SF_6替代气体的蒙特卡罗模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六氟化硫(SF_6)是一种优良的绝缘和灭弧介质,在电力系统和电气设备中得到广泛应用。1997年12月在日本通过的京都议定书中, SF(6温室效应(GWP)=23900)被列为需全球管制使用的六种气体之一。减少和控制温室气体的排放是迫在眉睫的问题。SF_6的耐电强度受非均匀电场、导电微粒和电极表面粗糙度的影响而急剧下降。因此,寻找SF_6的替代气体势在必行。短期解决SF_6温室效应的办法是降低SF_6在电力系统中的使用量,如:使用SF_6混合气体;长期解决的办法是寻找新的可替代SF_6的气体,但这是一项长期的任务。
     1997年美国国家标准和技术协会会议上已把c-C_4F_8混合气体列为最有潜力的SF_6绝缘替代物。早在20世纪80年代国外的研究者就对c-C_4F_8混合气体的直流、脉冲击穿绝缘特性进行了研究。后来对c-C_4F_8混合气体绝缘特性研究的报导比较少。近年研究c-C_4F_8及N2混合气体的电子崩参数的报导较多。2001年日本东京大学研究了c-C_4F_8在短电极间距下的交流绝缘性能。
     本文采用蒙特卡罗模拟方法来描述气体放电中的各种碰撞截面和电子能量分布的关系,即用微观模型计算电子崩发展过程。其计算结果的准确性和电子碰撞截面的选取及校正密切相关,而通过模拟结果和实验数据的比较又可修正碰撞截面。
     本文首先建立单一气体电子崩发展的蒙特卡罗模拟方法,用得出的电子崩参数与实验结果比较的方法,计算单一气体的(α-η)/N和漂移速度Ve,并与实验数据比较,以确定碰撞截面的准确性。本文重点对c-C_4F_8的碰撞截面进行了分析对比,c-C_4F_8的碰撞截面数据比较少,而振动和电子激发碰撞截面更有待得出。本文选择一组c-C_4F_8的碰撞截面作为初始碰撞截面组,经过反复的模拟计算和对截面的修正,确定了一组比已报导的碰撞截面更准确、更完全的c-C_4F_8的碰撞截面。再用本文建立的混合气体电子崩发展的蒙特卡罗模拟方法计算在均匀电场下,c-C_4F_8与N2、CO2和CF4混合气体的电子崩参数,并对这些参数进行了分析。本文对以往研究者提出的判断混合气体中电子与哪种气体发生碰撞的方法进行了改进,比传统的判断方法得到的临界击穿场强(E/N)lim,即(α-η)/N=0时,(E/N)lim的值更接近实验数据。
     本文通过模拟计算得到的三种c-C_4F_8混合气体的有效电离系数密度比(α-η)/N,从而得到它们的临界击穿场强(E/N)lim,都大于相应的SF_6混合气体的(E/N)lim值;同时假设绝缘强度与压强成比例,三种c-C_4F_8混合气体所需的气体压强比率与SF_6的绝缘特性进行了比较,得到在不同的c-C_4F_8的含量k时,要达到与SF_6相同的绝缘强度所需的c-C_4F_8混合气体的压强;三种c-C_4F_8混合气体的温室效应与相应的SF_6混合气体及单一SF_6进行了比较。从耐电强度和温室效应两方面考虑,这三种混合气体代替SF_6的优势排列是c-C_4F_8/N2>c-C_4F_8/CO2>c-C_4F_8/CF4。
     研究气体电子崩放电机理,可采用脉冲汤逊放电法,用单脉冲的高能激光使阴极释放初始电子,在均匀电场的作用下,向阳极运动。由外电路测到电子崩电流波形,可确定气体的碰撞过程和输运特性。本文设计并制作了脉冲汤逊(PT)放电实验装置,对实验装置上所选用的一些材料和阳极的构造都做了比较,已达到实验的要求。本实验所使用的Nd-YAG锁模皮秒激光器比以前所使用的氮分子激光器,在波长266 nm、每个光子能量4.66 eV和脉冲宽度40 ps等参数上,都保证了实验的正确性。
     本文应用脉冲汤逊放电法测量N2、CO2、CF4、c-C_4F_8、N2O和CHF3电子崩电流波形,根据气体本身的性质,分析了气体电子崩中可能发生的扩散、电离、附着、去附着和转化过程;并得出有效电离系数与分子数密度N的比值,即(α-η)/N,和漂移速度Ve。从耐电强度、温室效应和电子崩发展的过程等方面综合考虑N2、CO2、CF4、N2O、CHF3和c-C_4F_8六种单一气体,都不适合单独作为SF_6的替代气体。
SF_6 is widely used in power system and electrical equipment as an excellent insulation and arc extinguishing medium. 1997, SF_6 (GWP=23900) was one of six greenhouse gases that needed to reduce the use amount. Therefore, it is an urgent case to reduce and control the emissions of greenhouse gas. With the influence of non-uniform electric field, conducting particle and roughness of the electrode surface, the dielectric strength of SF_6 decreases. Therefore, it is imperative to seek the substitution gas of SF_6. The short task on solving the GWP of SF_6 is to reduce the used amount in power system, such as using SF_6 gas mixtures. The long task is to search new alternative gases to SF_6, but it is a long task.
     In 1997 the National Institute of Standards and Technology (NIST) had led the c-C_4F_8 mixtures as the most possible alternative to pure SF_6. From the 80s of 20th century the foreign researchers researched the direct current and pulse breakdown characteristic, afterward researches were few. Recent years the c-C_4F_8/N2 gas mixture was done more studies on the discharge parameters of electron swarm. In 2001 the alternating current insulation characteristics of c-C_4F_8 in short gap distance was studied by Kyoto University.
