地塞米松部分通过Foxol转录因子抑制胰岛β细胞内PDX-1因子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖皮质激素类药物,在临床上广泛应用于治疗多种疾病,但长期、大量地使用会产生一些严重的副作用,其中包括类固醇性糖尿病(steroid diabetes mellitus,SDM)。类固醇性糖尿病发生的分子机制仍不十分清楚。FoxO蛋白家族作为胰岛素/胰岛素样生长因子(INS/IGF)信号通路中的关键调节因子,在胰岛β细胞功能障碍中可能发挥着重要作用。在本研究中我们探讨了糖皮质激素类药物地塞米松对胰岛β细胞系RINm5F内FoxO家族成员Foxol表达及活性的影响。结果发现地塞米松能够诱导RINm5F细胞内Foxol的表达,且该作用是糖皮质激素受体(GR)依赖性的。此外,地塞米松可以下调Foxol的磷酸化水平及其上游的磷酸化AKT水平,并且PI3-K/Akt信号通路的激动剂IGF-1能够逆转该作用。然而,糖皮质激素受体竞争性拮抗剂不但不能拮抗地塞米松下调p-AKT及p-Foxol蛋白水平的作用,而且还发挥了与地塞米松类似的作用。PDX-1作为Foxol在胰岛β细胞内重要的靶基因,其表达水平下降与胰岛β细胞功能障碍相关。萤光素酶报告基因方法显示地塞米松可以促进RINm5F细胞内Foxol的转录活性。通过RNA干扰实验,我们发现地塞米松部分通过增加活性Foxol抑制PDX-1基因表达。另外,我们的研究初步表明地塞米松通过增加活性形式的Foxol即核内Foxol引起PDX-1核输出。
     总之,我们的研究表明地塞米松能够部分通过增加活性Foxol抑制PDX-1基因表达,并且地塞米松可能通过增加活性形式的Foxol即核内Foxol引起PDX-1核输出。本研究结果为理解地塞米松引起类固醇性糖尿病和胰岛β细胞功能障碍的分子机制提供了新视点。
Glucocorticoids are widely used in clinical therapy and steroiddiabetes is one of the side effects of glucocorticoid treatment. Themolecular mechanisms involved in the process of steroid diabetes are notfully understood. The Foxo proteins, key transcriptional effectors ofinsulin and IGF signaling pathways could play an important role inβ-celldysfunction. In this study, we investigated the role of syntheticglucocorticoid, dexamethasone in the expression and activity of Foxofamily member Foxol inβ-cells. The results showed that dexamethasoneinduced Foxol expression in pancreaticβ(RINm5F) cells and this effectwas glucocorticoid receptor (GR)-dependent. Additionally,dexamethasone decreased the phosphorylation of Foxol and thephosphorylation of AKT, upstream of Foxol, and stimulant ofPI-3kinase/Akt signaling pathway reverted this effect. However, GRcompetitive antagonist couldn't block this effect and played a same roleas dexamethasone. The decrease of PDX-1, an important target gene ofFoxol in [3-cells, is involved inβ-cell dysfunction. Luciferase reporterstudies proofed that dexamethasone could increase Foxol transcriptional activity. Through RNA interference, we indicated that dexamethasonereduces PDX-1 expression partially by the increase of active Foxol.Besides, our research indicated that dexamethasone could induce PDX-1nuclear export by the increase of nuclear Foxo 1.
     In conclusion, the present study suggest that dexamethasone reducesPDX-1 expression partially by the increase of active Foxol and couldinduce PDX-1 nuclear export by the increase of nuclear Foxol. Thisnovel viewpoint will replenish the molecular mechanism of steroiddiabetes andβ-cell dysfunction induced by dexamethasone.
