遗传性先天性白内障一家系致病基因的连锁定位与超微结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:应用全基因组扫描、连锁分析的方法对一个常染色体显性遗传的先天性白内障家系进行基因定位;从定位的染色体区域内寻找候选基因,通过基因序列分析对候选基因进行突变筛查;并对家系患者在白内障手术中摘除的晶状体做形态学研究,从而进一步探求致病基因与临床表型之间的关系。
     方法:对家系患者进行详细的临床检查,排除其他疾患,确定临床表型。将家系患者在白内障手术中摘除的晶状体做光镜及电镜的形态学检查。提取家系成员外周血DNA,选取分布在GJA8、CRYGS、BFSP2、PTX3、MIP、HSF4、CRYAA、CRYAB、CRYBB1、CRYBB2基因上下2厘摩(centimorgan,cM)范围内的微卫星标记物,通过变性聚丙烯酰胺凝胶电泳和银染法确定单体型;对CRYGC、CRYGD、GJA3及CRYBA1基因直接测序,以确定该家系致病基因是否为已知的常染色体显性遗传先天性白内障(autosomal dominant congenital cataract,ADCC)基因。在全部常染色体范围内选取370对荧光微卫星标记物进行全基因组扫描,相邻微卫星标记物之间的平均距离为10cM。利用聚合酶链反应(Polymerase Chain Reaction,PCR)对全部荧光微卫星标记物进行扩增后,在ABI 3130—avant全自动遗传分析仪上读取370对微卫星标记物的等位基因片段大小,并利用Genescan 3.1和Genotyper 2.0软件进行两点法计算LOD值并构建单体型。运用Sim Walk2,Version3.35软件按照多点法分别计算疾病表型与不同染色体上的多个微卫星位点之间的最大优势对数Lod score。根据连
ObjectiveTo identify the genetic location of the candidate gene by linkage analysis. To describe the clinical phenotype in a Chinese family with autosomal dominant congenital cataract (ADCC), and to compare the ultrastructure of opaque lenses in the family with transparent normal human lenses. Analyze the sequence of candidate gene by directly sequence to elucidate the genetic background of the phenotype in this ADCC family. MethodsA Chinese family with ADCC (FAN) was collected for this study. A detailed clinical examination including distance visual acuities, slit-lamp examination and funds of ophthalmology was performed for all patients in the family. To observe the morphological changes of the removed lens tissue with light and transmission electron microscopy. The genomic DNA of all family members was extracted from peripheral blood leukocytes, according to the standard methods of protocol. Polymorphic markers were selected from the regions which harbor all known loci linked with ADCC. The markers were amplified by polymerase chain reaction( PCR). Fragments were separated by elecrophoresis through 6% denaturing polyacrylamide gels. Haplotypes were constructed manually according to the pattern of the bands on the gels stained by silver. Two-point lod scores were calculated using the subroutine Mlink of the Linkage package. Mutation analysis of CRYGC, CRYGD, GJA3, CRYBA1 genes in FAN family were performed by screening all coding region of these genes. Linkage analysis and genome-wide linkage screening was conducted
    using fluorescent detection of 370 microsatellite markers representing all autosomes at an average resolution of approximately 10 cM. The polymerase chain reactions were carried out to amplify all 370 microsatellite markers. The allele sizes were determined on ABI 3130 —avant genetic analysis according to an internal size standard and the results were analyzed using Genescan 3.1 and Genotyper 2.0 software. Multipoint LOD scores between the disease status and the marker alleles were calculated using the LINKAGE software package of SimWalk2, Version3.35. To further determine the candidate region of disease gene, more microsatellite markers were selected around the location of the microsatellite marker with the largest positive Lod score. Directly sequence was conducted on affected members of FAN family to determine the mutation in all exons of BFSP1 gene. ResultsThe affected members in the family were born with classic phenotype of zonular ADCC. The lens fiber cells showed manifestations of degeneration, including focal degeneration > alterations in the lens fiber cells > reticular change and crystal precipitation. Under transmission electron microscope, the lens fiber cells displayed abnormal inter- and intracellular alterations. There were foci of dense, globular intracellular deposits in the cytoplasm. The cell border's connection was highly irregular and there were enlarged spaces. Positive Lod score of 370 microsatellite markers in the family occurred on D20S112 and D20S195. Further linkage analysis showed the Markers D20S163 > D20S915 , D20S152 , D20S98 , D20S904 , D20S875 , D20S112> D20S1140> D20S432 co-segregated with the disease locus in all affected members. The maximum Lod Score was 6.02(D20S904), so the candidate region of disease gene in the family was located on 20pl2—20pll.2. Directly sequence showed no mutations in all exons of BFSP1 gene in FAN family. Conclusion All known candidate genes associated with ADCC were excluded from FAN
    family. The candidate region of disease gene in the FAN family was located in 20pl2 —20pll.2. No mutations in all exons of BFSPl gene were found in the family. A new disease—causing gene maybe exist in this family.
