,1991,38(5):620-622.
    [19] M. D. Judd, O. Farish, J. S. Pearson, and B. F. Hampton. Dielectric Windows for UHF PartialDischage Detection. IEEE Transactions on Dielectrics and Electrical Insulation,2001, Vol.8, No.6:pp.953~958.
    [20] G. Wanninger. Antennas as Coupling Devices for UHF Diagnostics in GIS. The9th InternationalSymposium on High Voltage Engineering, Austria, Europe, August,1995: pp.482~486.
    [21] E. Colombo, W. Koltunowicz, M. Boldrin. Sensitivity Verification of the UHF System for PDdetection in GIS. The12th International Symposium on High Voltage Engineering, Bangalore, India,August,2001: pp.397~400.
    [22] L. J. Jin, J. Q. Huang, W. D. Liu, and J. L. Qian. Diagnosis of Partial Discharge in GIS based onUHF Sensing Technique. Proceedings of2001International Symposium on Electrical InsulatingMaterials, November,2001, Himeji, Japan: pp.251~253.
    [23] Uwe Schichler and J rg Gorablenkow. Experience with UHF PD Detection in GIS Substations.Proceedings of the6th International Conference on Properties and Applications of DielectricMaterials, Xi’an, China, June,2000: pp286~289.
    [24]唐炬.组合电器局放在线监测外置传感器和复小波抑制干扰的研究[D].重庆大学博士学位论文,2004
    [25]王建生,邱毓昌,吴向华,孙晓滨.用于GISPD检测的超高频传感器频率响应特性[J].中国电机工程学报,2000.8, Vol.20, No.8: pp42~45.
    [26]周倩.组合电器PD超高频信号数学模型构建和模式识别研究[D].重庆大学博士学位论文,2008.
    [27] M. D. Judd, O. Farish, and B. F. Hampton. Excitation of UHF signals by partial discharge in GIS.IEEE Trans. Dielectr. Electr. Insul., Vol.3, pp.213–228,1996.
    [28] Y. B. Xie, J. Tang, and Q. Zhou. Suppressing white-noise in partial discharge measurements—part1:construction of complex Daubechies wavelet and complex threshold. Euro. Trans. Electr. Power,Vol.20, No.6, pp.800–810, Sep.2010
    [29] Y. B. Xie, J. Tang, and X. X. Zhang. Suppressing white-noise in partial discharge measurementspart2: the optimal de-noising scheme. Euro. Trans. Electr. Power, Vol.20, No.6, pp.811–821, Sep.2010
    [30] T. Pinpart and M. D. Judd. Differentiating between partial discharge sources using envelopecomparison of ultra-high-frequency signals. IET Sci. Meas. Technol., Vol.4, No.5, pp.256–267,Sep.2010.
    [31]王晓蓉,杨敏中,严璋.电力设备PD测量中抗干扰研究的现状和展望[J].电网技术,2000,24(6):41-45.
    [32]姚唯建,钟志铿.气体分析法用于六氟化硫电气设备故障的检测[J].广东电力,1994, No.2:pp21~24
    [33] W. Ding, R. Hayashi, K. Ochi, J. Suehiro, K. Imasaka, M. Hara, N. Sano, E. Nagao, and T.Minagawa. Analysis of PD-generated SF6decomposition gases adsorbed on carbon nanotubes. IEEETrans. Dielectr. Electr. Insulation, Vol.13, pp.1200–1207,2006.
    [34] H. M. Heise, R. Kurte, P. Fischer, D. Klockow, and P. R. Janissek, Gas analysis by infraredspectroscopy as a tool for electrical fault diagnostics in SF6insulated equipment. Fresenius J. Anal.Chem., Vol.358, pp.793-799,1997.
    [35] I. Sauers, H. W. Ellis, and L. G. Christophorou. Neutral decomposition products in spark breakdownof SF6. IEEE Trans. Electr. Insul, Vol.21, pp.111–120,1986.