引文
1. Hoogwerf B, Danese RD: Drug selection and the management of corticosteroid-related diabetes mellitus. Rheum Dis Clin North Am 25:489-505, 1999
    2. Schacke H, Docke WD, Asadullah K: Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96:23-43, 2002
    3. Lambillotte C, Gilon P, Henquin JC: Direct glucocorticoid inhibition of insulin secretion: an in vitro study of dexamethasone effects in mouse islets. J Clin Invest 99:414-423, 1997
    4. Delaunay F, Khan A, Cintra A, Davani B, Ling ZC, Andersson A, Ostenson CG, Gustafsson JA, Efendic S, Okret S: Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Invest 100:2094-2098, 1997
    5. Ling ZC, Khan A, Delauny F, Davani B, Ostenson CG, Gustafsson JA, Okret S, Landau BR, Efendic S: Increased glucocorticoid sensitivity in islet beta-cells: effects on glucose 6-phosphatase, glucose cycling and insulin release. Diabetologia 41:634-639, 1998
    6. Jeong IK, Oh SH, Kim BJ, Chung JH, Min YK, Lee MS, Lee MK, Kim KW: The effects of dexamethasone on insulin release and biosynthesis are dependent on the dose and duration of treatment. Diabetes Res Clin Pract 51:163-171, 2001
    7. Ling ZC, Khan A, Delauny F, Davani B, Ostenson CG, Gustafsson JA, Okret S, Landau BR, Efendic S: Increased glucocorticoid sensitivity in islet beta-cells: effects on glucose 6-phosphatase, glucose cycling and insulin release. Diabetologia 41:634-639, 1998
    8. Delaunay F, Khan A, Cintra A, Davani B, Ling ZC, Andersson A, Ostenson CG, Gustafsson J, Efendic S, Okret S: Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Invest 100:2094-2098, 1997
    9. Sharma S, Jhala US, Johnson T, Ferreri K, Leonard J, Montminy M: Hormonal regulation of an isletspecific enhancer in the pancreatic homeobox gene STF-1. Mol Cell Biol 17:2598-2604, 1997
    10. Fernandez-Mejia C, Medina-Martinez O, Martinez-Perez L, Goodman PA: The human insulin gene contains multiple transcriptional elements that respond to glucocorticoids. Pancreas 18:336-341, 1999
    11. Shinozuka Y, Okada M, Oki T, Sagane K, Mizui Y, Tanaka I, Katayama K, Murakami-Murofushi K: Altered expression of HES-1, BETA2/NeuroD, and PDX-1 is involved in impaired insulin synthesis induced by glucocorticoids in HIT-T15 cells. Biochem Biophys Res Commun 287:229-235, 2001
    12. Shen CN, Seckl JR, Slack JM, Tosh D: Glucocorticoids suppress β-cell development and induce hepatic metaplasia in embryonic pancreas. Biochem J 375: 41-50, 2003
    13. Kops GJ, Burgering BM: Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. J Mol Med 77:656-665, 1999
    14. Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM: Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630-634, 1999
    15. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857-868, 1999
    16. Biggs WH 3rd, Meisenhelder J, Hunter T, Cavenee WK, Arden KC: Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl AcadSci 96:7421-7426, 1999
    17. Tran H, Brunet A, Griffith EC, Greenberg ME: The many forks in FOXO's road. Sci STKE 172:1-11, 2003
    18. Accili D, Arden KC: FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421-426, 2004
    19. Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH 3rd, Wright CV, White MF, Arden KC, Accili D: The forkhead transcription factor Foxo1 links insulin signaling to Pdxl regulation of pancreatic beta cell growth. J Clin Invest 110:1839-1847, 2002