引文
1. Eckstein M, Vijayalakshmi P, Killedar M, et al. Aetiology of childhood cataract in South India. Br J Ophthalmol. 1996;80:628-632.
    2. Wirth MG, Russe Ⅱ-Eggitt IM, Craig JE, et al. Aetiology of congential and paediatric cataract in Australian population. Br J Ophthalmol. 2002;86:782-786.
    3. Yamamoto M, Dogru M, Nakamura M, et al. Visual function following congenital cataract surgery. Jpn J Ophthalmol. 1998;42:411-416.
    4. Rahi JS, Dezateaux C, British Congenital Cataract Interest Group.Measuring and interpreting the incidence of congenital ocular anomalies: lessons from a national study of congenital cataract in the UK. Invest Ophthalmol Vis Sci. 2001;42:1444-448.
    5. Gilbert CE, Canovas R, Hagan M, et al. Causes of childhood blindness results from west Africa, South India and Chile. Eye. 1993;7(Pt1):184-188.
    6. Ionides A, Francis P, Berry V, et al. Clinical and genetic heterogeneity in autosomal dominant congenital cataract. Br J Ophthalmo. 1999;83: 802-808.
    7. Francis P, lonides A, Berry V, et al. Visual outcome in patiants with isolated autosomal dominant congenital cataract. Ophthalmology .2001;108:1104-1108.
    8. Reddy MA, Francis PJ, Berry V, et al. Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol. 2004;49:300-15.
    9. Francis PJ, Berru V, Bhattacharya, et al. The genetics of childhood cataract. J Med Genet. 2000;37:481-488.
    10. Renwick J, Lawler S. Probable linkage between a congenital cataract locus and the Duffy blood group locus. Am Hum Genet.1963;27: 67-84.
    11. Reddy MA, Francis PJ, Berry V, et al. Molecular genetic basis of inherited cataract and associated phenotypes. Survey of ophthalmology. 2004;49:300-314.
    12. Hejtmancik JF, Smaoui N. Molecular genetics of cataract. Dev Ophthalmol 2003;37:67-82.
    13. Mackay DS, Andley UP, Shiels A. Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet. 2003;11:784-793.
    14. Litt M, Kramer P, LaMorticella DM, et al. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha— crystalline gene CRYAA. Hum Mol Genet. 1998;7:471-474.
    15. Berry V, Francis P, Reddy MA, et al. Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. Am J Hum Genet. 2001;69:1141-1145.
    16. Qi Y, Jia H, Huang S, et al. A deletion mutation in the betaA1/A3 crystallin gene (CRYBA1/A3) is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Hum Genet. 2004;114:192-197.
    17. Reddy MA, Bateman OA, Chakarova C, et al. Characterization of the 91 del CRYBA1/3-crystallin protein: a cause of human inherited cataract. Hum Mol Genet. 2004;13:945-953.
    18. Mackay DS, Boskovska OB, Knopf HL, et al. A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q. Am J Hum Genet. 2002;71:1216-1221.
    19. Vanita, Sarhadi V, Reis A, et al. A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J Med Genet. 2001;38:392-396.