    [36] A. M. Casanovas, J. Casanovas, and F. Lagarde. Study of the decomposition of SF6under dcnegative polarity corona discharges (point-to-plane geometry)-influence of the metal constitutingthe plane electrode. J. Appl. Phys., Vol.72, pp.3344-3354,1992.
    [37] H. A. Stuckless, J. M. Braun and F. Y. Chu. Degradation of silica-filled epoxy spacers by arccontaminated gases in SF6-insulated equipment. IEEE Trans. Power Apparatus Syst., Vol.104, pp.3597-3602,1985.
    [38] A. Derdouri, J. Casanovas, R. Hergli, R. Grob, and J. Mathieu. Study of the decomposition of wetSF6, subjected to50-Hz ac corona discharges. J. Appl. Phys., Vol.65, pp.1852–1857, Mar.1989.
    [39] B. Belmadani, J. Casanovas, and A. M. Casanovas. SF6decomposition under power arcs-chemicalaspects. IEEE Trans. Electr. Insul, Vol.26, pp.1177–1189,1991.
    [40]黎明,黄维枢. SF6气体及SF6气体绝缘变电站的运行[M].水利电力出版社.1993.12.
    [41]刘卫东,金立军等.日本SF6电器PD监测技术研究近况[J].高电压技术,2001, Vol.27, No.2:76-77.
    [42] D. Edelson, et al. Electrical Decomposition of SF6. Industrial and Engineering Chemistry, Vol.45,NO.19, September1953:2094-2096.
    [43] W. Leeds, F. Browne, and A. Strom. The Use of SF6-Cor High Power Arc Quenching. PowerApparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers.Vol.76, NO.6,1957:906-909.
    [44] B. Gerasimov and T. Sidorkina. Kinetics and mechanism of crack growth during stress corrosi-oncracking of zirconium alloys. Materials and Corrosion.Vol.32, NO.11,1982:485-488.
    [45] W. Becher and J. Massonne. Contribution to the Study of the Decomposition of SF6in Electric Arcsand Sparks. Power Apparatus and Systems, Part III. Transactions of the American Institute ofElectrical Engineers,Vol.91, No.11.1970:605-610.
    [46] C. Boudene, J-L Cluet, G. Keib, and G. Wind. Identification and Study of Some Properties ofCompounds Resulting from the Decomposition of SF6under the Effect of Electrical Arcing inCircuit-Breakers. Revue Generale Electricite–Special Issue, June1974:45-78.
    [47] B. Bartakova, J. Krump and V. Vosahlik. Effect of Electric Partial Discharge in SF6.Electrotechnichy Obzor, Prague,67,1978:230-233.
    [48] J. Kulseta, A. Rein, and P. A. Holt. Arcing in SF6Insulated Equipment, Decomposition Productsand Pressure Rise. Proc. Nordic Insulation Symposium, NORD-IS, Vol.78, June1978.
    [49] H. Grasselt, W. Ecknig, and H. J. Polster. Applications of Gas Chromatography for theDevelopment of SF6Insulated Switchgear and Equipment. Elektrie, Vol.32,1978:369-371.
    [50] A. Baker, R. Dethlefsen, J. Dodds, N. Oswalt, and P. Vouros. Study of Arc By-Products inGas-Insulated Equipment. EPRI Report No. EL-1646, December1980.
    [51] R. Thorburn. Permanent Dissociation of SF6in Corona Discharge. Nature, Vol.175,1955:423.
    [52] J. Manion, J. Philosophos, and M. Robinson. Arc Stability of Electronegative Gases. IEEETransactions on Dielectrics and Electrical Insulation.Vol.1, No.11967:1-10.
    [53] J. Castonguay. Kinetics of the Arc Decomposition of SF6-Gas Mixtures. Proc. IEEE Intl. Symp. OnElect. Insulation, June1980.
