Dickkopf1在多发性骨髓瘤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分DKK1在多发性骨髓瘤中的临床研究
     目的研究MM患者骨髓上清液及血清Dickkopf1(DKK1)水平,及其与骨髓瘤分期、溶骨性病变的关系,以及不同化疗方案对DKK1的影响及与疗效的关系,探讨DKK1在多发性骨髓瘤中的临床作用。
     方法采用双抗体夹心酶标免疫分析法(ELISA)检测80例初诊MM患者、10例MGUS患者及20例对照骨髓上清液及血清DKK1水平,以及检测136例接受硼替佐米+地塞米松或沙利度胺+地塞米松治疗的MM患者化疗前后血清DKK1水平。
     结果MM患者与MGUS患者相比,骨髓上清液DKK1水平明显增高(9.3588ng/ml vs 1.7620ng/ml,P=0.001)。而MGUS患者与对照组相比,DKK1水平无明显变化(1.7620ng/ml vs 1.2491ng/ml,P>0.05)。骨髓上清液组与血清组之间DKK1水平无统计学差异(9.3588ng/ml vs 9.2437ng/ml,P>0.05)。DKK1水平与骨髓瘤分期(Durie and Salmon分期)相关,II期和III期MM患者骨髓上清液DKK1水平明显高于I期患者(I期2.4410ng/ml vs II、III期10.3471ng/ml,P=0.002)。I期MM患者与MGUS患者骨髓上清液DKK1水平无统计学差异(P>0.05)。使用ISS分期也得到相似结果。重要的是,有溶骨性病变的MM患者骨髓上清液DKK1水平明显高于没有溶骨性病变的患者(11.2272ng/ml vs 2.4348ng/ml,P<0.001)。而且骨髓上清液DKK1水平还与骨损害的病灶数相关(0,1-3,>3,分别为2.4348ng/ml,4.9845ng/ml,15.3342ng/ml,P<0.001)。沙利度胺+地塞米松(TD)组患者化疗前后血清DKK1水平无明显变化(10.5614ng/ml vs 9.5326ng/ml,P>0.05)。硼替佐米+地塞米松(VD)组患者化疗前后血清DKK1水平明显下降(14.1789ng/ml vs8.3972ng/ml,P<0.05)。所有化疗有效(CR+PR)MM患者,化疗前后血清DKK1水平明显下降(11.6838ng/ml vs 7.1931ng/ml,P<0.05);而化疗无效(NC+PD)者,则血清DKK1水平无明显变化(14.0947ng/ml vs 12.1185ng/ml,P>0.05)。在TD组,无论是化疗有效还是无效,化疗前后血清DKK1水平均无明显变化(P>0.05)。VD组化疗有效者,化疗前后血清DKK1水平显著下降(13.3492ng/ml vs 5.9769ng/ml,P<0.01)。VD组化疗无效者,化疗前后血清DKK1水平有所下降,但无统计学差异(16.0644ng/ml vs 13.8978ng/ml ,P>0.05)。
     结论MM患者DKK1水平明显高于MGUS患者及对照组,而且DKK1水平与骨髓瘤分期及溶骨性病变密切相关,能反映溶骨性病变的程度和范围。DKK1水平在化疗有效时明显下降,但与化疗方案有关,硼替佐米能使DKK1水平明显下降,而沙利度胺及地塞米松却无此作用。
     第二部分骨髓瘤细胞与基质细胞DKK1相关受体LRP5/6及Kremen1/2基因转录水平的研究
     目的比较骨髓瘤细胞系、CD138+原代骨髓瘤细胞、MM患者及正常人基质细胞LRP5/6、Kremen1/2及β-catenin mRNA水平,研究骨髓瘤细胞或重组DKK1蛋白对正常人基质细胞上述基因mRNA水平的影响,以探讨DKK1在多发性骨髓瘤中的作用。
     方法采用Western blot及ELISA方法,检测骨髓瘤细胞系、CD138+原代骨髓瘤细胞、骨髓基质细胞及细胞培养液DKK1蛋白表达情况,以及Realtime-PCR方法,检测骨髓瘤细胞系、CD138+原代骨髓瘤细胞、MM患者及正常人骨髓基质细胞LRP5/6、Kremen1/2及β-catenin mRNA水平以及骨髓瘤细胞或重组DKK1蛋白与正常人骨髓基质细胞共培养时上述基因mRNA水平。