    20. Nakae J, Biggs WH 3rd, Kitamura T, Cavenee WK, Wright CV, Arden KC, Accili D: Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxol. Nat Genet 32:245-253, 2002
    21. Imae M, Fu Z, Yoshida A, Noguchi T, Kato H: Nutritional and hormonal factors control the gene expression of FoxOs, the mammalian homologues of DAF-16. J Mol Endocrinol 30:253-262, 2003
    22. Chrysis D, Zaman F, Chagin AS, Takigawa M, Savendahl L: Dexamethasone induces apoptosis in proliferative chondrocytes through activation of caspases and suppression of the Akt-phosphatidylinositol 3'-kinase signaling pathway. Endocrinology 146:1391-1397,2005
    23. Buren J, Liu HX, Jensen J, Eriksson JW: Dexamethasone impairs insulin signalling and glucose transport by depletion of insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase B in primary cultured rat adipocytes. Eur J Endocrinol 146:419-429, 2002
    24. Rojas FA, Hirata AE, Saad MJ: Regulation of insulin receptor substrate-2 tyrosine phosphorylation in animal models of insulin resistance. Endocrine 21:115-122, 2003
    25. Sade H, Sarin A: IL-7 inhibits dexamethasone-induced apoptosis via Akt/PKB in mature, peripheral T cells. Eur J Immunol 33:913-919, 2003
    26. Ruzzin J, Wagman AS, Jensen J: Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia 48:2119-2130, 2005
    27. Wang X, Hu J, Price SR: Inhibition of PI3-kinase signaling by glucocorticoids results in increased branched-chain amino acid degradation in renal epithelial cells. Am J Physiol Cell Physiol 2007 [Epub ahead of print]
    28. Edlund H: Developmental biology of the pancreas. Diabetes 2001, 50: S5-S9
    29. Sander M, German MS: The beta cell transcription factors and development of the pancreas. J Mol Med 75:327-340, 1997
    30. Habener JF, Stoffers DA: A newly discovered role of transcription factors involved in pancreas development and the pathogenesis of diabetes mellitus. Proc Assoc Am Physicians 110:12-21, 1998
    31. Lebrun P, Montminy MR, Van Obberghen E: Regulation of the pancreatic duodenal homeobox-1 protein by DNA-dependent protein kinase. J Biol Chem 280:38203-38210, 2005
    32. Kushner JA, Ye J, Schubert M, Burks DJ, Dow MA, Flint CL, Dutta S, Wrightv CV, Montminy MR, White MF: Pdx1 restores beta cell function in Irs2 knockout mice. J Clin Invest 109:1193-1201, 2002
    33. Li Y, Cao X, Li LX, Brubaker PL, Edlund H, Drucker DJ: β-Cell Pdx1 Expression Is Essential for the Glucoregulatory, Proliferative, and Cytoprotective Actions of Glucagon-Like Peptide-1. Diabetes 54:482-491,2005
    34. Johnson JD, Ahmed NT, Luciani DS, Han Z, Tran H, Fujita J, Misler S, Edlund H, Polonsky KS: Increased islet apoptosis in pdx1~(+/-) mice. J Clin Invest 111:1147-1160, 2003
    35. Tanaka Y, Gleason CE, Tran PO, Harmon JS, Robertson RP: Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci 96:10857-10862, 1999
    36. Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hori M: Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes 48:2398-2406, 1999
    37. Zangen DH, Bonner-Weir S, Lee CH, Latimer JB, Miller CP, Habener JF, Weir GC: Reduced insulin, GLUT2, and IDX-1 in β-cells after partial pancreatectomy. Diabetes 46:258-264, 1997.