    [54] F. Y. Chu, H. Stuckless, and J. M. Braun. Generation and Effects of Low Level Contamination inSF6Insulated Equipment. Gaseous Dielectrics IV, L. G. Christophorou and M. O. Pace (Eds.)Pergamon Press,1984:462-472.
    [55] L. C. Frees, I. Sauers, H. W. Ellis, and L. G. Christophorou. Positive Ions in Spark Breakdown ofSF6. Journal of Physics D: Applied Physics, Vol.14, NO.9,1981:1629-1642.
    [56] I. Sauers, L. G. Christophorou, L. C. Frees, and H. W. Ellis. Aspects of Environmental Effects ofDielectric Gases. Gaseous Dielectrics III, L.G.Christophorou (Ed.) Pergamon Press,1982:387.
    [57] I. Sauers, H. W. Ellis, L. C. Frees, and L. G. Christophorou. Studies of Spark DecompositionProducts of SF6and SF6Perfluorocarbon Mixtures. Gaseous Dielectrics III, L. G. Christophorou(Ed.)Pergamon Press,1982:387-401.
    [58] I. Sauers, L. G. Christophorou, and S. M. Spyrou. Negative Ion Formation in SF6Spark-By-Products. Gaseous Dielectrics IV, L. G. Christophorou and M. O. Pace (Eds.) Pergamon Press,1984:292-309.
    [59] K. Hirooka and M. Shirai. Thermal Characteristics of SF6. Chem. Soc. Japan, Vol.2, NO.25,1980:165-169.
    [60] P. G. Ashbaugh, D. W. McAdam and M. F. James. SF6-Its Properties and Uses as a GaseousInsulator in Van der Graaf Accelerators. IEEE Trans on Nuclear Science, NS-12, June1965:266.
    [61] R. R. Smardzewski, R. E. Noftle, and W. B. Fox. Argon Matric Raman and Infrared Spectra ofSF5Cl, SF5Br and S2Fl0. Journal of Molecular Spectroscopy, Vol.62, NO.12,1976:449-457.
    [62] B. Bartakova, J. Krump, and V. Vosahlik. Effect of Electric Partial Discharge in SF6.Electrotechnichy Obzor, Prague,67,1978:230.
    [63] R. J. Van Brunt and D. A. Leep. Corona-Induced decomposition of SF6. Gaseous Dielectrics IV, L.G. Christophorou and M. O. Pace (Eds.) Pergamon Press, N.Y,1982:402-409.
    [64] R. J. Van Brunt and M. Mashikian. Mechanisms for Inception of DC and60-Hz AC Corona in SF6.IEEE Transaction on Electrical Insulation, Vol.17, No.2,1982:106-120.
    [65] R. J. Van Brunt and M. Mashikian. Role of Photodetachment in Initiation of Electric Discharges inSF6and O2. Journal of Applied Physics Vol.54, NO.6, June1983:3074-3079.
    [66] R. J. Van Brunt, T. C. Lazo, and W. E. Anderson. Production Rates for Discharge Generated SOF2,SO2F2and SO2in SF6and SF6/H2O Mixtures. Gaseous Dielectrics IV, L. G. Christophorou and M.O. Pace (Eds.) Pergamon Press,1984:276-285.
    [67] R. J. Van Brunt. Production Rates for Oxy-fluorides SOF2, SO2F2and SOF4in SF6CoronaDischarge. National Bureau of Standards of Reserach, Vol.90, No.3, May1985:229-253.
    [68] F. Y. Chu, H. Stuckless, and J. M. Braun. Generation and Effects of Low Level Contamination inSF6Insulated Equipment. Gaseous Dielectrics IV, L. G. Christophorou and M. O. Pace (Eds.)Pergamon Press,1984:462-472.
    [69] S. Kusumoto, S. Itoh, Y. Tsuchiya, H. Mukae, and K. Takahashi. Diagnostic Technique of GasInsulated Substation by Partial Discharge Detection. IEEE Transactions on Power Apparatus andSystems, Vol.99, No.4, July/August1980:1456.