     结果骨髓瘤细胞系RPMI-8226、NCI-H929和LP-1以及3/5例MM患者CD138+骨髓瘤细胞,DKK1蛋白表达明显,而4例MM患者基质细胞中未见DKK1蛋白表达,同时DKK1+骨髓瘤细胞培养液中也检测到DKK1蛋白。MM患者基质细胞LRP5/6和Kremen1/2 mRNA水平显著高于正常人基质细胞和CD138+原代骨髓瘤细胞。CD138+原代骨髓瘤细胞β-catenin mRNA水平高于MM患者及正常人基质细胞。无论使用transwell小室或者直接接触法进行骨髓瘤细胞系RPMI-8226、NCI-H929与正常人基质细胞共培养48h及72h,LRP5/6、Kremen1/2 mRNA水平明显增加,β-catenin mRNA水平下降,但24h变化不明显。72h与48h相比,上述基因mRNA水平变化更加明显。重组DKK1蛋白浓度为100ng/ml及300ng/ml时,与基质细胞共培养48h及72h后LRP5/6、Kremen1/2及β-catenin mRNA水平无明显变化。重组DKK1蛋白浓度为500ng/ml时,培养48h LRP5/6 mRNA水平有轻微上升(P>0.05),Kremen1/2 mRNA水平有所上升(P<0.05),及β-catenin mRNA水平略有下降(P>0.05);培养72h LRP5 mRNA水平有所上升(P<0.05),LRP6 mRNA水平无明显变化(P>0.05);Kremen1/2 mRNA水平有所上升(P<0.05),及β-catenin mRNA水平明显下降(P<0.05)。重组DKK1蛋白浓度为700ng/ml时,培养48h及72h LRP5/6、Kremen1/2 mRNA水平明显上升(P<0.05),及β-catenin mRNA水平明显下降(P<0.05)。
     结论骨髓瘤细胞、MM患者及正常人基质细胞之间LRP5/6、Kremen1/2及β-catenin基因转录水平存在差异,而骨髓瘤细胞分泌的DKK1可能是造成MM患者基质细胞上述基因变化的重要因素。
     第三部分DKK1的真核表达、纯化及功能测定
     目的表达和纯化DKK1蛋白,研究骨髓瘤细胞及基质细胞DKK1相关受体表达情况,并探讨DKK1对骨髓瘤细胞及基质细胞效应不同的可能机制。
     方法利用脂质体介导pcDNA3.1(-)-DKK1质粒瞬时转染293T细胞,使用western blot方法鉴定上清中的表达蛋白,使用Ni-Agrose His标签蛋白纯化试剂盒,纯化融合His标签的DKK1蛋白。利用流式细胞术(FCM),对CD138+骨髓瘤细胞、MM患者基质细胞及健康志愿者基质细胞表面DKK1相关受体表达情况进行同步分析比较。
     结果使用脂质体转染法,成功将pcDNA3.1(-)-DKK1质粒瞬时转染293T细胞,获得表达蛋白。使用特异性抗Dkk1抗体与小鼠抗6×His单克隆抗体行Western Blot鉴定重组蛋白,证实重组蛋白是融和了His标签的Dkk1蛋白。流式细胞术显示,重组DKK1蛋白能与CD138+骨髓瘤细胞、MM患者基质细胞及健康志愿者基质细胞特异性结合。其中健康志愿者基质细胞平均荧光强度(MFI)为20.8±8.4;CD138+骨髓瘤细胞MFI为58.6±17.2;MM患者基质细胞MFI为104.5±32.1。三组之间相比有统计学差异(P<0.05)。
     结论脂质体介导的质粒pcDNA3.1(-)-DKK1体外转染效率较高,能表达有活性的DKK1蛋白,可以与骨髓瘤细胞及基质细胞DKK1相关受体特异性结合。骨髓瘤细胞、基质细胞之间DKK1相关受体蛋白表达量不同。
Part I:Clinical study of DKK1 in multiple myeloma
     Objective To detect bone marrow plasma and serum concentrations of Dickkopf1(DKK1) in patients with multiple myeloma and perform a correlative analysis between DKK1, myeloma stage and lytic bone disease and evaluate the effect of different treatment regimens for MM on serum DKK1 and the relationship with the response to treatment.