    38. Olson LK, Sharma A, Peshavaria M, Wright CV, Towle HC, Rodertson RP, Stein R: Reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF-1 transcription factor expression. Proc Natl Acad Sci 92:9127-9131, 1995
    39. Olson LK, Qian J, Poitout V: Glucose rapidly and reversibly decreases INS-1 cell insulin gene transcription via decrements in STF-1 and C1 activator transcription factor activity. Mol Endocrinol 12:207-219, 1998
    40. Gesina E, Tronche F, Herrera P, Duchene B, Tales W, Czernichow P, Breant B: Dissecting the role of glucocorticoids on pancreas development. Diabetes 53(9):2322-2329, 2004
    41. Kawamori D, Kaneto H, Nakatani Y, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y: The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 281:1091-1098, 2006
    42. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden K C, Blenis J and Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857-868, 1999
    43. Marshak S, Benshushan E, Shoshkes M, Havin L, Cerasi E, Melloul D: Functional conservation of regulatory elements in the pdx-1 gene: PDX-1 and hepatocyte nuclear factor 3 beta transcription factors mediate beta-cell-specific expression. Mol Cell Biol 20:7583-7590, 2000
    44. Leis H, Page A, Ramirez A, Bravo A, Segrelles C, Paramio J, Barettino D, Jorcano JL, Perez P: Glucocorticoid receptor counteracts tumorigenic activity of Akt in skin through interference with the phosphatidylinositol 3-kinase signaling pathway. Mol Endocrinol 18:303-311,2004
    45. Bernardi RJ, Trump DL, Yu WD, McGuire TF, Hershberger PA, Johnson CS: Combination of 1alpha,25-dihydroxyvitamin D(3) with dexamethasone enhances cell cycle arrest and apoptosis: role of nuclear receptor cross-talk and Erk/Akt signaling. Clin Cancer Res 12:4164-4173,2001
    46. Yudt MR, Cidlowski JA: The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol Endocrinol 16:1719-1726, 2002
    47. Limbourg FP, Huang Z, Plumier JC, Simoncini T, Fujioka M, Tuckermann J, Schutz G, Moskowitz MA, Liao JK: Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids. J Clin Invest 110:1729-1738, 2002
    48. Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier JC, Rebsamen MC, Hsieh CM, Chui DS, Thomas KL, Prorock AJ, Laubach VE, Moskowitz MA, French BA, Ley K, Liao JK: Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 8:473-479, 2002
    49. Langdown ML, Holness MJ, Sugden MC: Early growth retardation induced by excessive exposure to glucocorticoids in utero selectively increases cardiac GLUT1 protein expression and Akt/protein kinase B activity in adulthood. J Endocrinol 169:11-22, 2001
    50. Sasson R, Shinder V, Dantes A, Land A, Amsterdam A. Activation of multiple signal transduction pathways by glucocorticoids: protection of ovarian follicular cells against apoptosis. Biochem Biophys Res Commun 311:1047-1056,2003
    51. Turnbow MA, Smith LK, Garner CW: The oxazolidinedione CP-92,768-2 partially protects insulin receptor substrate-1 from dexamethasone down-regulation in 3T3-L1 adipocytes. Endocrinology 136:1450-1458, 1995
    52. Hansson A, Hehenberger K, Thoren M: Long-term treatment of Swiss 3T3 fibroblasts with dexamethasone attenuates MAP kinase activation induced by insulin-like growth factor-I (IGF-I). Cell Biochem Funct 14:121-129, 1996
    53. Brown PD, Badal S, Morrison S, Ragoobirsingh D. Acute impairment of insulin signalling by dexamethasone in primary cultured rat skeletal myocytes: Mol Cell Biochem 2006 [Epub ahead of print]
    54. Saad MJ, Folli F, Kahn JA, Kahn CR: Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J Clin Invest 92:2065-2072, 1993
    55. Singleton JR, Baker BL, Thorburn A: Dexamethasone inhibits insulin-like growth factor signaling and potentiates myoblast apoptosis. Endocrinology 141:2945-2950, 2000