    [70] M. Goldman and A. Goldman. The Effects of Pulsed Corona Discharge on SO2Absorption intoWater. Ind. Eng. Chem. Res.Vol.40, No.24,2001:5822–5830.
    [71] R. J. Van Brunt. Physics and chemistry of partial discharge and corona-recent advances and futurechallenges. IEEE Trans. Dielectr. Electr. Insul., Vol.1, pp.761-784,1994.
    [72] R. J. Van Brunt and J. T. Herron. Fundamental processes of SF6decomposition and oxidation inglow and corona discharges. IEEE Trans. Electr. Insul, Vol.25, pp.75–94,1990.
    [73] R. J. Van Brunt and J. T. Herron. Plasma chemical-model for decomposition of SF6in a negativeglow corona discharge. Phys. Scr., Vol. T53, pp.9–29,1994.
    [74] H. A. Stuckless, J. M. Braun, and F. Y. Chu. Degradation of silica-filled epoxy spacers by arccontaminated gases in SF6-insulated equipment. IEEE Transactions on Power Apparatus andSystems, Vol. PAS-104, pp.3597-3602,1985.
    [75] F. Y. Chu. Novel Low-Cost SF6Arcing Byproduct Detectors for Field Use in Gas-InsulatedSwitchgear. IEEE Trans. PWRD-1, No.2, April1986. pp.81.
    [76] R. Kurte, C. Beyer, H. M. Heise, et al. Application of infrared spectroscopy to monitoring gasinsulated high-voltage equipment: electrode material-dependent SF6decomposition. Anal BioanalChem.(2002)373:639–646.
    [77]陈家斌. SF6断路器实用技术[M].中国水利水电出版社,2004,4.
    [78] Junya Suehiro, Guangbin Zhou, and Masanori Hara. Detection of partial discharge in SF6gas usinga carbon nanotube-based gas sensor. Sensors and Actuators B105(2005)164-169.
    [79] IEC60480Guidelines for the checking and treatment of sulfur hexafluoride (SF6) taken fromelectrical equipment and specification for its reuse,2004.
    [80]刘有为,吴立远,弓艳朋. GIS设备气体分解物及其影响因素研究[J].电网技术,2009.3,33(5):58-61.
    [81] Catherine Pradayrol. Influence of O2and H2O on the Spark Decomposition of SF6and SF6+50%CF4Mixtures. Conference Record of the1996IEEE International Symposium on ElectricalInsulation, Montreal, Quebec, Canada, June16-19,1996, pp.823-827.
    [82] M. Piemontesi. Analysis of Decomposition Products of Sulfur Hexafluoride in Negative DC Coronawith Special Emphasis on Content of H2O and O2. Conference Record of the1994JEEEInternational Symposium on Electrical Insulation, Pittsburgh, PA USA, June5-8,1994, pp.499-503.
    [83] M. C. Siddagangappa, R. J. Van Brunt, and A. V. Phelps. Influence of Oxygen on theDecomposition Rate of SF6in Corona, Conf. Record of1986IEEE Int. Symp. Elec. Insul., IEEE,NY. pp.225-229,1986.
    [84] Isidor Sauers. By-product Formation in Spark Breakdown of SF6/O2Mixtures. Plasma Chemistryand Plasma Processing, VoL8, No.2, No.:247~262,1988.
    [85] L. J. Jin, J. Q. Huang, W. D. Liu, and J. L. Qian. Diagnosis of Partial Discharge in GIS based onUHF Sensing Technique. Proceedings of2001International Symposium on Electrical InsulatingMaterials, November,2001, Himeji, Japan:251~253.
    [86] B. Belmadani, J. Casanovas, A. M. Casanovas, R. Grob, and J. Mathieu. SF6decomposition underpower arcs-Physical aspects. IEEE Trans. Electr. Insul, Vol.26, No.6, pp.1163–1176,1991.