     Methods DKK1 bone marrow plasma and serum levels were quantified in 80 newly diagnosed MM patients、10 monoclonal gammopathy of undetermined significance (MGUS) patients and 20 control subjects by ELISA, using a monoclonal anti-DKK1 antibody. And serum samples were collected from 136 patients with MM treated with bortezomib and dexamethasone (n = 72), thalidomide and dexamethasone (n = 64) before and 3 months after initiation of therapy.
     Results Bone marrow plasma DKK1 was elevated in MM as compared with MGUS (mean 9.3588ng/ml vs. 1.762ng/ml; P=0.001). There was no difference between MGUS patients and control subjects(1.762ng/ml vs 1.2491ng/ml; P > 0.05). Bone marrow plasma DKK1 levels significantly correlated with myeloma stage according to Durie and Salmon (mean 2.4410ng/ml vs. 10.3471ng/ml in stage I and II ? III, respectively; P = 0.002). There was no difference between MM patients in stage I and MGUS patients(P>0.05). There were similar results using ISS stage. Importantly, myeloma patients without lytic lesions in conventional radiography had significantly lower DKK1 levels than patients with lytic bone disease (mean 2.4348 ng/ml vs. 11.2272ng/ml; P<0.001). Of interest, bone marrow plasma DKK1 correlated with the number of bone lesions (0 vs. 1–3 vs. >3 lesions: 2.4348ng/ml vs. 4.9845ng/ml vs. 15.3342ng/ml; P<0.001). In this study, the effect of different treatment regimens for MM patients on serum DKK1 was evaluated and correlated with the response to treatment in 136 myeloma patients receiving bortezomib and dexamethasone(n=72), thalidomide and dexamethasone(n=64). A significant decrease of DKK1 after therapy was seen in the Bortezomib and dexamethasone groups (mean 14.1789ng/ml vs. 8.3972ng/ml; P < 0.05). Thalidomide and dexamethasone led to a nonsignificant decrease in DKK1 (10.5614ng/ml vs. 9.5326ng/ml; P>0.05). Within all groups, a significant decrease of DKK1 was only seen in responders (i.e. patients achieving complete remission or partial remission), but not in non-responders.
     Conclusion Myeloma patients have increased bone marrow plasma DKK1 as compared with patients with MGUS and control subjects. Bone marrow plasma concentrations of DKK1 have close relationship with myeloma stage and lytic bone disease. Serum DKK1 levels decrease in myeloma patients responding to treatment, corelate with the regimen chosen.
     Part II: Gene expression of DKK1 receptor LRP5/6 and Kremen1/2 in myeloma cells and stromal cells
     Objective To compare the gene expression of LRP5/6、Kremen1/2 andβ-catenin in Human myeloma cell lines, CD138+ primary myeloma cells, stromal cells of multiple myeloma patients and healthy volunteers and investigate the effect of multiple myeloma cells or rhDKK1on gene expression in stromal cells of healthy volunteers and identify the role of DKK1 in multiple myeloma.