     This paper uses the Monte Carlo simulation method to describe the relation of all kinds of collision cross sections and electron energy distribution, namely using a microscopic model to calculate the development process of electron swarm. Its correction of calculating results is nearly correlative to the choice of collision cross sections and its correction. And those collision cross sections may be determined by fitting the simulation results from experiment data. At first, we calculate the effective ionization coefficients (α-η)/N and drift velocity Ve of pure gas to determine collision cross sections in this paper, and the calculated results are agreement with the experiment data. It is confirmed the chosen cross sections is valid.
     The data of c-C_4F_8 collision cross section is scarce; such as no determination of the momentum transfer cross section. The data from different researchers is widely discrepant, and vibrational and electronic excitation cross sections are also needed. This paper uses the Monte Carlo simulation method to determine a set of more exact and complete collision cross sections for c-C_4F_8 by fitting the transport coefficients calculated from MCs method to the experimental data. The electron swarm parameters of c-C_4F_8, c-C_4F_8/N2, c-C_4F_8/CO2 and c-C_4F_8/CF4 are calculated by the model of swarm development for gas mixture in this paper, which are agreement with experiment data. This paper improved previous researchers proposed the method of judging which kind of gases electron will collide with. The more exact the limiting field (E/N)lim, (α-η)/N=0, the value of (E/N)lim is more agreeable the experiment data.
     This paper has obtained the (E/N)lim, according to the curve of c-C_4F_8/N2, c-C_4F_8/CO2 and c-C_4F_8/CF4 by MCs method, which all are higher than those of SF_6. It is presumed that the insulation characteristics are proportional to gas pressure, the required gas pressure ratios of three c-C_4F_8 gas mixtures comparable with the insulation property of SF_6 and GWP at this gas pressure have also been investigated. Considered from insulaton strength and GWP, three mixture gases may displace SF_6, whose order of superiority is c-C_4F_8/N2>c-C_4F_8/CO2>c-C_4F_8/CF4. This paper used the pulse Townsend (PT) discharge method to research the mechanism of swarm. PT method uses the single pulse of high energy laser to release the initial electron from the cathode. According to the measured curve of electron current, the process of collision and transport is determined. The choice of experiment setup material and the construction of anode in this paper were carried on the comparison, which achieved the requirement of experiment. In the present experiment, the pulse width (40 ps), wave length (266 nm) and energy of per photon (4.66 eV) of the picosecond mode-locked Nd-YAG laser guaranteed the correctness of the experiment, which is the progress in the experiment instrument.