    [87] A. Rochefort, T. Lussier, M. F. Frechette and R. Y. Larocque. Dynamic decomposition of arced SF6by-products on activated alumina. IEEE1996Annual Report of the Conference on ElectricalInsulation and Dielectric Phenomena, Vol.2, pp:634–639.
    [88] T. Lussier, M. F. Frechette, A. Rochefort, and R. Y. Larocque. Interaction of SOF2with alumina andzeolite4A: a comparative study. IEEE1996Annual Report of the Conference on ElectricalInsulation and Dielectric Phenomena, Vol.2, pp.640–644.
    [89] T. Lussier, M. F. Frechette, and R. Y. Larocque. Interactions of SOF2with molecular sieve13X.IEEE1997Annual Report of the Conference on Electrical Insulation and Dielectric Phenomena,Vol.2, pp.616–619.
    [90]侯慧娥,赵龙飞,梁集贵. F-03吸附剂与国内外典型吸附剂的吸附性能研究[J].高压电器,1986,01;19-27.
    [91]齐波,李成榕,骆立实,张勇,郑书生. GIS中PD与气体分解产物关系的实验[J].高电压技术[J], Vol.36, No.4, pp.957-962,2010.
    [92]王宇,李智,姚唯建,庄贤盛,黄成吉.广东省220kV及以上GIS中SF6分解产物分析[J].高电压技术, Vol.35, No.4, pp.823-827,2009.
    [93]周东平,刘春意,曾军,程盛. SF6设备气相色谱分析在现场的应用研究[J].电力学报, Vol.24,No.5, pp.412-415,2009.
    [94]卢立秋,郭君科,张桂贤,李兴.放电故障的SF6设备分解产物总量分析[J].华北电力技术,增刊1, pp.150-152,2007.
    [95]连鸿松.根据SF6气体分解产物诊断电气设备故障[J].福建电力与电工, Vol.25, No.9, pp.21-23,2005.
    [96]唐炬,李涛,万凌云等. SF6气体分解组分的多功能试验装置研制[J].高电压技术,2008,34(8):52-57.
    [97] J. Tang, Q. Zhou, M. Tang, and Y. B. Xie. Study on mathematical model for VHF partial dischargeof typical insulated defects in GIS. IEEE Trans. Dielectr. Electr. Insul., Vol.14, pp.211-217,2007.
    [98]韩小莲. GISPD检测系统的研究,西安交通大学博士学位论文[D].1995.7.
    [99] Ratnesh Kumar, R. S. Gorayan, and B. P. Singh. Movement of Free Particle In A3-Phase GasInsulated System. The12th International Symposium on High Voltage Engineering, Bangalore,India, August,2001:449-452.
    [100] K. S. Prakash, K. D. Srivastava, and M. M. Morcos. Movement of Particles in Compressed SF6GIS with Dielectric Coated Enclosure. IEEE Transactions on Dielectrics and Electrical Insulation,1997.6, Vol.4, No.3: pp.344~347.
    [101] W. Ziomek and E. Kuffel. Activity of Moving Metallic Particles in Prebreakdown State in GIS.IEEE Transactions on Dielectrics and Electrical Insulation,1997, Vol.4, No.1: pp39~43.
    [102]傅若农.色谱分析概论[M].北京:化学工程出版社.2005.
    [103]梁汉昌.气相色谱法在气体分析中的应用[M].化学工业出版社.2008
    [104] C. E. Lin and J. M. Ling. An Expert System for Transformer Fault Diagnosis Using Dissolved GasAnalysis. IEEE Trans on Power Delivery, vol.8, pp.231~238, Jun.1993.
    [105] Q. Su, C. Mi, and L. L. Lai. A Fuzzy Dissolved Gas Analysis Method for The Diagnosis ofMultiple Incipient Faults in A Transformer. IEEE Trans on Power System, vol.15pp.593-598,May.2000.