     Methods DKK1 protein expression was checked in human myeloma cell lines, CD138+ primary myeloma cells, stromal cells and myeloma cell condition media using Western Blot analysis and ELISA assay. LRP5/6、Kremen1/2 andβ-catenin mRNA expression in Human myeloma cell lines, CD138+ primary myeloma cells, stromal cells of multiple myeloma patients and healthy volunteers were tested by Realtime-PCR. To compare the effect of multiple myeloma cells or rhDKK1 on gene expression in human stromal cells, we did Real-time PCR for LRP5/6、Kremen1/2 andβ-catenin mRNA expression in stromal cells of healthy volunteers cocultured with multiple myeloma cells or rhDKK1.
     Results DKK1 was produced by multiple myeloma cells, not stromal cells. DKK1 was detectable in myeloma cell condition media, as well. LRP5/6 and Kremen1/2 mRNA expression in stromal cells of multiple myeloma patients were higher than that in stromal cells of healthy volunteer and CD138+ primary myeloma cells.β-catenin mRNA expression in CD138+ primary myeloma cells was higher than that in stromal cells of multiple myeloma patients and healthy volunteers. Gene expression of LRP5/6, Kremen1/2 was elevated in stromal cells of healthy volunteers after 48h -72h of coculture with HMCLs RPMI-8226 in the presence or absence of a Transwell insert. A significant inhibitory effect was observed on the expression ofβ-catenin in stromal cells of healthy volunteers after 48h -72h of coculture with multiple myeloma cells. No significant effect was observed on the gene expression after 24h coculture. Similar results were obtained with the HMCLs NCI-H929 in coculture (data not shown). We examined the effect of rhDKK1 on LRP5/6, Kremen1/2 andβ-catenin mRNA expression in stromal cells of healthy volunteers. The levels of LRP5/6 and Kremen1/2 gene expression in stromal cells of healthy volunteers were highest at 72h post rhDKK1(at concentration 700 ng/mL) treatment. Andβ-catenin mRNA expression in stromal cells of healthy volunteers decreased significantly at the same time.
     Conclusion LRP5/6、Kremen1/2 andβ-catenin gene were expressed differently in human myeloma cell lines, CD138+ primary myeloma cells and stromal cells. And DKK1 produced by myloma cells may play an important role in the different gene expression in stromal cells between multiple myeloma patients and healthy volunteers.
     Part III: Expression,purification and functional examination of DKK1
     Objective To express, purify DKK1, and investigate the binding capacity of its receptor on the cell membrane of myeloma cells and stromal cells.
     Methods Vector pcDNA3.1 (-)-DKK1 was transfected into 293T cells with LipofectAMINETM2000 reagent. DKK1protein in the supernatant was identified by western blot. With the Ni-Agrose His protein purification kit, DKK1 protein was purified. Flow cytometry (FCM) was used to study DKK1-bound receptor on the cell membrane of myeloma cells and stromal cells.
     Results With LipofectAMINETM2000 reagent, the mammalian expression vector pcDNA3.1 (-)-DKK1 was successfully transfected into 293T cells. In the supernatant, DKK1 protein was collected. Using anti-DKK1 antibody and anti-His antibody, DKK1 fusion protein in the supernatant was identified by western blot. Flow cytometry results showed that DKK1 protein could specifically bind the receptor on the cell membrane of myeloma cells and stromal cells. The mean fluorescence intensity (MFI) of receptor on myeloma cells, stromal cells of the healthy volunteers and myeloma patients were (58.6±17.2), (20.8±8.4), (104.5±32.1), respectively. There were significantly difference among three groups(P<0.05).
     Conclusion Using mammalian expression vector, DKK1 protein was obtained and showed a high biological activity and could specifically bind the receptor. The amount of receptor of DKK1 protein specifically binding on the cell membrane of myeloma cells and stromal cells were different.
引文
1. Cocks K, Cohen D, Wislφf f, et al. An international field study of the reliability and validity of a disease-specific questionnaire module (the QLQ-MY20) in assessingthe quality of life of patients with multiple myeloma. Eur J Cancer 2007;43:1670–8.
    2. Terpos E, Sezer O, Croucher P, et al. Myeloma bone disease and proteasome inhibition therapies. Blood 2007;110:1098–104.