    20. Heon E, Priston M, Schorderet DF,et al. The gamma-crystallins and human cataracts: a puzzle made clearer. Am J Hum Genet. 1999;65:1261-1267.
    21. Stephan DA, Gillanders E, Vanderveen D, et al. Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene. Proc Natl Acad Sci USA. 1999;96:1008-1012.
    22. Nandrot E, Slingsby C, Basak A, et al. Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts. J Med Genet. 2003;40:262-267.
    23. Shentu X, Yao K, Xu W, et al. Special fasciculiform cataract caused by a mutation in the gammaD crystalline gene. Mol Vis. 2004;10:233-239.
    24. Conley YP, Erturk D, Keverline A, et al. A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet. 2000;66:1426-1431.
    25. Bu L, Jin Y, Shi Y, et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet. 2002;31:276-278.
    26. Mackay D, Ionides A, Kibar Z, et al. Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet. 1999;64:1357-1364.
    27. Berry V, Mackay D, Khaliq S, et al. Connexin 50 mutation in a family with congenital "zonular nuclear" pulverulent cataract of Pakistani origin. Hum Genet 1999;105:168-170.
    28. Willoughby CE, Arab S, Gandhi R,et al. A novel GJA8 mutation in an Iranian family with progressive autosomal dominant congenital nuclear cataract. J Med Genet. 2003;40:124.
    29. Semina EV, Ferrell RE, Mintz-Hittner HA, et al. A novel homeobox gene PITX3 is mutated in families with autosomaldominant cataracts and ASMD. Nat Genet. 1998;19:167-170.
    30. Aguilar-Martinez P, Biron C, Masmejean C,et al. A novel mutation in the iron responsive element of ferritin L-subunit gene as a cause for hereditary hyperferritinemia-cataract syndrome. Blood. 1996;1888:1895.
    31. Stambolian D, Ai Y, Sidjanin D, et al. Cloning of the galactokinase cDN A and identification of mutations in two families with cataracts. Nat Genet. 1995;10:307-312.
    32. Yu LC, Twu YC, Chang CY,et al. Molecular basis of the adult phenotype and the gene responsible for the expression of the human blood group I antigen. Blood. 2001;98:3840-3845.
    33. Berry V, Francis P, Kaushal S, et al. Missense mutations in MIP underlie autosomal dominant 'polymorphic'and lamellar cataracts linked to 12q. Nat Genet. 2000;25:15-17.
    34. Pras E, Levy-Nissenbaum E, Bakhan T,et al. A missense mutation in the LIM2 gene is associated with autosomal recessive presenile cataract in an inbred Iraqi Jewish family. Am J Hum Genet. 2002;70:1363-1367.
    35. Azuma N, Yamaguchi Y, Handa H, et al. Missense mutation in the alternative splice region of the PAX6 gene in eye anomalies. Am J Hum Genet. 1999;65:656-663.
    36. Sun H, Ma Z, Li Y, et al. Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J Med Genet. 2005;42:706-710.
    37. Arnold J. Global cataract blindness: the unmet challenge. Br J Ophthalmol. 1998;82:593-594.
    38. McCarty CA, Taylor HR. The genetics of cataract. Invest Ophthalmol Vis Sci. 2001;42:1677-1678.
    39. Wu R, Connolly D, Ngelangel C, et al. Somatic mutations of fibroblast growth factor receptor 3 (FGFR3)are uncommon in carcinomas of the uterine cervix. Oneogene. 2000;19(48): 5543-5546.
    40. Venter JC,Adams MD,Myers EW,et al. The sequence of the human genome. Science. 2001;291(5507): 1304-1351.
    41. Lander ES,Linton LM,Birren B et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822): 860-921.
    42. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: Past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33(Suppl):228-237.
    43. Botstein D,White RL,Skolnick M,et al. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet. 1980;32(3):314-331.
    44. Donis-Keller H, Green P, Helms C, Cartinhour S, et al. Genetic linkage map of the human genome. Cell. 1987;23;51(2):319-37.
