金属蛋白力场的开发与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界上几乎近三分之一的蛋白质都含有金属离子,金属离子对于蛋白质的结构和功能甚至大多数生命过程都是极其关键的。金属蛋白在细胞中发挥着重要作用,如酶催化,蛋白的传输和储存,信号传递等。例如,钙结合蛋白与钙离子结合是细胞信号传递的重要步骤。铜蛋白与体内的氧化还原反应密切相关。含铁蛋白如肌红蛋白和血红蛋白具有携氧和储氧的能力。锌指蛋白与多种生物功能相关,如DNA识别、RNA聚合、转录,激酶活性调控等等。目前对于蛋白质等生物大分子的研究主要局限在经典力学的范畴。常用的分子力场,比如AMBER, CHARMM, GROMOS, OPLS等,在蛋白、核酸、糖类以及脂质等方面的研究取得了巨大的成功。然而目前对于金属蛋白的理论研究尚处于初级阶段。现在较成熟的处理金属离子的方法是键连模型,即金属离子显式地同与之配位的原子相连。但是在具有催化功能的金属蛋白的活性区域,金属离子价态会随所处状态变化,这就需要应用非键连模型。但是目前流行的分子力场中的非键连模型处理配位数可变体系均不够精确。因此,开展对金属离子以及金属蛋白的定量化的理论计算研究对于我们深入了解相关生物物理性质,预测和设计新的蛋白及功能等有着非常重要的意义。
     为精确描述蛋白质内金属离子的行为,本文基于最近开发的一种新型电荷,蛋白质专一的极化电荷(PPC),着力发展了可应用于金属蛋白的电荷方案。我们利用PPC的思想,用全量子力学的方法计算金属离子的配位区域,利用包含极化效应的电子密度拟合出金属以及其第一配位层的电荷。本文中,我们首先详细研究了拟使用的量化计算方法的有效性,和分子动力学模拟中的抽样方法,最后基于量化计算和动力学模拟中获得的经验,将金属体系的PPC电荷应用于双锌蛋白DFsc以及DF1这两个体系。
     受以上思路启发,第三章中,我们考察了一个具有催化氧化活性的人工设计的蛋白质DFsc。DFsc是一个人工设计的小型蛋白,包含两个金属离子。这两个金属离子可以是锌、铁、锰、铬等,但是只有铁和锌配位的DFsc蛋白才具有催化氧化活性。在该蛋白中,两个相邻的锌离子位于溶剂可及通道底部,不仅具有催化活性,而且配位数可变。这种情况下只能应用非键模型来对其模拟。在该章中,我们应用了可极化电荷PPC模拟DFsc,并使电荷随时间更新以模拟电荷的变化。然后我们用四种AMBER力场(AMBER94, AMBER99, AMBER99SB, AMBER03)进行模拟作为对比。MD模拟的结果表明,首先对RMSD的分析发现,DFsc在我们设计的模拟过程中结构稳定。和核磁共振(NMR)耦合数据的比对发现,我们模拟得到的结构同NMR信号具有很高的一致性。这说明我们的方案对此蛋白质的骨架的模拟是成功的。其次,对金属配位集团的结构分析(配位键的键长平均值,以及它们随时间的变化)表明,两个锌离子在模拟过程中的配位数发生了变化,平均之后发现一个为四配位,另一个为五配位。这说明两个锌离子的不对称性得到了保持。而且,我们的模拟正确反映出,两个锌离子即使在蛋白质骨架达到平衡之后,仍具有很大的涨落。根据前人的结果,我们推测该涨落是由于锌离子具有反应活性引起的。但是在对照的AMBER力场的结果中,锌离子极其稳定。最后,我们通过对锌离子间距和附近水分子运动的关系的交叉相关分析,发现水分子对锌离子的扰动是造成该体系中锌离子位置涨落的原因。
     但是,DFsc中的锌离子的位置的涨落是否是APPC电荷本身带来的效果,而不是体系内在的特征,尚不完全明确。于是在第六章中,我们选择DFsc的一个类似物,DF1,进行了进一步的模拟。DFl与DFsc的不同之处在于,在DFsc中存在的溶剂可及通道在DFl中被变异的残基阻隔,使得锌离子被包裹在蛋白质内部,不能跟水接触,这样就没有催化氧化活性。我们经过模拟发现,我们模拟得到的锌离子的涨落,在DF1中并不存在。DF1中的两个锌离子之间的距离稳定在3.77A左右(实验值为3.92A)。这进一步证明了我们的电荷方案可以正确反映金属离子在蛋白质中的动力学行为。而AMBER力场高估了锌离子在蛋白质的催化部位的稳定性。
     目前密度泛函方法是最流行的量子化学计算方法。但是对于含金属体系的性质的计算,比如光谱,并没有完全普适的泛函与基组的组合方案。要决定采用何种泛函与基组的组合,需要预先在小体系中进行测试。第五章中,我们详细地研究了目前流行的密度泛函对含金属的体系二茂铁(ferrocene)的几何结构和激发光谱的影响。计算结果表明,流行的泛函和基组的组合几乎均可给出正确的几何结构。但是不同的组合对紫外可见光谱的计算值影响则非常大。在该章中我们发现PBEO/6-31++G**配合可极化导体模型的组合可以给出非常精确地紫外-可见吸收谱,并成功应用于二茂铁的类似化合物二苯铬,以及几个实验合成的化合物(acetylferrocene(AcFc), hydroxyethylferrocene(HyFc), vinylferrocene(ViFc), and ethynylferrocene(EtFc))的光谱模拟。
     抽样是分子动力学模拟的一个重要环节,正确而高效的抽样方案可以得到非常精确的自由能。这对蛋白质-配体相互作用能的计算非常重要。为了测试在已有力场下应用高精度抽样技术,是否可以得到足够精确的自由能,第六章中,我们使用了目前高精度的热力学积分(TI)方法,在传统的AMBER力场下,研究了蛋白质Avidin与带电配体biotin形成的复合物Avidin/biotin的配位作用能,和该蛋白质与另一个带电配体形成的复合物Avidin/BTN2的配位作用能的差值,△△G。我们发现,即使模拟的轨迹非常稳定,模拟时间足够长,计算得到的△△G(约为lkcal/mol)仍然比实验值(6kcal/mol)小很多,反而类似于此前另一研究组(B. Kuhn and P. A. Kullman)使用AMBER力场,用另外的方法(MM-PB/SA)计算得到的数值。在模拟过程中,体系中的四个氢键发生了变化。其中两个是配体作为氢键受体,而另外两个是配体作为氢键给体。这使得主要由氢键的变化导致的自由能变正负抵销,最终使A△G过小。这证明了传统不包含极化效果的力场处理带电体系会有根本性的偏差。
There are nearly one third proteins contain metal ions in the world. The metal ions play cardinal role in both the structure and function of proteins in most of life processes. Metalloproteins serve crucial functions in cell, such as enzyme catalysis, transport and storage of proteins, signal transmissions. For detail example, the calcium binding process of calcium contained protein named calbindin is the central process in signal transmission in cell, copper-contained protein, cuprein relates intimately to the redox reactions in living body, and iron-contained protein, ferritin, such as myoglobin and hemoglobin can transmute and store oxygen. As a member of zinc-contained protein, zinc finger protein, zinc finger, involves to various biology functions, such as DNA recognition, resembling of RNA, transcription, and regulation of kinase. In current research, the study of macromolecules in biology, such as proteins, is mainly limited into area of classi-cal mechanics. The general molecular force fields, such as AMBER, CHARMM, GROMOS, OPLS, etc. obtained triumph in the simulations of proteins, nucleic acids, and saccharides. While till today the theoretical research of metalloprotein is still in the initial state. The more developed model is bonded model, in which the metal ions explicitly bonded to ligating atoms. But in the active site of cat-alytic metalloproteins, the coordinate number of metal ion may change according to environment. In this case, the non-bonded model is demanding. Alas, in the popular molecular force fields, the use of non-bonded model is limited. So, the study of molecular dynamics (MD) modeling metalloprotein is of profound mean-ing for help understand the biophysical properties of metalloproteins, predict and design novel metalloproteins.