    3. Heider U, Hofbauer LC, Zavrski I, et al. Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease. Biochem Biophys Res Commun 2005;338:687–93.
    4. Sezer O, Heider U, Jakob C, et al. Immunocytochemistry reveals RANKL expression of myeloma cells. Blood 2002;99:4646–7.
    5. Sezer O, Heider U, Jakob C,et al. Human bone marrow myeloma cells express RANKL. J Clin Oncol 2002;20:353–4.
    6. Sezer O, Heider U, Zavrski I,et al. RANK ligand and osteoprotegerin in myeloma bone disease. Blood 2003;101:2094–8.
    7. Heider U, Zavrski I, Jakob C,et al. Expression of receptor activator of NF-kappaB ligand (RANKL) mRNA in human multiple myeloma cells. J Cancer Res Clin Oncol 2004;130:469–74.
    8. Choi SJ, Cruz JC, Craig F, et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 2000;96:671–5.
    9. Zannettino AC, Farrugia AN, Kortesidis A, et al. Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 2005;65:1700–9.
    10. Bataille R, Chappard D, Marcelli C,et al. Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma. J Clin Invest 1991;88:62–6.
    11. Taube T, Beneton MN, McCloskey EV,et al. Abnormal bone remodelling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol 1992;49:192–8.
    12. Terpos E, Szydlo R, Apperley JF,et al. Soluble receptor activator of nuclear factor kappaB ligand–osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index.Blood 2003;102:1064–9.
    13. Carlson K, Ljunghall S, Simonsson B,et al. Serum osteocalcin concentrations in patients with multiple myeloma– correlation with disease stage and survival. JIntern Med 1992;231:133–7.
    14. Corso A, Arcaini L, Mangiacavalli S, et al. Biochemical markers of bone disease in asymptomatic early stage multiple myeloma. A study on their role in identifying high risk patients. Haematologica 2001;86:394–8.
    15. Evans CE, Ward C, Rathour L,et al. Myeloma affects both the growth and function of human osteoblast- like cells. Clin Exp Metastasis 1992;10:33–8.
    16. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2004;341:19–39.
    17. Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development.Cell 2001;107:513–23.
    18.Boyden LM, Mao J,Belsky J,et al.High bone density due to a mutation in LDL-receptor-related protein 5.N Engl Med 2002;346:1513-21.
    19.Mukhopadhyay M,Shtrom S,Rodriguez-Esteban C, et al.Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse.Dev Cell 2001;1:423-34.
    20.Grotewold L,Ruther U.The Wnt antagonist Dickkopf-1 is regulated by Bmp signaling and c-Jun and modulates programmed cell death.EMBOJ 2002;21:966-75.
    21.Gregory CA, Singh H, Perry AS, et al.The Wnt signaling inhibitor Dickkopf-1 is required for reentry into the cell recycle of human adult stem cells from bone marrow.J Biol Chem 2003;278:28067-78.
    22. Qiang YW, Barlogie B, Rudikoff S,et al. Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 2008;42:669–80.
    23. Yaccoby S, Ling W, Zhan F,et al. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007;109:2106-11.
    24. The International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003;121:749–57.
    25. Durie BG, Harousseau JL, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia 2006;20:1467–73.
    26. Tian E, Zhan F, Walker R,et al. The role of the Wnt-signalsignaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl JMed 2003;349: 2483–94.
    27.Roux C,Ravaud P,Cohen-Solal M,et al.Biologic,histologic and densitometric effects of oral risedronate on bone in patients with multiple myeloma.Bone 1994;15:41-9.
    28.Heider U, Kaiser M, Mieth M, et al. Serum concentration of DKK1 decrease in patient with multiple myeloma responding to anti-myeloma treatment. Eur J Haematol 2009;82(1):31-8.
    29. Knobloch J, Shaughnessy JD Jr, Ruther U. Thalidomide induces limb deformities by perturbing the Bmp? Dkk1 ? Wnt signaling pathway. FASEB J 2007;21:1410–21.