    [106] Yu Jian and Yang Miin-Shen. Optimality test for generalized FCM and its application to parameterselection. IEEE Transactions on Fuzzy Systems, vol.13(1), pp.164-5176,2005.
    [107] J. C. Bezdek. Pattern Recognition with Fuzzy Object Algorithms. Plenum Press: New York,1981.
    [108] Long Chen, C. L. P. Chen, and Mingzhu Lu. A Multiple-Kernel Fuzzy C-Means Algorithm forImage Segmentation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,vol.41(5), pp.1263-1274,2011.
    [109] D. Evagorou, A. Kyprianou, and P. L. Lewin. Feature extraction of partial discharge signals usingthe wavelet packet transform and classification with a probabilistic neural network. IET Sci.Measurement Techn., Vol.4, pp.177-192,2010.
    [110] Tomasz Boczar, Sebastian Borucki, A. Cichon, and D. Zmarzly. Application possibilities ofartificial neural networks for recognizing partial discharges measured by the acoustic emissionmethod. IEEE Transactions on Dielectrics and Electrical Insulation, Vol.6(11), pp.1096-1103,2012.
    [111] H.-C. Chen. Fractal features-based pattern recognition of partial discharge in XLPE power cablesusing extension method. IET Generation, Transmission&Distribution, Vol.16(1), pp.214-223,2009.
    [112] S. Biswas, Chiranjib Koley, Biswendu Chatterjee, and Sivaji Chakravorti. A methodology foridentification and localization of partial discharge sources using optical sensors. IEEE Transactionson Dielectrics and Electrical Insulation, Vol.19(1), pp.18-28,2012.
    [113] R. M. Sharkawy, Rami S. Mangoubi, Tarek K. Abdel-Galil, Magdy M M A Salama, and RaymondBartnikas. SVM classification of contaminating particles in liquid dielectrics using higher orderstatistics of electrical and acoustic PD measurements. IEEE Transactions on Dielectrics andElectrical Insulation, Vol.14(3), pp.669-678,2007.
    [114] H. Hirose, M. Hikita, S. Ohtsuka, S. Tsuru and J. Ichimaru. Diagnosis of electric power apparatususing the decision tree method. IEEE Trans. Dielectr. Electr. Insul., Vol.15, pp.1252-1260,2008.
    [115] T. K. Abdel-Galil, R. M. Sharkawy, Magdy M M A Salama, and Raymond Bartnikas. Partialdischarge pattern classification using the fuzzy decision tree approach. IEEE Transactions onInstrumentation and Measurement, Vol.54(6), pp.2258-2263,2005.
    [116] J. R. Quinlan. C4.5: Programs for machine learning, Morgan Kauffman. San Mateo, CA, USA,1993.
    [117] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees,Chapman and Hall: New York, USA,1984.
    [118] V. N. Vapnik. Statistical Learning Theory. New York, Wiley, Sep.1998.
    [119] C. W. Hsu and C. J. Lin. A comparison of method for multiclass support vector machines. IEEETrans. Neural Networks, Vol.13(2), pp.415-425,2002.
    [120] J. Kennedy and R. C. Eberhart. Particle swarm optimization. Proceedings of IEEE InternationalConference on Neural Networks, pp.1942-1948,1995.
    [121] GB/T11605—2005,湿度测量方法[S],2005.
    [122] DL/T596—1996,电力设备预防性实验规程[S].2005.
    [123]司增彦,冯阿龙.3台110kV SF6断路器微水含量超标的原因分析与处理[J].高压电器,2009,45(2):112-113.
    [124]王旭东. SF6组合电器运行中水分超标原因分析[J].宁夏电力,2011,6:26-29.
    [125]韩德刚,高执棣,高盘良.物理化学高[M].等教育出版社,2009.2.
    [126] Paul L. Houston. Chemical Kinetics and Reaction Dynamics, Dover Publications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700