     For precisely describe the metal ions in metalloproteins, this thesis aims to novel charge scheme for metalloprotein, based upon a kind of partial charge devised from our group, named protein-specific polarized charge (PPC). We utilize and advance the thought of PPC, calculate the metal-binding site using quantum chemistry, then fit the partial charges of the metal ions and its first ligating shell, with the calculated polarized charge density. The organization of this thesis is like this:first we study the viability of existed functionals in modeling metal system, and then we study how the enhanced sampling technique helps to refine the results of MD simulations. At last, with the experience from modeling, we devise the PPC charges for metalloprotein and apply this MD simulation scheme into two metalloproteins, DFsc and DF1.
     Based on that thought, in chapter three, we study an active de novel de-signed protein, DFsc. It contains two metal ions. The ions can be iron, zinc, manganese, chromium, etc. While only the iron or zinc coordinated DFsc is with activity to catalyze oxidation reaction. In this protein, there are two neighboring zinc ions posited in the bottom of a solvent-accessible channel. The geometry of the zinc-binding group is asymmetric. Furthermore, the coordinate numbers of the two zinc ions are also changeable. We study this system using MD simulation with PPC charge, and update the charges of zinc binding group on-the-fly (adap-tive PPC, APPC). Meanwhile, four AMBER force fields (AMBER94, AMBER99, AMBER99SB, and AMBER03) are used as control group. Firstly, from RMSD analysis we find the backbone of DFsc is stabilized during MD simulation under APPC. And the NMR violations data taken from MD trajectory indicates the highly accordance to experimental value. Both of the results validate the simu-lation of backbone is correct. Then, from the analysis of both the time-evolution plots of bond length and their averaged values indicate one of the zinc ions is four-fold coordinated and the other is five-fold coordinated, so the asymmetry of the zinc binding group has been maintained. And the trajectories reveal there can be great fluctuation of the zinc ions even after the backbone has reached its equilibrium. According previous works in other group, we assign this fluctuation to the activity of this zinc binding group. At last, after the analysis of the cross correlation between water molecule around the zinc ions and the zinc-zinc dis-tance, we have found the cause of the fluctuation is the perturbation of water to zinc ions. On the contrast, in all the trajectories from AMBER force fields, the zinc ions are over stable and the coordinate numbers are all incorrect.
     While, whether the fluctuation of zinc ions initiates from the character of the DFsc or from our MD simulation strategy is not clear in the single case of DFsc. So in the chapter four, we have simulated an inactive analogue of DFsc, DF1. In DF1, the solvent accessible channel is blocked by mutant residues. So the zinc ions are buried in the protein and can never interact to solvent. The simulated results of DF1 indicate the zinc-zinc distance is much stable during the MD run, and its value is stabilized around 3.74A. So this evidence approves the charge scheme used here can reflect the character of metal ions in proteins correctly. And the AMBER force field always overestimates the stability of zinc ions.
     Currently, density functional theory (DFT) is the most popular calculation method in quantum chemistry. But for metal-contained system, there is no elixir which can be used in every system. For specific system, one must test the viability of the combination of functional and basis. In chapter five, we have thoroughly studied the influence from different functional to the geometry and UV-vis spec-tra of ferrocene. The results indicate the calculated geometries of these com-pounds are nearly the same under different functional, although their UV-vis spectra change much. We found the combination PBEO/6-311++G** with po-larizable continuum solvation model (PCM) can give the most accurate UV-vis spectra. And we also successfully apply this combination to the UV-vis spectra calculations of other metal-contained systems, including bis-(benzene) chromium and four of derivatives of ferrocene, namely, acetylferrocene (AcFc), hydroxyethyl-ferroene (HyFc), vinylferrocene (ViFc), and ethynylferrocene (EtFc).
     Sampling is an important step of MD simulation. Via correct and highly efficient sampling, one can obtain much accurate free energy. This is the central task of the studying of protein-ligand binding. To test whether the application of enhanced sampling technique under conventional force field can obtain sufficiently accurate free energy, in chapter six, we have studied relative binding free energy,△△G, between the binding of protein Avidin and charged ligand biotin and other complex, BTN2/avidin, using the high accuracy sampling technique, thermody-namic integration (TI), under classical AMBER force field. We find although the trajectories are stable, and the simulation time is long enough, the calculated△△G is still under estimated comparing with the experimental value (calculated value is Ca. lkcal/mol, while the experimental value is 6kcal/mol). This re-sult is much similar to the previous value produced by P. A. Kollman et al. in which the△△G was calculated by MM-PBSA method under AMBER force field. During the simulation, there are four of hydrogen bonds had changed. In two of them, ligand serves as donor, and in the other two, ligand serves as acceptor. This may cause the cancellation of the△△G, which is generated mainly from the hydrogen-bond change between the two complexes. This result also proves that there may be large deviation when doing simulations of charged system under the non-polarizable classical force field.
引文
[1]Eric B. Winsberg. Science in the Age of Computer Simulation. University of Chicago Press, 2010.