    30. Pinzone JJ,Hall BM, Thudi NK,et al.The role of Dickkopf-1 in bone development, homeostasis, and disease.Blood 2009; 113(3):517-25.
    31. Terpos E, Heath DJ, Rahemtulla A, et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 2006;135: 688–92.
    1.Logan, CY, Nusse R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 2004; 20: 781-810.
    2. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14: 1837-1851.
    3. Qiang Y W, Endo Y, Rubin J S, et al. Wnt signaling in B-cell neoplasia. Oncogene. 2003,22:1536–1545.
    4. Pinzone JJ,Hall BM, Thudi NK,et al.The role of Dickkopf-1 in bone development, homeostasis, and disease.Blood. 2009; 113(3):517-25.
    5. Kawano Y, Kyp ta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003, 116 (13) : 2627-2634.
    6. Roodman GD. Pathogenesis of myeloma bone disease. Blood Cells Mol Dis. 2004;32:290–292.
    7. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene. 2004; 341: 19-39.
    8. Tian E, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003; 349: 2483–2494.
    9. Giuliani N, Colla S, Morandi F, et al. Myeloma cells block RUNX2/CBFA1activity in bone marrow osteoblast progenitors and inhibit osteoblast formation and differation. Blood.2005, 106(7):2472-83.
    10. Stephanie RW ,Martin MO ,Kathryn LL ,et al. Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 2001 ,91 (7) :1219.
    11.Bafico A, Liu G, Yaniv A, et al. Novel mechanism of Wnt signaling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow.Nat Cell Biol. 2001; 3(1): 683-686.
    12. The International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003;121:749–57.
    13.Anderson KC. Moving disease biology from the lab to the clinic. Cancer 2003; 97(3):796-801.
    14. Gunn WG, Conley A, Deininger L,et al. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006;24:986–91.
    15. Giuliani N, Morandi F, Tagliaferri S, et al. Production of Wnt Inhibitors by Myeloma Cells: Potential Effects on Canonical Wnt Pathway in the Bone Microenvironment. Cancer Res 2007;67(16):7665-74.
    16. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest 2006;116:1202–9.
    17. Li J, Sarosi I, Cattley RC, et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia.Bone 2006;39:754–66.
    18. Morvan F, Boulukos K, Clement-Lacroix P, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006;21:934–45.
    1.Logan, CY, Nusse R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 2004; 20: 781-810.
    2. Pinzone JJ,Hall BM, Thudi NK,et al.The role of Dickkopf-1 in bone development, homeostasis, and disease.Blood 2009; 113(3):517-25.
    3. Roodman GD. Pathogenesis of myeloma bone disease. Blood Cells Mol Dis. 2004;32:290–292.
    4. Fedi P, Bafico A, Nieto Saria A, et al. Isolation and biochemical characerization of the human DKK1 homologue, a novel inhibitor of mamalian Wnt signaling. Biol Chem. 1999; 274: 19465-19472.
    5.Bafico A, Liu G, Yaniv A, et al. Novel mechanism of Wnt signaling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow.Nat Cell Biol. 2001; 3(1): 683-686.
    6. The International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003;121:749–57.
    7. Middelberg AP.Preparative protein refolding. Trends Biotechnol 2002; 20(10):437-443.
    8. Balhiuis A, Tjalsma H, Smith HE. Evaluation of hottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl Env Microbiol 1999; 65:2934-41.
    9. Vera R , Krohn K A , Stadalnik R C , et al . Tc299m2galactosyl2 neoglycoalbumin :In vit ro characterization of receptor2mediated binding. J Nucl Med , 1984 , 25 (7) : 779~787
    10 Chianelli M , Signore A , Hicks R , et al . A simple method for the evaluation of receptor binding capacity of modified cytokines. JImmunol Methods , 1993 , 166 (2) : 177~182
    11.Yen C F , Kalunta C I , Chen F S , et al . Flow cytometric evaluation of LDL receptors using Di I-LDL uptake and its application to B and T lymphocytic cell lines. J Immunol Methods , 1994 , 177(S1~2) : 55~67.