    45. Jeffreys AJ,Wilson V,Thein SL. Hypervariable' minisatellite' regions in human DNA. Nature. 1985;314:67-73.
    46. Nakamura Y,Leppert M, Connell P,et al. Variable number of tandem repeat(VNTR)markers for human gene mapping. Science. 1987;235:1616-1622.
    47. Edwards A,Civitello A,Hammond HA,et al. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats.Am J Hum Genet. 1991;49(4): 746-756.
    48. Weber JL,May PE.Abundant class of human DNA polymorphisms which can be typed using the polymorphisms chain reaction.Am J Hum genet.1989;44(3): 388-396.
    49. Weber JL,May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989;44:388-396.
    50. Litt M,Luty JA. A hypervariable microsatellite revealed by vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989;44:397-401.
    51. Kuang SQ, Zhang YZ, Chen Z. A powerful tool for genome scanning and gene mapping of inherited disease. Chin J Med Genet. 1997;14(2): 99-103.
    52.况少青,张宇舟,陈竺.基因组扫描.遗传病相关基因定位的有力工具.中华医学遗传学杂志.1997;14(2):99-103.
    53. Deka R,Chakraborty R,Decroo S,et al.Characteristics of polymorphism at a vNTR locus 3' to the apolipoprotein B gene in five human population.Am J Hum genet,1992;51(6): 1325-1333.
    54. ES.Lander. Genes and genomes. Harvey Leer. 1997-1998;93:35-48.
    55. Collins FS, Partinos A, Jordan E, et al. New goals for the US. Human Genome Project: 1998-2003.Science. 1998;282 : 682-689.
    56. Marshall E. Playing chicken' over gene markers. Science. 1997;278 '. 2046-2048.
    57. Kruglyak L. The use of a genetic map of biallelic markers in linkage studies. Nature Genetics. 1997;17(1) : 21-24.
    58. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genetics. 1999;22:139-144.
    59. Sham P. Genetic epidemiology.Br Med Bui. 1996;52 : 408.
    60. Lathrop GM,Lalouel JM,Julier C,et al. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci USA. 1984;81:3443-3446.
    61. Kruglyak L,Lander ES. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet. 1995;57:439-454.
    62. Nettleship F, Ogilvie F: A peculiar form of congenital cataract. Trans Ophthalmol SocUK 1906;26:191-206.
    63. Lambert S, DrackA: Infantile cataracts. Surv Ophthalmol 1996;40:427-458.
    64. Francis P, Berry V, Moore A, Bhattacharya S: Lens biology, development and human cataractogenesis. Trends Genet .1999;15:191-196.
    65. Ionides A, Francis P, Berry V, et al.: Clinical and genetic heterogeneity in autosomal dominant congenital cataract. Br J Ophthalmol. 1999;83: 802- 808.
    66. Francis P, Ionides A, Berry V, et al.: Visual outcome in patiants with isolated autosomal dominant congenital cataract. Ophthalmology. 2001;108:1104-1108.
    67. Francois J: Genetics of cataract. Ophthalmologica .1982;184:61-71.
    68. Nakajima A: Population genetic study on blinding diseases in Japan. In Proceedings of Second International Congress of Human Genetics;Rome.l961;1941-1946.
    69. Francis PJ, Berry V, Hardcastle AJ, et al.: A locus for isolated cataract on human Xp. J Med Genet .2002;39:105-109
    70. Delaye M, Tardieu A: Short-range order of crystallin proteins accounts for eye lens transparency. Nature. 1983;302:415-417.
    71. Lubsen N, Aarts H, Schoenmakers J: The evolution of lenticular proteins: the beta and gamma crystallin supergene family. Prog Biophys Mol Biol. 1988;51:47-76.
    72. Francis P, Berry V, Moore A, et al. Lens biology, development and human cataractogenesis[J]. Trends Genet. 1999;15:191-196.
    73. Pande A, Pande J, Asherie N, et al. Crystal cataracts: human genetic cataract caused by protein crystallisation[J]. Proc NatI Acad Sci .2001;98:611 6-6120.