    [2]B. S. Der and B. Kuhlman. From computational design to a protein that binds. Science, 332(6031):801-802,2011.
    [3]T. Steinbrecher and A. Labahn. Towards accurate free energy calculations in ligand protein-binding studies. Curr. Med. Chem.,17(8):767-785,2010.
    [4]Robert F. Service. Computational biology, custom-built supercomputer brings protein folding into view. Science,330(6002):308-9,2010.
    [5]D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. B. Shan, and W. Wriggers. Atomic-level characteriza-tion of the structural dynamics of proteins. Science,330(6002):341-346,2010.
    [6]Robert C. Glen. Connecting the virtual world of computers to the real world of medicinal chemistry. Future Med. Chem.,3(4):399-403,2011.
    [7]Lochana C. Menikarachchi and Jose A. Gascon. Qm/mm approaches in medicinal chemistry research. Curr. Top. Med. Chem.,10(1):46-54,2010.
    [8]Robert J. Smith, Justin T. Okano, James S. Kahn, Erin N. Bodine, and Sally Blower. Evo-lutionary dynamics of complex networks of hiv drug-resistant strains:The case of san fran-cisco. Science,327(5966):697-701,2010.
    [9]D. F. Wang. Computational studies on the histone deacetylases and the design of selective histone deacetylase inhibitors. Curr. Top. Med. Chem.,9(3):241-256,2009.
    [10]Lei Zhang, Hao Fang, and Wenfang Xu. Strategies in developing promising histone deacety-lase inhibitors. Med. Res. Rev.,30(4):585-602,2010.
    [11]Patrik Rydberg, David E. Gloriam, Jed Zaretzki, Curt Breneman, and Lars Olsen. Smartcyp: A 2d method for prediction of cytochrome p450-mediated drug metabolism. ACS Med. Chem. Lett., 1(3):96-100,2010.
    [12]T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature,434(7033):625-628,2005.
    [13]Hanne Poulsen, Himanshu Khandelia, J. Preben Morth, Maike Bublitz, Ole G. Mouritsen, Jan Egebjerg, and Poul Nissen. Neurological disease mutations compromise a c-terminal ion pathway in the na+/k+-atpase. Nature,467(7311):99-102,2010.
    [14]M.O. Jensen, Y. Yin, E. Tajkhorshid, and K. Schulten. Sugar transport across lactose per-mease probed by steered molecular dynamics. Biophys. J.,93(1):92-102,2007.
    [15]B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus. Charmm:The biomolecular simulation program. J. Comput. Chem.,30(10):1545-1614,2009.
    [16]Konstantin Klenin, Birgit Strodel, David J. Wales, and Wolfgang Wenzel. Modelling pro-teins:Conformational sampling and reconstruction of folding kinetics. Biochim. Biophys. Act. (BBA)-Prot. & Prot.,1814(8):977-1000,2011.
    [17]D. J. Wales. Potential Energy Landscapes. Cambridge Univesity Press,2003.
    [18]Donald G. Fleming, Donald J. Arseneau, Oleksandr Sukhorukov, Jess H. Brewer, Steven L. Mielke, George C. Schatz, Bruce C. Garrett, Kirk A. Peterson, and Donald G. Truhlar. Ki-netic isotope effects for the reactions of muonic helium and muonium with h.2. Science, 331(6016):448-450,2011.
    [19]Luis Manuel Frutos, Tadeusz Andruniow, Fabrizio Santoro, Nicolas Ferre, and Massimo Olivucci. Tracking the excited-state time evolution of the visual pigment with multiconfigu-rational quantum chemistry. Proc. Nat. Acad. Sci,104(19):7764-7769,2007.
    [20]Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry:Introduction to Advanced Electronic Structure Theory. McGraw-Hill, New York,1989.
    [21]Wei Pan, Tai-Sung Lee, and Weitao Yang. Parallel implementation of divide-and-conquer semiempirical quantum chemistry calculations. J. Comput. Chem.,19(9):1101-1109,1998.
    [22]W. S. Xie and J. L. Gao. Design of a next generation force field:The x-pol potential. J. Chem. Theory Comput.,3(6):1890-1900,2007.
    [23]W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc, 117(19):5179-5197,1995.
    [24]J. M. Wang, P. Cieplak, and P. A. Kollman. How well does a restrained electrostatic poten-tial (resp) model perform in calculating conformational energies of organic and biological molecules? J. Compt. Chem.,21(12):1049-1074,2000.
    [25]V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins:Struct., Funct, Bioinfo.,65(3):712-725,2006.
    [26]Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. M. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. M. Wang, and P. Kollman. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Compt. Chem.,24(16):1999-2012,2003.
    [27]D. Frenkel and B. Smit. Understanding Molecular Simulation, Second Edition:From Algo-rithms to Applications. Academic Press,2001.
    [28]RenWA. W. Frank, Christopher M. Titman, J. Venkatesh Pratap, Ben F. Luisi, and Richard N. Perham. A molecular switch and proton wire synchronize the active sites in thiamine en-zymes. Science,306(5697):872-876,2004.
    [29]Monika Swierczek, Ewelina Cieluch, Marcin Sarewicz, Arkadiusz Borek, Christopher C. Moser, P. Leslie Dutton, and Artur Osyczka. An electronic bus bar lies in the core of cy-tochrome bcl. Science,329(5990):451-454,2010.
    [30]Adrian Roitberg, R. Benny Gerber, Ron Elber, and Mark A. Ratner. Anharmonic wave functions of proteins:Quantum self-consistent field calculations of bpti. Science, 268(5215):1319-1322,1995.
    [31]Dario Polli, Piero Altoe, Oliver Weingart, Katelyn M. Spillane, Cristian Manzoni, Daniele Brida, Gaia Tomasello, Giorgio Orlandi, Philipp Kukura, Richard A. Mathies, Marco Gar-avelli, and Giulio Cerullo. Conical intersection dynamics of the primary photoisomerization event in vision. Nature,467(7314):440-443,2010.
    [32]O. Farver and I. Pecht. Electron transfer in blue copper proteins. Coord. Chem. Rev.,255(7-8):757-773,2011.
    [33]R. B. Best and J. Mittal. Microscopic events in beta-hairpin folding from alternative unfolded ensembles. Proc. Net. Am. Soc.,108(27):11087-11092,2011.
    [34]Konstantin Klenin, Birgit Strodel, David J. Wales, and Wolfgang Wenzel. Modelling pro-teins:Conformational sampling and reconstruction of folding kinetics. Biochim. Biophys. Act. (BBA)-Prot. & Prot.,1814(8):977-1000,2011.