    56. Giorgino F, Pedrini MT, Matera L, Smith RJ: Specific increase in p85 a expression in response to dexamethasone is associated with inhibition of insulin-like growth factor I stimulated phosphatidylinositol 3-kinase activity in cultured muscle cells. J Biol Chem 272:7455-7463, 1997
    57. Gerrish K, Gannon M, Shih D, Henderson E, Stoffel M, Wright CV, Stein R: Pancreatic beta cell-specific transcription of the pdx-1 gene. The role of conserved upstream control regions and their hepatic nuclear factor 3beta sites. J Biol Chem 275:3485-3492, 2000
    58. Wu KL, Gannon M, Peshavaria M, Offield MF, Henderson E, Ray M, Marks A, Gamer LW, Wright CV, Stein R: Hepatocyte nuclear factor 3β is involved in pancreatic β-cell-specific transcription of the PDX-1 gene. Mol Cell Biol 17: 6002-6013, 1997
    59. Ben-Shushan E, Marshak S, Shoshkes M, Cerasi E, Melloul D: A pancreatic beta -cell-specific enhancer in the human PDX-1 gene is regulated by hepatocyte nuclear factor 3beta (HNF-3beta), HNF-lalpha, and SPs transcription factors. J Biol Chem 276:17533-17540, 2001
    60. Buteau J, Spatz ML, Accili D: Transcription factor Foxol mediates glucagon-like peptide-1 effects on pancreatic β-cell mass. Diabetes 55:1190-1196, 2006
    1. Hoogwerf B, Danese RD. 1999. Drug selection and the management of corticosteroid-related diabetes mellitus. Rheum Dis Clin North Am 25:489-505
    2. Schacke H, Docke WD, Asadullah K. 2002. Mechanisms involved in the side effects ofglucocorticoids. Pharmacol Ther 96:23-43
    3. Khan A, Hong-Lie C, Landau BR. 1995. Glucose-6-phosphatase activity in islets from ob/ob and lean mice and the effect of dexamethasone. Endocrinology 136:1934-1938
    4. Jamieson PM, Nyirenda MJ, Walker BR, et al. 1999. Interactions between oestradiol and glucocorticoid regulatory effects on liver-specific glucocorticoid-inducible genes; possible evidence for a role of hepatic 11 beta-hydroxysteroid dehydrogenase type 1. J Endocrinol 160: 103-109
    5. Ling ZC, Khan A, Delauny F, et al. 1998. Increased glucocorticoid sensitivity in islet beta-cells: effects on glucose 6-phosphatase, glucose cycling and insulin release. Diabetologia. 41: 634-639
    6. Salhanick AI, Chang CL, Chang CL. 1989. Hormone and substrate regulation of glycogen accumulation in primary cultures of rat hepatocytes. Biochem J 261: 985-992
    7. Margolis RN, Curnow RT. 1983. The role of insulin and glucocorticoids in the regulation of hepatic glycogen metabolism: effect of fasting, refeeding, and adrenalectomy. Endocrinology 113: 2113-2119
    8. Chou CK, Dull TJ, Russell DS, et al. 1986. Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem 262: 1842-1845
    9. Dimitriadis G, Leighton B, Parry-Billings M, et al. 1997. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem J 321: 707-712
    10. Qi D, Pulinilkunnil T, An D, et al. 2004. Single-dose dexamethasone induces whole-body insulin resistance and alters both cardiac fatty acid and carbohydrate metabolism. Diabetes 53: 1790-1797
    11. Patti ME, Virkamaki A, Landaker EJ, et al. 1999. Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle. Diabetes 48: 1562-1571
    12. Delaunay F, Khan A, Cintra A, et al. 1997. Pancreatic beta cells are important targets for the diabetogenic efects of glucocorticoids. J Clin Invest 100: 2094-2098
    13. Huang B, Wu P, Popov KM, et al. 2003. Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes 52: 1371-1376
    14. Matsumoto K, Yamasaki H, Akazaaras S. et al. 1996. High dose but not low-dose dexamethasone impairs glucose tolerance by inducing compasantory failure of pancreatic β cells in normal man. J Clin Endocrinal Metab 81: 2621-2625