    74. Klopp N,Heon E,Billingsley G,et al.Further genetic heterogeneity for autosomal dominant human sutural cataracts. Ophthalmic Res .2003;35:71-77.
    75.齐艳华,贾红艳,黄尚志,等.晶体蛋白pAl基因缺失突变导致常染色体显性遗传核性遗传性白内障。.中华医学遗传学杂志。2003;20:184-187.
    76. Zenteno JC, Morales ME, Moran-Barroso V, et al. CRYGD gene analysis in a family with autosomal dominant congenital cataract: evidence for molecular homogeneity and intrafamilial clinical heterogeneity in aculeiform cataract[J]. Mol Vis. 2005;11:438-442.
    77. Sun H, Ma Z, Li Y, et al. Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans[J]. J Med Genet.2005;42:706-710.
    78. Shiels A, Mackay D. lonides A, et al.: A missense mutation in the human connexin 50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome lq. Am J Hum Genet. 1998;62:526-532.
    79. Li Y, Wang J, Dong B, Man H. A novel connexin46(GJA3) mutation in autosomal dominant congenital nuclear pulverulent cataract[J]. Mol Vis. 2004;10:668-671.
    80.郑建秋,马志伟,孙慧敏.中国东北汉族一个遗传性白内障家系致病基因的鉴定[J].中华医学遗传学杂志。2005;22:76-78.
    81. Berry V, Francis P, Kaushal S, et al.;Missense mutations in the human MIP gene, encoding the major intrinsic protein of the lens, underlie autosomal dominant "polymorphic" and lamellar cataracts on 12q .Nat Genet. 2000;25:15-17.
    82. Francis P, Chung J, Yasui M, et al.: Functional impairment of lens aquaporin in two families with dominantly inherited cataracts. Hum Mol Genet. 2000;9:2329-2334.
    83. Jakobs P, Hess J, Fitzgerald P, et al.: Autosomal dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2. Am J Hum Genet .2000;66:1432-1436.
    84. Semina E, Ferrell R, Mintz-Hittner H, et al.: A novel homeobox gene PITX3 is mutated in families with autosomal dominant cataracts and ASMD. Nat Genet. 1998;19:167-170.
    85. Bu L, Jin Y, Shi Y, et al.: Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet. 2002;31:276-278.
    86. Ogino H, Yasuda K. Sequential activation of transcription factors in lens induction. Dev Growth Diff. 2000;42:437-448.
    87. Broman KW, Murry JC, Sheffield VC, et al. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet.l998;63:861-869.
    88. Yamada K, Tomita H, Yoshiura K,et al. An autosomal dominant posterior polar cataract locus maps to human chromosome 20p12-q12. Eur J Hum Genet. 2000;8(7):535-539.
    89. Blankenship TN, Hess JF, FitzGerald PG Development and differentiation-dependent reorganization of intermediate filaments in fiber cells. Invest Ophthalmol Vis Sci. 2001;42(3):735-742.
    90. Gounari F, Merdes A, Quinlan R, et al. Bovine filensin possesses primary and secondary structure similarity to intermediate filament proteins. J Cell Biol. 1993;121(4):847-853.
    91. Jakobs PM, Hess JF, FitzGerald PG, et al. Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2. Am J Hum Genet. 2000;66(4):1432-1436.
    92. Conley YP, Erturk D, Keverline A, et al. A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet. 2000;66(4): 1426-431.
    93. Hess JF, Casselman JT, FitzGerald PG Chromosomal locations of the genes for the beaded filament proteins CP 115 and CP 47. Curr. Eye Res. 1995;14: 11-18.
    94. Rendtorff ND, Hansen C,Silahtaroglu A,et al. Isolation of the human beaded-filament structural protein 1 gene (BFSP1) and assignment to chromosome 20p11.23-p12.1. Genomics. 1998;53: 114-116.
    95. Hess JF, Casselman JT, Kong AP,et al. Primary sequence, secondary structure, gene structure, and assembly properties suggests that the lens-specific cytoskeletal protein filensin represents a novel class of intermediate filament protein. Exp. Eye Res. 1998;66: 625-644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700