    12. Bahl MI, Oregaard G, S?rensen SJ, et al.Construction and use of flow cytometry optimized plasmid-sensor or strains. Methods Mol Biol. 2009;532:257~68.
    1.Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 2004; 20: 781-810.
    2. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14: 1837-1851.
    3.Taipale J, Beachy PA. The Hedgehog andWnt signalling pathways in cancer. Nature, 2001, 411 (6835) : 349-354.
    4.McMillan M, Kahn M. InvestigatingWnt signaling: a chemogenomic safari. Drug Discov Today, 2005, 10 (21) : 1467-1474.
    5.Kawano Y, Kyp ta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci, 2003, 116 (13) : 2627-2634.
    6. Fedi P, Bafico A, Nieto Saria A, et al. Isolation and biochemical characerization of the human DKK1 homologue, a novel inhibitor of mamalian Wnt signaling. Biol Chem. 1999; 274: 19465-19472.
    7.Christodoulides C, Laudes M, Cawthorn W P, et al. TheWnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis . J Cell Sci, 2006; 119 ( 12 ) :2613-2620.
    8. Davidson G., Mao B, del Barco Barrantes I, et al. Kremen proteins interact with Dickkopf1 to regulate anteroposterior CNS patterning. Development 2002 ; 129: 5587 -5596.
    9.Pandur P, Lasche M, Eisenberg L M ,et al. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 2002; 418:636 -641.
    10.Brott BK, Sokol SY. Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol. Cell. Biol 2002; 22:6100 -6110.
    11.Li J, Mao J, Sun L, et al. Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP6 independently of dishevelled. J Biol Chem, 2002; 277 ( 8) : 5977-5981.
    12. Roman Gomez J, J imenez Velasco A, Agirre X, et al. Transcriptional silencing of the Dickkopfs-3 (DKK-3) gene by CpG hypermethylation in acute lymphoblastic leukaemia . Br J Cancer,2004, 91 (4) : 707-713.
    13. Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, et al. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse.Dev Cell. 2001;1:423-434.
    14. Grotewold L, Ruther U. The Wnt antagonist Dickkopf-1 is regulated by Bmp signaling and c-Jun and modulates programmed cell death. EMBO J2002;21:966-975.
    15. Zuzarte-Luis V, Montero JA, Rodriguez-Leon J,et al. A new role for BMP5 during limb development acting through the synergic activation of Smad and MAPK pathways. Dev Biol. 2004;272:39-52.
    16.Wang J, Shou J, Chen X. Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene 2000;19:1843 -1848.
    17.Shou J, Ali-Osman F, Multani AS, Pathak S,et al. Human DKK1, a gene encodinga Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Oncogene 2002; 21:878 -889.
    18. Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346:1513-1521.
    19. Baksh D, Tuan RS. Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol. 2007; 212:817-826.
    20. Baksh D, Boland GM, Tuan RS. Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem. 2007;101:1109-1124.
    21. Etheridge SL, Spencer GJ, Heath DJ,et al. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells. 2004;22:849-860.
    22. Christodoulides C, Laudes M, Cawthorn WP, et al. The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis. J Cell Sci. 2006;119:2613-2620.
    23. Cheng SL, Shao JS, Cai J,et al. Msx2 exerts bone anabolism via canonical Wnt signaling. J Biol Chem. 2008;283:20505-20522.
    24. Chen Y, Whetstone HC, Youn A, et al. Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem. 2007;282:526-533.
    25. Glass DA, 2nd Karsenty G. In vivo analysis of Wnt signaling in bone. Endocrinology. 2007;148:2630-2634.
    26.Wang FS, Ko JY, Lin CL,et al. Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss: a histomorphological study in ovariectomized rats. Bone. 2007; 40:485-492.