     This paper used the pulse Townsend discharge method and measured the swarm current waveform of N2, CO2, CF4, c-C_4F_8, N2O and CHF3, according to the nature of gases, we analyzed the possible processes in the swarm, including diffusion, ionization, attachment, detachment and conversion, and we obtained the density-normalized effective ionization coefficient (α-η)/N and drift velocity Ve. Considered from insulaton strength, GWP and the development of swarm, N2, CO2, CF4, N2O, CHF3 and c-C_4F_8 were not suitable to displace SF_6 insulation gas.
引文
[1]清华大学,西安交通大学同编.高电压绝缘[M].北京:电力工业出版社, 1980.
    [2]邱毓昌. GIS装置极其绝缘技术[M].北京:水利电力出版社, 1994.
    [3] Christophorou L.G., Olthoff J.K. Electron interactions with SF6[J]. J. Phys. Chem. Ref. Data, 2000, 29(3): 267-330.
    [4]李慧芬. SF6气体替代面临诸多挑战[J].高电压技术, 2000, 26(3): 50-51.
    [5] Christophorou L.G., Olthoff J.K., Green D.S. Gases for electrical insulation and arc interruption: possible present and future alternatives to SF6, Technical Note 1425 NIST 1997, 1-44.
    [6] Middleton B.: Cold weather applications of gas mixture (SF6/N2, SF6/CF4) circuit breakers: a user utility’s perspective, Manitoba Hydro California November 2-3, 2000.
    [7] Pradayroly C., Casanovasz A.M., Hernouney A., Casanovasy J. Spark decomposition of SF6 and SF6+50% CF4 mixtures[J]. J. Phys. D: Appl. Phys., 1996, 29: 1941-1951.
    [8] Takuma T., Hamada S., Yamamoto O. Application of a gas mixture with c-C4F8 in gas insulation[C]. High Voltage Engineering Symposium, 1999, 3.1 97. P3-3.200. P3.
    [9] Chan C.C., Pace M.O., Christophorou L.G. DC Breakdown strength of some multicomponent gas mixtures in concentric cylinder geometries[C]. Gaseous DielectricsⅡ, Pergamon Press, New York, Christophorou L.G. (Ed.), 1980, 149-159.
    [10] Christophorou L.G., Olthoff J.K. Electron interactions with c-C4F8[J]. J. Phys. Chem. Ref. Data, 2001, 30(2): 449-473.
    [11] Wen C. Time-resolved swarm studies in gases with emphasis on electron detachment and ion conversion [Ph. D. Thesis]. The Netherlands: Eindhoven University of Technology, 1989.
    [12] Itoh H., Miyachi T., Kawaguchi M., Nakao Y., Tagashira H. Electron transport coefficients in SF6 and c-C4F8 mixtures[J]. J. Phys. D: Appl. Phys., 1991, 24: 277-282.
    [13] Font G.I., Morgan W.L., Mennenga G. Cross section set and chemistry model for the simulation of c-C4F8 plasma discharges[J]. J. Appl. Phys., 2002, 91(6): 3530-3538.
    [14] Pace M.O., Christophorou L.G., James R.D., Pai R.Y., Mathis R.A., Bouldin D.W. Improvedunitary and multicomponent gaseous insulators[J]. IEEE Transactions on Electrical Insulation, 1978, EI-13: 31-36.
    [15]肖登明,邱毓昌,李彦明. SF6混合气体中电子崩放电特性的研究[博士论文].西安:西安交通大学, 1994.
    [16]李正瀛.电负性混合气体临界击穿场强与电子附着速率的探讨[J].物理学报, 1990, 39(9): 1400-1406.