    [35]T. Steinbrecher and A. Labahn. Towards accurate free energy calculations in ligand protein-binding studies. Curr. Med. Chem.,17(8):767-785,2010.
    [36]Po-Chia Chen and Serdar Kuyucak. Accurate determination of the binding free energy for kcsa-charybdotoxin complex from the potential of mean force calculations with restraints. Biophys. J.,100(10):2466-2474,2011.
    [37]D. V. Sakharov and C. Lim. Zn protein simulations including charge transfer and local polarization effects. J. Am. Chem. Soc.,127(13):4921-4929,2005.
    [38]A. Vedani and D. W. Huhta. A new force field for modeling metalloproteins. J. Am. Chem. Soc,112(12):4759-4767,1990.
    [39]K. M. Merz. Insights into the function of the zinc hydroxide-thr199-glu106 hydrogen bond-ing network in carbonic anhydrases. J. Mol. Biol.,214(4):799-802,1990.
    [40]U. Ryde. Molecular dynamics simulations of alcohol dehydrogenase with a four-or five-coordinate catalytic zinc ion. Proteins:Struct., Funct., Genet.,21(1):40-56,1995.
    [41]X. Hu and W. H. Shelver. Docking studies of matrix metalloproteinase inhibitors:zinc parameter optimization to improve the binding free energy prediction. J. Mol. Graph. Model., 22(2):115-126,2003.
    [42]T. Tuccinardi, A. Martinelli, E. Nuti, P. Carelli, F. Balzano, G. Uccello-Barretta, G. Murphy, and A. Rossello. Amber force field implementation, molecular modelling study, synthesis and mmp-1/mmp-2 inhibition profile of (r)-and (s)-n-hydroxy-2-(n-isopropoxybiphenyl-4-ylsulfonamido)-3-methylbutanamides. Bioorg. Med. Chem.,14:4260-4276,2006.
    [43]S. Barlow, A. L. Rohl, S. Shi, C. M. Freeman, and D. O'Hare. Molecular mechanics study of oligomeric models for poly(ferrocenylsilanes) using the extensible systematic forcefield (esff). J. Am. Chem. Soc.,118(32):7578-7592,1996.
    [44]V. Rajapandian, S. Sundar Raman, V. Hakkim, R. Parthasarathi, and V. Subramanian. Molec-ular mechanics and molecular dynamics study on azurin using extensible and systematic force field (esff). J. Mol. Struct.:THEOCHEM,907(1-3):1-8,2009.
    [45]M. Souaille, H. Loirat, D. Borgis, and M. P. Gaigeot. Mdvry:a polarizable classical molec-ular dynamics package for biomolecules. Comput. Phys. Comm.,180(2):276-301,2009.
    [46]T. Jain and B. Jayaram. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes. Proteins:Struct., Funct., Bioinfo.,67(4):1167-1178,2007.
    [47]J. R. Calhoun, W. Liu, K. Spiegel, M. Dal Peraro, M. L. Klein, K. G. Valentine, A. J. Wand, and W. F. DeGrado. Solution nmr structure of a designed metalloprotein and complementary molecular dynamics refinement. Structure,16(2):210-215,2008.
    [48]P. Oelschlaeger, R. D. Schmid, and J. Pleiss. Insight into the mechanism of the imp-1 metallo-beta-lactamase by molecular dynamics simulations. Protein Eng.,16(5):341-350,2003.
    [49]J. Antony, J. P. Piquemal, and N. Gresh. Complexes of thiomandelate and captopril mer-captocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics. validation on model binding sites by quantum chemistry. J. Compt. Chem.,26(11):1131-1147,2005.
    [50]K. Spiegel, W. F. De Grado, and M. L. Klein. Structural and dynamical properties of man-ganese catalase and the synthetic protein df1 and their implication for reactivity from classi-cal molecular dynamics calculations. Proteins:Struct., Funct., Bioinf.,65:317-330,2006.
    [51]S. C. Hoops, K. W. Anderson, and K. M. Merz. Force field design for metalloproteins.J. Am. Chem. Soc,113(22):8262-8270,1991.
    [52]R. H. Stote and M. Karplus. Zinc binding in proteins and solution:A simple but accurate nonbonded representation. Proteins:Struct., Funct., Genet.,23:12-31,1995.
    [53]O. A. T. Donini and P. A. Kollman. Calculation and prediction of binding free energies for the matrix metalloproteinases. J. Med. Chem.,43(22):4180-4188,2000.
    [54]N. Gresh, J. P. Piquemal, and M. Krauss. Representation of zn(ⅱ) complexes in polarizable molecular mechanics. further refinements of the electrostatic and short-range contributions. comparisons with parallel ab initio computations. J. Compt. Chem.,26(11):1113-1130, 2005.
    [55]M. D. Peraro, K. Spiegel, G. Lamoureux, M. De Vivo, W. F. DeGrado, and M. L. Klein. Mod-eling the charge distribution at metal sites in proteins for molecular dynamics simulations. J. Struct. Bio.,157(3):444-453,2007.
    [56]M. P. Johansson, V. R. I. Kaila, and L. Laakkonen. Charge parameterization of the metal centers in cytochrome (?) oxidase. J. Compt. Chem.,29(5):753-767,2008.
    [57]R. R. Roe and Y. P. Pang. Zinc's exclusive tetrahedral coordination governed by its electronic structure. J. Mol. Mod.,5(7):134-140, June 22 1999.
    [58]Y. P. Pang. Novel zinc protein molecular dynamics simulations:Steps toward antiangiogen-esis for cancer treatment. J. Mol. Mod.,5(10):196-202,1999.
    [59]Y. P. Pang, K. Xu, J. El Yazal, and F. G. Prendergast. Successful molecular dynamics simu-lation of the zinc-bound farnesyltransferase using the cationic dummy atom approach. Prot. Sci.,9(10):1857-1865,2000.
    [60]J. Aqvist and A. Warshel. Computer simulation of the initial proton transfer step in human carbonic anhydrase i. J. Mol. Bio.,224(1):7-14,1992.
    [61]Ruibo Wu, Zhenyu Lu, Zexing Cao, and Yingkai Zhang. A transferable nonbonded pairwise force field to model zinc interactions in metalloproteins. J. Chem. Theo. Comput.,7(2):433-443,2010.
    [62]J. R. Calhoun, H. Kono, S. Lahr, W. Wang, W. F. DeGrado, and J. G. Saven. Computational design and characterization of a monomeric helical dinuclear metalloprotein. J. Mol. Bil., 334(5):1101-1115,2003.