    27. Hurson CJ, Butler JS, Keating DT, et al. Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as putative drivers of osteoporosis. BMC Musculoskelet Disord. 2007;8:12.
    28.Wang FS, Ko JY, Yeh DW,et al. Modulationof Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology. 2008;149:1793-1801.
    29. Chen Y, Whetstone HC, Lin AC, et al. Beta-catenin signaling plays a disparaterole in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 2007;4:e249.
    30. Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13:156-163.
    31.Roodman GD. Pathogenesis of myeloma bone disease. Blood Cells Mol Dis 2004;32:290–292.
    32.Gary J, Spencer I, Jennifer C, et al. Wnt signaling in osteoblasts regulates expression of the receptor activatior NF-κB ligand and inhibits osteoclastogenesis in vitro. Journal of Cell Science. 2006; 119(7): 1283-1295.
    33. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene. 2004; 341: 19-39.
    34.Tian E, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494.
    35. Qiang YW, Barlogie B, Rudikoff S, et al. Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone. 2008;42:669-680.
    36. Yeh HS, Berenson JR. Myloma bone disease and treatment options. Eur J Cancer. 2006; 42(11): 1554-1563.
    37.Pearse RN. Wnt antagonism in multiple myeloma: a potential cause of uncoupled bone remodeling. Clin Cancer Res. 2006 Oct 15;12(20 Pt 2):6274s-6278s.
    38.Gunn WG , Conley A , Deininger L , et al. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells. 2006 ;24(4):986-991.
    39. Politou MC, Heath DJ, Rahemtulla A, et al. Serum concentrations of Dickkoph-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int J Cancer. 2006; 119(7): 1728-1731.
    40. Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood. 2006 Aug 17; [Epub ahead of print].
    41.Yaccoby S, Ling W, Zhan F, et al. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood. 2007;109(5):2106-11. Epub 2006 Oct 26.
    42.Terpos E, Sezer O, Croucher P,et al. Myeloma Bone Disease and Proteasome Inhibition Therapies. Blood, prepublished online May 9, 2007.
    43. Pinzone JJ,Hall BM, Thudi NK,et al.The role of Dickkopf-1 in bone development, homeostasis, and disease.Blood 2009; 113(3):517-25.
    44. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006; 1092:385-396.
    45. Steeve KT, Marc P, Sandrine T,et al. IL-6, RANKL, TNF-alpha/IL-1: interrelationsin bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15:49-60.
    46.Derksen P W B, Tjin E, Meijer H P, et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells.PNAS,2004,101(16):6122-6127.
    47.Qiang Y W, Endo Y, Rubin J S, et al. Wnt signaling in B-cell neoplasia. Oncogene,2003,22:1536–1545.
    48. Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol. 2006;7:333-337.
    49. Fleming HE, Janzen V, Lo Celso C, et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell. 2008;2:274-283.
    50. Gregory CA, Singh H, Perry AS, et al. The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem. 2003;278: 28067-28078.
    51. Kumar S, Dispenzieri A, Lacy MQ, et al. Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia. 2007;21:2035-2042.
    52. Shaughnessy JD Jr, Barlogie B. Interpreting the molecular biology and clinical behavior of multiple myeloma in the context of global gene expression profiling. Immunol Rev. 2003;194:140-163.
    53.Colla S, Zhan F, Xiong W, et al. The oxidative stress response regulates DKK1 expression through the JNK signaling cascade in multiple myeloma plasma cells. Blood. 2007;109(10):4470-4477.
    54 . Gonzalez-Sancho JM, Aguilera O, Garcia JM,et al.The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer. Oncogene. 2005;24(6):1098-1103.
    55. Wang FS, Ko JY, Lin CL, et al.Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone. 2007;40(2):485-492.
    56.Fulciniti M, Tassone P, Hideshima T, et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic for multiple myeloma. Blood. 2007;110:551.
    57.Edwards CM, Edwards JR, Lwin ST, et al. Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood. 2008;111:2833-2842

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700