    [17] Larin A.V., Meurice N., Trubnikov, D.N., Vercauteren, D.P. Theoretical analysis of the synergism in the dielectric strength for SF6/CF4 mixtures[J]. J. Appl. Phys., 2004, 96(1): 109-117.
    [18] Osamu K., Hiroki K., Naoki H. Synergy effect in electrical insulation characteristics of N2O gas mixtures[C]. Papers of Technical Meeting on Electrical Discharges, IEE Japan, 2006, 95-100.
    [19] Pai R.Y., Christophorou L.G. Impulse breakdown of c-C4F8/SF6 and c-C4F8/SF6/N2[C]. Gaseous dielectricsⅡ, Pergamon Press, New York, Christophorou L.G. (Ed.), 1980, 190-199.
    [20] Christophorou L.G., James D.R., Sauers I., Pace M.O., Pai R.Y., Fatheddin A. Ternary gas dielectrics, Pergamon Press, New York, Christophorou L.G. (Ed.), 1982, 151-165.
    [21] Nema R.S., Kulkarni S.V., Husain E. A unified approach for calculation of breakdown voltages of mixtures of electron-attaching gases. Pergamon Press, New York, Christophorou L.G. (Ed.), 1982, 191-198.
    [22] Naidu M.S., Prasad A. N., Craggs J. D. Electron transport, attachment and ionization in c-C4F8 and iso-C4F8[J]. J. Phys. D: Appl. Phys., 1972, 5: 741-746.
    [23] Yamaji M., Nakamura Y. Swarm derived electron collision cross section set for the perfluorocyclobutane molecule[J]. J. Phys. D: Appl. Phys., 2004, 37: 1525-1531.
    [24] Yamaji M., Nakamura Y. Measurements of electron transport coefficients in the 0.468% and 4.910% c-C4F8/Ar mixtures and pure c-C4F8[J]. J. Phys. D: Appl. Phys., 2003, 36: 640-644.
    [25] Yamaji M., Nakamura Y., Morokuma Y. Measurements of ionization and attachment coefficients in 0.468% and 4.910% c-C4F8/Ar mixtures and pure c-C4F8[J]. J. Phys. D: Appl. Phys., 2004, 37: 432-437.
    [26] Urquijo J. de, Basurto E. Electron attachment, ionization and drift in c-C4F8[J]. J. Phys. D: Appl. Phys., 2001, 34: 1352-1354.
    [27] Wen C., Wetzer J.M. Swarm parameters in octafluocyclobutane (c-C4F8) and its mixtures with N2[C]. IX International Conference on Gas Discharges and their Applications, Venezia, Italy,1988, 367-370.
    [28] Kennedy J.T. Study of the avalanche to streamer transition in insulating gases [Ph. D. Thesis]. The Netherlands: Eindhoven University of Technology, 1995.
    [29] Boeus J.P., Marode E. Monte Carlo simulation of electron swarm motion in SF6[J]. J. Phys. D: Appl. Phys., 1984, 17: 1133-1148.
    [30] Aschwanden T. Swarm parameters in SF6 and SF6/N2 mixtures determined from a time resolved discharge study[C]. Proc 4th Int Symp on Gaseous Dielectrics, Knoxville U. S. A., 1984, 24-33.
    [31] Verhaart H.F.A. Avalanches in insulating gases [Ph. D. Thesis]. The Netherlands: Eindhoven University of Technology, 1982.
    [32] Urquijo J.de, Alvarez I., Cisneros C. Ionization, electron attachment, and drift in CHF3[J]. Physical Review E., 1999, 60: 4990-4992.
    [33] http://www.virtualphantoms.org/egs4/temp/mchome.htm.
    [34] Itoh T., Musha T. Monte Carlo calculations of motion of electrons in helium[J]. J. Phys. Soc. Japan, 1960, 15: 1675-1680.
    [35] Skullerud H.R. The stochastic computer simulation of ion motion in a gas subjected to a constant electric field[J]. Br. Appl. Phys. (J. Appl. D), 1968, 1: 1567-1568.