    [63]Alessandra Magistrato, William F. DeGrado, Alessandro Laio, Ursula Rothlisberger, Joost VandeVondele, and Michael L. Klein. Characterization of the dizinc analogue of the syn-thetic diiron protein dfl using ab initio and hybrid quantum/classical molecular dynamics simulations. J. Phys. Chem. B,107(17):4182-4188,2003.
    [64]P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,136(3B):B864,1964.
    [65]W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation ef-fects. Phys. Rev.,140(4A):A1133,1965.
    [66]P. S. Svendsen and U. von Barth. Gradient expansion of the exchange energy from second-order density response theory. Phys. Rev. B,54(24):17402,1996.
    [67]Luca Bertini, Maurizio Bruschi, Luca de Gioia, Piercarlo Fantucci, Claudio Greco, and Giuseppe Zampella. Quantum chemical investigations of reaction paths of metalloenzymes and biomimetic models-the hydrogenase example. Atomistic Approaches in Modern Biol-ogy:From Quantum Chemistry to Molecular Simulations,268:1-46,2007 2007.
    [68]Kieron Burke, Jan Werschnik, and E. K. U. Gross. Time-dependent density functional theory: Past, present, and future. J. Chem. Phys.,123:062206,2005.
    [69]Richard M. Martin. Electronic structure:Basic theory and practicla methods. Cambridge Unversity Press,2005.
    [70]W. Koch and M. C. Holthausen. A Chemist's Guide to Density Functional Theory. Wiley-VCH,2 edition,2001.
    [71]F. Matthias Bickelhaupt. Understanding reactivity with kohn-sham molecular orbital theory: E2-s{N2 mechanistic spectrum and other concepts. J. Comput. Chem.,20(1):114-128,1999.
    [72]F. M. Bickelhaupt and e. J. Baerends. Rev. Comput. Chem., volume 15 of Rev. Comput. Chem. Wiley-VCH,2000.
    [73]Kieron Burke, Jan Werschnik, and E. K. U. Gross. Time-dependent density functional theory: Past, present, and future. J. Chem. Phys.,123:062206,2005.
    [74]Ilaria Ciofini, P. P. Laine, Fethi Bedioui, Claude A. Daul, and Carlo Adamo. Theoretical modelling of photoactive molecular systems:insights using the density functional theory. Compt. Rend. Chim.,9(2):226-239,2006.
    [75]P. Boulet, H. Chermette, C. Daul, F. Gilardoni, F. Rogemond, J. Weber, and G. Zuber. Absorption spectra of several metal complexes revisited by the time-dependent density-functional theory-response theory formalism. J. Phys. Chem. A,105(5):885-894,2001.
    [76]F. M. Dicapua D. L. Beveridge. Free energy via molecular simulation:Applications to chemical and biomolecular systems. Annu. Rev. Biophys. Chem.,18:431-492,1989.
    [77]D.A. Case, P.A. Kollman, and et. al. Amber 10,2008. University of California, San Fran-cisco.
    [78]S. Fiorucci S. Antonczaka J. Golebiowski L. Charlier, C. Nespoulous. Binding free en-ergy prediction in strongly hydrophobic biomolecular systems. Phys. Chem. Chem. Phys., 9:5761-5771,2007.
    [79]T. Lazaridis and M. Karplus. Effective energy function for proteins in solution. Proteins: Struct. Funct. Gen.,35(2):133-152,1999.
    [80]Thomas Simonson, Georgios Archontis, and Martin Karplus. Continuum treatment of long-range interactions in free energy calculations, application to protein-ligand binding. J. Phys. Chem. B,101(41):8349-8362,1997.
    [81]G. Patrick Brady, Attila Szabo, and Kim A. Sharp. On the decomposition of free energies. J. Mol. Bio.,263(2):123-125,1996.
    [82]D A Case T Steinbrecher, D L Mobley. Nonlinear scaling schemes for lennard-jones inter-actions in free energy calculations. J. Chem. Phys.,127:214108,7 December 2007 2007.
    [83]Michael R. Shirts and Vijay S. Pande. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J. Chem. Phys.,122(13):134508, 2005.
    [84]Thomas C. Beutler, Alan E. Mark, Ren C. van Schaik, Paul R. Gerber, and Wilfred F. van Gunsteren. Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem. Phys. Lett.,222(6):529-539,1994.
    [85]Charles H. Bennett. Efficient estimation of free energy differences from monte carlo data.J. Comput. Phys.,22(2):245-268,1976.
    [86]A. Blondel. Ensemble variance in free energy calculations by thermodynamic integration: Theory, optimal "alchemical" path, and practical solutions. J. Comput. Chem.,25(7):985-993,2004.
    [87]C. G. Ji, Y. Mei, and J. Z. H. Zhang. Developing polarized protein-specific charges for protein dynamics:Md free energy calculation of pk(a) shifts for asp(26)/asp(20) in thioredoxin. Biophys. J.,95:1080-1088,2008.
    [88]C. G. Ji and J. Z. H. Zhang. Electronic polarization is important in stabilizing the native structures of proteins. J. Phys. Chem. B,113(49):16059-16064,2009.
    [89]C. G. Ji and J. Z. H. Zhang. Protein, polarization is critical to stabilizing af-2 and helix-2' domains in ligand binding to pparγ. J. Am. Chem. Soc.,130(50):17129-17133,2008.
    [90]L. L. Duan, Y. Mei, Q. G. Zhang, and J. Z. H. Zhang. Intra-protein hydrogen bonding is dynamically stabilized by electronic polarization. J. Chem. Phys.,130(11):115102,2009.
    [91]Y. Tong, C. G. Ji, Y. Mei, and J. Z. H. Zhang. Simulation of nmr data reveals that protein's local structures are stabilized by electronic polarization. J. Am. Chem. Soc.,131:8636-8641, 2009.
    [92]Y. Tong, Y. Mei, Y. L. Li, C. G. Ji, and J. Z. H. Zhang. Electrostatic polarization makes sub-stantial contribution to free energy of avidin-biotin binding. J. Am. Chem. Soc.,132:5137-5142,2010.
    [93]Y. P. Lu, Y. Mei, J. Z. H. Zhang, and D. W. Zhang. Communications:Electron polarization critically stabilizes the mg2+complex in the catalytic core domain of hiv-1 integrase. J. Chem.Phys.,132:131101,2010.
    [94]M. J. Frisch, J. A. Pople, and et. al. Gaussian 03, Revision D.01,2004. Gaussian, Inc., Pittsburgh, PA,2003.