    15. Lambillotte C, Gilon P, Henquin JC. 1997. Direct glucocorticoid inhibition of insulin secretion, an in vitro study of dexamethasone effects in mouse islets. J Clin Invest 99: 414-423
    16. Tamagawa T, Niki H, Niki A. 1985. Insulin release independent of a rise in cytosolic free Ca~(2+) by forskolin and phorbol ester. FEBS Lett 183:430-432
    17. Bradley RL, Cheatham B. 1999. Regulation of ob gene expression and leptin secretion by insulin and dexamethasone in rat adipocytes. Diabetes 48: 272-278
    18. Seufert J, Kieffer TJ, Leech CA, et al. 1999. Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 84: 670-676
    19. Seufert J, Kieffer TJ, Habener IF. 1999. Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. Proc Natl Acad Sci USA 96: 674-679
    20. Poitout V, Rouault C, Guerre-Millo M, et al. 1998. Inhibition of insulin secretion by leptin in normal rodent islets of Langerhans. Endocrinology 139: 822-826
    21. Sharma S, Jhala US, Johnson T, et al. 1997. Hormonal regulation of an isletspecific enhancer in the pancreatic homeobox gene STF-1. Mol Cell Biol 17:2598-2604
    22. Shinozuka Y, Okada M, Oki T, et al. 2001. Altered expression of HES-1, BETA2/NeuroD, and PDX-1 is involved in impaired insulin synthesis induced by glucocorticoids in HIT-T15 cells. Biochem Biophys Res Commun 287:229-235
    23. Shen CN, Seckl JR, Slack JM, et al. 2003. Glucocorticoids suppress β-cell development and induce hepatic metaplasia in embryonic pancreas. Biochem J 375: 41-50
    24. Ohneda M, Johnson JH, Inman LR, et al. 1993. GLUT-2 function in glucose-unresponsive β cells of dexamethasone-induced diabetes in rats. J Clin Invest 92: 1950-1956
    25. Gremlich S, Roduit R, Thorens B. 1996. Regulation of GLUT2 expression in rat pancreatic β cells by fatty acids and glucocorticoids. Diabetes 45 (Suppl. 2): 223A
    26. Khan A, Ostenson CG, Berggren PO, et al. 1992. Glucocorticoid increases glucose cycling and inhibits insulin release in pancreatic islets of ob/ob mice. Am J Physiol 263: E663-E666
    27. Taljedal IB. 1969. Presence, induction and possible role of glucose-6-phosphatase in mammalian pancreatic islets. Biochem J 114: 387-394
    28. Rhodes CJ. 2005. Type 2 diabetes-a matter of β-cell life and death? Science 307: 380 -384
    29. Oshima Y, Kuroda Y, Kunishige M, et al. 2004. Oxidative stress-associated mitochondrial dysfunction in corticosteroid-treated muscle cells. Muscle Nerve 30: 49 -54
    30. Liu Y, Porta A, Peng X, et al. 2004. Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k. J Bone Miner Res 19: 479-490
    31. Purton JF, Monk JA, Liddicoat DR, et al. 2004. Expression of the glucocorticoid receptor from the 1A promoter correlates with T lymphocyte sensitivity to glucocorticoid-induced cell death. J Immunol 173: 3816-3824
    32. Malone MH, Wang Z, Distelhorst CW. 2004. The glucocorticoid-induced gene tdag8 encodes a pro-apoptotic G protein-coupled receptor whose activation promotes glucocorticoid-induced apoptosis. J Biol Chem 279: 52850-52859
    33. Chrysis D, Zaman F, Chagin AS, et al. 2005. Dexamethasone induces apoptosis in proliferative chondrocytes through activation of caspases and suppression of the Akt-phosphatidylinositol 3-kinase signaling pathway. Endocrinol 146: 1391-1397
    34. Frankfurt O, Rosen ST. 2004. Mechanisms of glucocorticoid-induced apoptosis in hematologic malignancies: updates. Curr Opin Oncol 16: 553-563
    35. Hegardt C, Andersson G, Oredsson SM. 2003. Spermine prevents cytochrome c release in glucocorticoid-induced apoptosis in mouse thymocytes. Cell Bio Int 21 : 115-121
    36. Renner K, Amberger A, Konwalinka G, et al. 2003. Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. Biochim Biophys Acta 1642: 115-123