    [36]费鹿成,张孝泽译.蒙特卡罗方法及其在粒子输运问题中的应用[M].北京:科学出版社, 1980.
    [37]李旭光. SF6混合气体电子输运特性的分析和蒙特卡罗模拟[博士论文].上海:上海交通大学, 2003.
    [38] Govinda G.R., Liu J.F. Simulation of electrical discharege in gases uniform electric fields[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(5): 1004-1015.
    [39] Sakai Y., Tagashira H., Sakamoto S. The development of electron avalanches in argon at high E/N values: I. Monte Carlo simulation[J]. J. Phys. D: Appl. Phys., 1977, 10: 1035-1049.
    [40] Dincer M.S., Govinda Raju G.R. Monte Carlo simulation of the motion of electrons in SF6 in uniform electric fields[J]. J. Appl. Phys., 1983, 54(11): 6311-6316.
    [41] Pitchford L.C., Phelps A.V. Comparative calculations of electron-swarm properties in N2 at moderate E/N values[J]. Phys. Rev. A., 1982, 25(1): 540-554.
    [42] Cenian A., Chernukho A. MC simulations of nitrogen swarm parameters: comparison of cross-section sets[J]. Radiation Physics and Chemistry, 2003, 68: 103-107.
    [43] Straub H.C., Renault P., Lindsay B.G., Smith K. A., Stebbings R.F. Absolute partial crosssections for electron-impact ionization of H2, N2, and O2 from threshold to 1000 eV[J]. Phys. Rev. A., 1996, 54(3): 2146-2153.
    [44] Christophorou L.G., Olthoff J.K., Rao M.V.V.S. Electron interactions with CF4[J]. J. Phys. Chem. Ref. Data, 1996, 25(5): 1341-1388.
    [45] Nishimura H., Ali M.A., Yong-Ki K. Electron-impact total ionization cross sections of CF4, C2F6, and C3F8[J]. J. Chem. Phys., 1999, 110(8): 3811-3822.
    [46] Christophorou L.G., Olthoff J.K. Electron interactions with plasma processing gases: an updata for CF4, CHF3, and C3F8[J]. J. Phys. Chem. Ref. Data, 1999, 28(4): 967-982.
    [47] Bonham R.A. Electron impact cross section data for CF4[J]. Jpn. J. Appl. Phys., 1994, 33(Part 1, No.7B): 4157-4164.
    [48] Itikawa Y. Cross sections for electron collisions with carbon dioxide[J]. J. Phys. Chem. Ref. Data, 2002, 31(3): 749-767.
    [49] Kücükarpaci H.N., Lucas J. Simulation of electron swarm parameters in carbon dioxide and nitrogen for high E/N[J]. J. Phys. D: Appl. Phys., 1979, 12: 2123-2138.
    [50] Hernández-ávila J.L., Basurto E., Urquijo J.de. Electron transport and swarm parameters in CO2 and its mixtures with SF6[J]. J. Phys. D: Appl. Phys., 2002, 35: 2264-2269.
    [51] Yoshinaga S., Nakamura Y., Hayashi M. Proc. 25th Int. Conf. Phys. Ionized Gases (Nagoya, Japan) 2001, 3: 284.
    [52] Itoh H., Miura Y., Ikuta N., Nakao Y., Tagashira H. Electron swarm development in SF6: Boltzmann equation analysis[J]. J. Phys. D: Appl. Phys., 1988, 21: 922-930.
    [53] Yoshizawa T., Sakai Y., Tagashira H., Sakamoto S. Boltzmann equation analysis of the electron swarm development in SF6[J]. J. Phys. D: Appl. Phys., 1979, 12: 1839-1852.
    [54] Rejoub R., Sieglaff D.R., Lindsay B.G., Stebbings R.F. Absolute partial cross sections for electron-impact ionization of SF6 from threshold to 1000 eV[J]. J. Phys. B: At. Mol. Opt. Phys., 2001, 34: 1289-1297.