    [95]W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, and B. Honig. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies:Applications to the molecular systems and geometric objects. J. Comput. Chem.,23:128-137,2002.
    [96]C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges:the RESP model. J. Phys. Chem.,97:10269-10280,1993.
    [97]J. R. Calhoun, F. Nastri, O. Maglio, V. Pavone, A. Lombardi, and W. F. DeGrado. Artificial diiron proteins:From structure to function. Pept. Science,80(2-3):264-278,2005.
    [98]J. R. Calhoun, C. B. Bell, T. J. Smith, T. J. Thamann, W. F. DeGrado, and E. I. Solomon. Oxygen reactivity of the biferrous site in the de novo designed four helix bundle peptide dfsc: Nature of the "intermediate" and reaction mechanism.J.Am. Chem. Soc,130(29):9188-9189,2008.
    [99]M. Faiella, C. Andreozzi, R. T. M. de Rosales, V. Pavone, O. Maglio, F. Nastri, W. F. De-Grado, and A. Lombardi. An artificial di-iron oxo-protein with phenol oxidase activity. Nat. Chem. Biol.,5(12):882-884,2009.
    [100]Leslie J. Murray, Ricardo Garcia-Serres, Michael S. McCormick, Roman Davydov, Sunil G. Naik, Sun-Hee Kim, Brian M. Hoffman, Boi Hanh Huynh, and Stephen J. Lippard. Dioxygen activation at non-heme diiron centers:Oxidation of a proximal residue in the i100w variant of toluene/o-xylene monooxygenase hydroxylase? Biochemistry,46(51):14795-14809,2007.
    [101]Pin-pin Wei, Andrew J. Skulan, Herschel Wade, William F. DeGrado, and Edward I. Solomon. Spectroscopic and computational studies of the de novo designed protein df2t: Correlation to the biferrous active site of ribonucleotide reductase and factors that affect o2 reactivity. J. Am. Chem. Soc.,127(46):16098-16106,2005.
    [102]Garegin A. Papoian, William F. DeGrado, and Michael L. Klein. Probing the configura-tional space of a metalloprotein core:An ab initio molecular dynamics study of duo ferro 1 binuclear zn cofactor. J. Am. Chem. Soc.,125(2):560-569,2002.
    [103]T. Dudev and C. Lim. Principles governing mg, ca, and zn binding and selectivity in proteins. Chem. Rev.,103(3):773-787,2003.
    [104]C. S. Babu and C. Lim. Empirical force fields for biologically active divalent metal cations in water. J. Phys. Chem. A,110(2):691-699,2006.
    [105]D. V. Sakharov and C. Lim. Force fields including charge transfer and local polarization effects:Application to proteins containing multi/heavy metal ions. J. Comput. Chem., 30(2):191-202,2009.
    [106]U. Ryde. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry. Dalton Trans.,6(6):607-625,2007.
    [107]U. Ryde, C. Greco, and L. De Gioia. Quantum refinement of [fefe] hydrogenase indicates a dithiomethylamine ligand. J. Am. Chem. Soc.,132(13):4512-4513,2010.
    [108]E. L. Wu, K. Y. Wong, X. Zhang, K. L. Han, and J. L. Gao. Determination of the structure form of the fourth ligand of zinc in acutolysin a using combined quantum mechanical and molecular mechanical simulation. J. Phys. Chem. B,113(8):2477-2485,2009.
    [109]R. B. Wu, P. Hu, S. L. Wang, Z. X. Cao, and Y. K. Zhang. Flexibility of catalytic zinc coordination in thermolysin and hdac8:A born-oppenheimer ab initio qm/mm molecular dynamics study. J. Chem. Theory Comput,6(1):337-343,2009.
    [110]D. W. Zhang and J. Z. H. Zhang. Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy. J. Chem. Phys., 119(7):3599-3605,2003.
    [111]Z. J. Xu, Y. Mei, L. L. Duan, and D. W. Zhang. Hydrogen bonds rebuilt by polarized protein-specific charges. Chem. Phys. Lett.,495(1-3):151-154,2010.
    [112]J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes. J. Com-put. Phys.,23(3):327-341,1977.
    [113]Y. Mei and J. Z. H. Zhang. Numerical stabilities in fitting atomic charges to electric field and electrostatic potential. J. Theo. Comput. Chem.,8(5):925-942,2009.
    [114]M. C. Lee and Y. Duan. Distinguish protein decoys by using a scoring function based on a new amber force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins:Struct., Funct., Bioinfo.,55(3):620-634,2004.
    [115]G. J. Kleywegt and T. A. Jones. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Cryst. D,50:178-185,1994.
    [116]Roman A. Laskowski, J. Antoon C. Rullmann, Malcolm W. MacArthur, Robert Kaptein, and Janet M. Thornton. Aqua and procheck-nmr:Programs for checking the quality of protein structures solved by nmr. J. Biomol. NMR,8(4):477-486,1996.
    [117]Ulf Ryde. Carboxylate binding modes in zinc proteins:A theoretical study. Biophys. J., 77(5):2777-2787,1999.
    [118]R. G. Pearson. Hard and soft acids and bases.J. Am. Chem. Soc.,85(22):3533-3539,1963.
    [119]Edward I. Solomon, Thomas C. Brunold, Mindy I. Davis, Jyllian N. Kemsley, Sang-Kyu Lee, Nicolai Lehnert, Frank Neese, Andrew J. Skulan, Yi-Shan Yang, and Jing Zhou. Geo-metric and electronic structure/function correlations in non-heme iron enzymes. Chem. Rev., 100(1):235-350,1999.
    [120]P. H. Hiinberger, A. E. Mark, and W. F. van Gunsteren. Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. J. Mol. Bio.,252(4):492-503,1995.
    [121]Chris Chatfield. The Analysis of Time Series:An Introduction. CHAPMAN & HALL/CRC, sixth edition edition,2003.
    [122]A. E. Yu, R. E. Hewitt, E. W. Connor, and W. G. Stetler-Stevenson. Matrix metallopro-teinases:Novel targets for directed cancer therapy. Drugs. Aging.,11:229-244,1997.
    [123]W. N. Lipscomb and N. Strater. Recent advances in zinc enzymology. Chem. Rev., 96(7):2375-2434,1996.
    [124]LiHong Hu and Ulf Ryde. Comparison of methods to obtain force-field parameters for metal sites. J. Chem. Theo. Comput., page accepted,2011.
    [125]Angela Lombardi, Christopher M. Summa, Silvano Geremia, Lucio Randaccio, Vincenzo Pavone, and William F. DeGrado. Retrostructural analysis of metalloproteins:Application to the design of a minimal model for diiron proteins. Proc. Nat. Acad. Sci.,97(12):6298-6305,2000.