    [55] Novak J.P., Fréchette M.F. Collisional cross sections of c-C4F8 and transport coefficients of c-C4F8 and N2-c-C4F8 mixtures[J]. J. Appl. Phys., 1988, 63 (8): 2570-2575.
    [56] Yamaji M., Nakamura Y. Erratum-Measurements of electron transport coefficients in the 0.468% and 4.910% c-C4F8/Ar mixtures and pure c-C4F8[J]. J. Phys. D: Appl. Phys., 2004, 37: 644.
    [57] Sanabia J.E., Cooper G.D., Tossel J.A., Moore J. H. Total Electron-scattering cross sections for CHF3 C2F6, C3F8 and c-C4F8[J]. J. Chem. Phys., 1998, 108 (2): 389-391.
    [58] Nishimura H. XXI ICPEAC, 1999, 103.
    [59] Winstead C., McKoy V. Electron collisions with octafluorocycloutane, c-C4F8[J]. J. Chem. Phys., 2001, 114(17): 7407-7412.
    [60] Kurepa M.V. 3rd Cz. Conference on Electronics and Vacuum Physics Transactions, 1965, 107.
    [61] Spyrou S.M., Hunter S.R., Christophorou L.G. A study of the isomeric dependence of low-energy (<10 eV) electron attachment: Perfluoroalkanes[J]. J. Chem. Phys., 1985, 83(2): 641-654.
    [62] Chutjian A., Alajajian S.H. Measurement of electron attachment lineshapes and cross sections at ultra-low electron energies for CF2Cl2, c-C4F6, c-C4F8 and c-C7F14[J]. J. Phys. B., 1987, 20: 839-846.
    [63] Christodoulides A.A., Christophorou L.G., Pai R. Y., Tung C.M.J. Electron attachment to perfluorocarbon compounds. I. c-C4F6, 2-C4F6, 1, 3-C4F6, c-C4F8 and 2-C4F8[J]. J Chem. Phys., 1979, 70(3): 1156-1168.
    [64] Urquijo J.de, Basurto E., Hernández-ávila J.L. Measurement of electron drift, diffusion, and effective ionization coefficients in the SF6-CHF3 and SF6-CF4 gas mixtures[J]. J. Phys. D: Appl. Phys., 2003, 36: 3132-3137.
    [65] Nema R.S., Kulkarni S.V., Husain E. On calculation of sparking potentials of SF6 and SF6-gas mixtures in uniform and non-uniform elevtronic fields[J]. IEEE Trans. Dirlectr. Electr. Insul., 1982, 17: 434-446.
    [66] Tagashira H. Gaseous DielectricsⅤ, Knoxville, Tennessee, U.S.A., edited by Christophorou L.G. and Bonldin D.W., 1987, 263.
    [67] Zhang-ying L., Zhang C. Gaseous Dielectrics VII, Knoxville, Tennessee, U. S. A., edited by Christophorou L.G. and James D.R., 1994, 177-182.
    [68] Itoh H., Shimomma M., Tagashira H., Sakamoto S. Measurement of the effective ionization coefficient and the static breakdown voltage of SF6 and nitrogen mixtures[J]. J. Phys. D: Appl. Phys., 1979, 12: 2167-2172.
    [69] Fréchette M.F. Experimental study of SF6/N2 and SF6/CCl2F2 mixtures by the steady-state Townsend method[J]. J. Appl. Phys., 1986, 59(11): 3684-3693.
    [70] Branston D.W., Teicho T.H. Observation of electron swarms produced by laser light[J]. Nature, 1973, 244: 504-505.
    [71] Urquijo J.de, Arriaga C.A., Cisneos C., Alvarez I. A time-resolved study of ionization, electron attachment and positive-ion drift in methane[J]. J. Phys. D: Appl. Phys., 1999, 32: 41-45.
    [72] Urquijo J.de, Alvarez I., Basurto E., Cisneos C. Measurement of ionization and electron transport in methane-argon mixtures[J]. J. Phys. D: Appl. Phys., 1999, 32: 1646-1649.