    [126]Hong-Yan Xiao, Ya-Jun Liu, and Wei-Hai Fang. Density functional theory investigation of the photodissociation channels of acetophenone. J. of Mol. Struct.:THEOCHEM,802(1-3):99-103,2007.
    [127]Valreie Wathelet, Julien Preat, Michael Bouhy, Michele Fontaine, Eric A. Perpete, Jean-Marie Andre, and Denis Jacquemin. Assessment of pbeO for evaluating the absorption spectra of carbonyl molecules. Int. J. Quant. Chem.,106(8):1853-1859,2006.
    [128]C. Barolo, Md. K. Nazeeruddin, Simona Fantacci, D. Di Censo, P. Comte, P. Liska, G. Vis-cardi, P. Quagliotto, Filippo De Angelis, S. Ito, and M. Gratzel. Synthesis, characteriza-tion, and dft tddft computational study of a ruthenium complex containing a functionalized tetradentate ligand. Inorg. Chem.,45(12):4642-4653,2006.
    [129]WenWei Zhang, YongGuang Yu, ZhenDa Lu, WeiLi Mao, YiZhi Li, and QingJin Meng. Ferrocenephenothiazine conjugated molecules:Synthesis, structural characterization, elec-tronic properties, and dfttddft computational study. Organometallics,26(4):865-873,2007.
    [130]Victor N. Nemykin, Alexander Y. Maximov, and Alexey Y. Koposov. Mercury-free prepa-ration, characterization, and molecular structure of tricyanovinylferrocene using an unusual reaction between ferrocene and tetracyanoethylene. Organometallics,26(13):3138-3148, 2007.
    [131]Peter L. Pauson. Ferrocene-how it all began. J. Organomet. Chem.,637-639:3-6,2001.
    [132]A. Rosa, G. Ricciardi, O. Gritsenko, and E. J. Baerends. Excitation energies of metal com-plexes with time-dependent density functional theory, volume 112 of Structure and Bonding. Springer-Verlag Berlin, Berlin,2004.
    [133]J. Danielsson, J. Ulicny, and A. Laaksonen. A td-dft study of the photochemistry of urocanic acid in biologically relevant ionic, rotameric, and protomeric forms. J. Am. Chem. Soc., 123(40):9817-9821,2001.
    [134]L. Petit, P. Maldivi, and C. Adamo. Predictions of optical excitations in transition-metal complexes with time dependent-density functional theory:Influence of basis sets. J. Chem. Theo. Comput., 1(5):953-962,2005.
    [135]B. O. Roos. The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations, volume 69 of Adv. Chem. Phys. John Wiley & Sons, Inc.,2007.
    [136]B. O. Roos. Modern Electronic Structure Theory, volume 1 of Modern Electronic Structure Theory. World Scientific,1995.
    [137]T. H. Schucan and H. A. Weidenmueller. The effective interaction in nuclei and its perturba-tion expansion:An algebraic approach. Ann. Phys.,73(1):108-135,1972.
    [138]Paier Joachim, Marsman Martijn, and Kresse Georg. Why does the b31yp hybrid functional fail for metals? J. Chem. Phys.,127(2):024103,2007.
    [139]A. D. McLean and G. S. Chandler. Contracted gaussian-basis sets for molecular calculations .1.2nd row atoms, z=11-18.J.Chem. Phys.,72(10):5639-5648,1980.
    [140]Z. F. Xu, Y. Xie, W. L. Feng, and H. F. Schaefer. Systematic investigation of electronic and molecular structures for the first transition metal series metallocenes m(c5h5)2 (m=v, cr, mn, fe, co, and ni). J. Phys. Chem. A,107(15):2716-2729,2003.
    [141]G. Schreckenbach. The [sup 57]fe nuclear magnetic resonance shielding in ferrocene revis-ited, a density-functional study of orbital energies, shielding mechanisms, and the influence of the exchange-correlation functional. J. Chem. Phys.,110(24):11936-11949,1999.
    [142]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A,38:3098,1988.
    [143]Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,37(2):785, 1988.
    [144]John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett,77(18):3865,1996.
    [145]John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple [phys. rev. lett.77,3865 (1996)]. Phys. Rev. Lett.,78(7):1396,1997.
    [146]Axel D. Becke. Density functional thermochemistry, iii. the role of exact exchange. J. Chem. Phys.,98:5648-5652,1993.
    [147]Carlo Adamo and Vincenzo Barone. Toward reliable density functional methods without adjustable parameters:The pbeO model. J. Chem. Phys.,110:6158-6170,1999.
    [148]A. Schafer, C. Huber, and R. Ahlrichs. Fully optimized contracted gaussian-basis sets of triple zeta valence quality for atoms li to kr. J. Chem. Phys.,100(8):5829-5835,1994.
    [149]N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer. Optimization of gaussian-type basis-sets for local spin-density functional calculations.1. boron through neon, optimization technique and validation. Can. J. Chem. Rev. Can. Chim.,70(2):560-571,1992.
    [150]A. Schafer, H. Horn, and R. Ahlrichs. Fully optimized contracted gaussian-basis sets for atoms li to kr.J. Chem. Phys.,97(4):2571-2577,1992.
    [151]N. B. Balabanov and K. A. Peterson. Systematically convergent basis sets for transition metals, i. all-electron correlation consistent basis sets for the 3d elements sc-zn. J. Chem. Phys.,123:064107,2005.
    [152]W. R. Wadt and P. J. Hay. Abinitio effective core potentials for molecular calculations-potentials for main group elements na to bi. J. Chem. Phys.,82(1):284-298,1985.
    [153]P. J. Hay and W. R. Wadt. Abinitio effective core potentials for molecular calculations-potentials for k to au including the outermost core orbitals. J. Chem. Phys.,82(1):299-310, 1985.
    [154]S. Miertus and J. Tomasi. Approximate evaluations of the electrostatic free energy and inter-nal energy changes in solution processes. Chem. Phys.,65(2):239-245,1982.
    [155]S. I. Gorelsky. Swizard program, revision 4.5, http://www.sg-chem.net/,2009.
    [156]M. D. Rausch and A. Siegel. Organometallic [pi]-complexes xiv. vinylmetallocenes. J. Organomet. Chem.,11:317-324,1968.
    [157]M. Rosenblum, N. Brawn, J. Papenmeier, and M. Applebaum. Synthesis of ferroceny-lacetylenes. J. Organomet. Chem.,6(2):173-180,1966.
    [158]Arne Haaland. Molecular structure and bonding in the 3d metallocenes. Ace. Chem. Res., 12(11):415-422,1979.
    [159]Constance M. Brett and Bruce E. Bursten. Theoretical studies of 18electron m(cnhn)(c10 nh10 n) (m=fe, ru, os; n=3,4,5) sandwich complexes. Polyhedron,23(17):2993-3002, 2004.
    [160]Harry B. Gray, Y. S. Sohn, and N. Hendrickson. Electronic structure of metallocenes. J. Am. Chem. Soc.,93(15):3603-3612,1971.
    [161]Andreas Dreuw and Martin Head-Gordon. Single-reference ab initio methods for the calcu-lation of excited states of large molecules. Chem. Rev.,105(11):4009-4037,2005.
    [162]R. E. Bozak. Photochemistry in the metallocenes, volume 8 of Advances in Photochemistry. John Wiley & Sons, Inc., Hoboken, NJ, USA., New York,1971.
    [163]Burke Kieron, Werschnik Jan, and E. K. U. Gross, Time-dependent density functional theory: Past, present, and future. J. Chem. Phys.,123(6):062206,2005.
    [164]Stefan Grimme. Comparison of multireference mollerplesset theory and timedependent methods for the calculation of vertical excitation energies of molecules. J. Phys. Chem. A,106(29):6844-6850,2002.
    [165]Kazuya Ishimura, Masahiko Hada, and Hiroshi Nakatsuji. Ionized and excited states of ferrocene:Symmetry adapted clusterconfigurationinteraction study. J. Chem. Phys., 117(14):6533-6537,2002.
    [166]F. E. Jorge, J. Autschbach, and T. Ziegler. On the origin of the optical activity in the d-d transition region of tris-bidentate co(iii) and rh(iii) complexes. Inorg. Chem.,42(26):8902-8910,2003.
    [167]R. Stephen Berry. Ultraviolet spectrum of dibenzene chromium vapor. J. Chem. Phys., 35(6):2025-2028,1961.
    [168]Victor N. Nemykin, Elena A. Makarova, Jeffrey O. Grosland, Ryan G. Hadt, and Alexey Y. Koposov. Preparation, characterization, molecular and electronic structures, tddft, and tddft/pcm study of the solvatochromism in cyanovinylferrocenes. Inorg. Chem., 46(23):9591-9601,2007.
    [169]Anders Hagfeldt and Michael Graetzel. Light-induced redox reactions in nanocrystalline systems. Chem. Rev.,95(1):49-68,1995.
    [170]N. M. Green. Thermodynamics of the binding of biotin and some analogues by avidin. Biochem. J.,101(3):774-780, Dec,1966 1966.
    [171]Shuichi Miyamoto and Peter A. Kollman. Absolute and relative binding free energy calcu-lations of the interaction of biotin and its analogs with streptavidin using molecular dynam-ics/free energy perturbation approaches. Proteins.,16(3):226-245,1993.
    [172]Peter A. Kollman Jian Wang, Richard Dixon. Ranking ligand binding affinities with avidin: a molecular dynamics-based interaction energy study. Proteins.,34(1):69-81,1999.
    [173]Wei Wang, Jian Wang, and Peter A. Kollman. What determines the van der waals coefficient &bgr; in the lie (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? Proteins.,34(3):395-402,1999.
    [174]Bernd Kuhn and Peter A. Kollman. Binding of a diverse set of ligands to avidin and strep-tavidin:An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem.,43(20):3786-3791, 2000.
    [175]Bernd Kuhn and Peter A. Kollman. A ligand that is predicted to bind better to avidin than biotin:Insights from computational fluorine scanning. J. Am. Chem. Soc.,122(16):3909-3916,2000.
    [176]Aaron Weis, Kambiz Katebzadeh, Par Soderhjelm, Ingemar Nilsson, and Ulf Ryde. Ligand affinities predicted with the mm/pbsa method:Dependence on the simulation method and the force field. J. Med. Chem.,49(22):6596-6606,2006.
    [177]Jason DeChancie and K. N. Houk. The origins of femtomolar protein-ligand binding: Hydrogen-bond cooperativity and desolvation energetics in the biotin-streptavidin binding site. J.Am. Chem. Soc.,129(17):5419-5429,2007.
    [178]J. Kongsted and U. Ryde. An improved method to predict the entropy term with the mm/pbsa approach. J. Comput-Aid. Mol. Des.,23(2):63-71, Feb 2009.
    [179]Par Soderhjelm, Francesco Aquilante, and Ulf Ryde. Calculation of protein-ligand inter-action energies by a fragmentation approach combining high-level quantum chemistry with classical many-body effects. J. Phys. Chem. B,113(32):11085-11094,2009.
    [180]Yan Tong, Ye Mei, Yong L. Li, Chang G. Ji, and John Z. H. Zhang. Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding. J. Am. Chem. Soc.,132(14):5137-5142,2010.
    [181]H. Gohlke and D. A. Case. Converging free energy estimates:Mm-pb(gb)sa studies on the protein-protein complex ras-raf. J. Comput. Chem.,25(2):238-250, Jan 2004.
    [182]J. D. Chodera M R Shirts, D L Mobley. Alchemical free energy calculations; ready for prime time? Ann. Rep. in Comput. Chem.,3:41-59,2007 2007.
    [183]A. Labahn T. Steinbrecher, D. A.. Case. A multistep approach to structure-based drug design: Studying ligand binding at the human neutrophil elastase. J. Med. Chem.,49(6):1837-1844, March 23,2006 2006.
    [184]Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A. Case. Development and testing of a general amber force field. J. Comput. Chem.,25(9):1157-1174, 2004.
    [185]Lijiang Yang, Chun-hu Tan, Meng-Juei Hsieh, Junmei Wang, Yong Duan, Piotr Cieplak, James Caldwell, Peter A. Kollman, and Ray Luo. New-generation amber united-atom force field. J. Phys. Chem. B,110(26):13166-13176,2006.
    [186]Paul E. Smith and Wilfred F. van Gunsteren. When are free energy components meaningful? J. Phys. Chem.,98(51):13735-13740,1994.
    [187]S. Boresch and M. Karplus. The meaning of component analysis:Decomposition of the free energy in terms of specific interactions. J. Mol. Bio.,254(5):801-807,1995.
    [188]Bernd Kuhn and Peter A. Kollman. Binding of a diverse set of ligands to avidin and strep-tavidin:An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem.,43(20):3786-3791, 2000.
    [189]N. M. Green. Avidin. Adv. Prot. Chem.,29:85-133,1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700