    [73] Urquijo J.de, Juárez A.M., Basurto E., Hernández-ávila J.L. Electron impact ionization and attachment, drift velocities and longitudinal diffusion in CF3I and CF3I mixtures[J]. J. Phys. D: Appl. Phys., 2007, 40: 2205-2209.
    [74] Patel B.S. Compact High-Power TEA N2 laser[J]. Rev. Sci. Instrum., 1978, 49(9): 1361-1363.
    [75] Bergmann E.E. Compact TEA N2 laser[J]. Rev. Sci. Instrum., 1978, 48(5): 545-546.
    [76] Itsuo N., Kimura Y. A compact high-power nitrogen laser[J]. Jouranal of physics E: Scientific Instruments, 1973, 6: 1193-1195.
    [77]张治国,罗正纪,韩全生.列阵电容氮分子激光器[J].物理, 1980, 10(11): 681-693.
    [78]郑用武,陈绍辉.陶瓷储能小型氮分子激光器的研究[J].激光, 1981, 9(6): 381-384.
    [79]郑用武,陈绍辉,姚甸洪等.封闭式氮分子激光器[J].中国激光, 1983, 11(11): 667-669.
    [80] Godard B. A simple high-power large-efficiency N2 ultraviolet laser[J]. IEEE Journal of Quantum Electronics, 1974, QE-10(2): 147-152.
    [81] Shipman J.D. Traveling wave excitation of high power gas lasers[J]. Appl. Phys. Lett., 1967, 10(1): 3-4.
    [82]郑用武,陈绍辉,胡杰等.封离型氮分子激光器的研究[J].应用激光, 1991, 11(4): 174-176.
    [83]楼祺洪.脉冲放电气体激光器[M].北京:科学出版社, 1993.
    [84]金耀根,李郁芬,叶衍铭等.紫外氮分子激光器研究[J].中国激光, 1979, 2: 26-30.
    [85] Schwab A.J. Compact high-power N2 laser: circuit theory and design[J]. IEEE Journal of Quantum Electronics, 1976, QE-12(3): 183-188.
    [86] Martinez A.V., Aboites V. High-efficiency low-pressure Blumlein nitrogen laser[J]. IEEE Journal of Quantum Electronics, 1993, 29(8): 2364-2369.
    [87]郑用武.中国科学院广州电子技术研究所, 2007, Private communication.
    [88] Malik N.H., Qureshi A.H. A review of electrical breakdown in mixtures of SF6 and other gases [J]. IEEE Trans.Electr. Insul., 1979, EI-14(1): 1-13.
    [89] Hasegawa H., Date H., Shimozuma M., Yoshida K., Tagashire H. The drift velocity and longitudinal diffusion coefficient of electrons in nitrogen and carbon dioxide from 20 to 1000 Td[J]. J. Phys. D: Appl. Phys., 1996, 29: 2664-2667.
    [90] Roznerski W., Leja K. Electron drift velocity in hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide and air at moderate E/N[J]. J. Phys. D: Appl. Phys., 1984, 17: 279–285.
    [91] Christophorou L.G. Insulating gases [J]. Nuclear Instruments and Methods in Physics Research Section A, 1988, 268: 424-433.
    [92] Phelps A.V., Voshall R.E. Electron attachment in N2O[J]. The Journal of Chemical Physics, 1968, 49(7): 3246-3248.
    [93] Mechlńiska-Drewkoa J., Wróblewskib T., Petrovi? Z.Lj., Novakovi? V., Karwasz G.P. Electron scattering on N2O-from cross sections to diffusion coefficients[J]. Radiation Physics and Chemistry, 2003, 68: 205–209.
    [94] Hayashi, M. Electron collision cross sections[M]. Handbook on plasma material science, In: Ohm-Sha (Ed.), The Committee No.153 on Plasma Material Science 1992, Vol. 4(9), The Japan Society for the Promotion of Science.
    [95]黎明,盛国钊,黎抗生,徐喆译. SF6和真空中高压绝缘及电弧开断的进展[M].北京:水利电力出版社, 1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700