    37. Renner K, Kofler R, Gnaiger E. 2002. Mitochondrial function in glucocorticoid triggered T-ALL cells with transgenic bcl-2 expression. Mol Biol Rep 29: 97-101
    38. Tome ME, Lutz NW, Briehl MM. 2004. Overexpression of catalase or Bcl-2 alters glucose and energy metabolism concomitant with dexamethasone resistance. Biochim Biophys Acta 1693: 57-72
    39. Tonomura N, McLaughlin K, Grimm L, et al. 2003. Glucocorticoid-induced apoptosis of thymocytes: requirement of proteasome-dependent mitochondrial activity. J Immunol 170: 2469 -2478
    40. Ranta F, Avram D, Berchtold S, et al. 2006. Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes 55: 1380-1390
    41. Kovalovsky D, Refojo D, Holsboer F, et al. 2000. Molecular mechanisms and Th1/Th2 pathways in corticosteroid regulation of cytokine production. J Neuroimmunol 109: 23-29
    42. Kleima P, Ohninq G, Wong H, et al. 1994. Regulatory role of intraislet somatostatin on insulin secret ion in the isolated human pancreas. Pancreas 92: 172-176
    43. Emoto T, Miyata M, Izukura M, et al. 1997. Stimultaneous observation of endo crine and exocrine function of the pancreas responding to somatostatin in man. Regul Pept 68: 1-8
    44. McEvoy RC, Leung PE, Goggins JA. 1981. Tissue culture of fetal rat islets: corticosterone promotes D cell maintenance and function. Endocrinology 108: 2277-2282
    45. Papachristou DN, Liu JL, Patel YC. 1994. Glucocorticoids regulate somatostatin peptide and steady state messenger ribonucleic acid levels in normal rat tissues and in a somatostatin-producing islet tumor cell line (1027B2). Endocrinology 134: 2259-2266
    1. Chandrasekharan NV, Dai H, Roos KL et al (2002) COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc Natl AcadSci USA 99:13926-13931
    2. Smith WL, Garavito RM, DeWitt DL (1996) Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271:33157-33160
    3. Guan Z, Buckman SY, Baier LD et al (1998) IGF-I and insulin amplify IL-1 beta-induced nitric oxide and prostaglandin biosynthesis. Am J Physiol 274: 673-679
    4. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871-1875
    5. Tsuji S, Tsujii M, Kawano S et al (2001) Cyclooxygenase-2 upregulation as a perigenetic change in carcinogenesis. J Exp Clin Cancer Res 20:117-129
    6. Ristimaki A, Garfinkel S, Wessendorf J et al (1994) Induction of cyclooxygenase-2 by interleukin- 1 alpha. Evidence for post-transcriptional regulation. J Biol Chem 269: 11769-11775
    7. Huang ZF, Massey JB, Via DP (2000) Differential regulation of cyclooxygenase-2 (COX-2) mRNA stability by interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) in human in vitro differentiated macrophages. Biochem Pharmacol 59: 187-194
    8. Dixon DA, Kaplan CD, Mclntyre TM et al (2000) Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3'-untranslated region. J Biol Chem 275: 11750-11757
    9. Tamura M, Sebastian S, Yang S et al (2002) Vascular endothelial growth factor up-regulates cyclooxygenase-2 expression in human endothelial cells. J Clin Endocrinol Metab 87: 3263-3273
    10. Tazawa R, Xu XM, Wu KK et al (1994) Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem Biophys Res Commun 203: 190-199
    11. Kirtikara K, Raghow R, Laulederkind SJ et al (2000) Transcriptional regulation of cyclooxygenase-2 in the human microvascular endothelial cell line, HMEC-1: control by the combinatorial actions of AP2, NF-IL-6 and CRE elements. Mol Cell Biochem 203: 41-51
    12. Crofford LJ, Tan B, McCarthy CJ et al (1997) Involvement of nuclear factor kappa B in the regulation of cyclooxygenase-2 expression by interleukin-1 in rheumatoid synoviocytes. Arthritis Rheum 40: 226-236
    13. Mestre JR, Rivadeneira DE, Mackrell PJ et al (2001) Overlapping CRE and E-box promoter elements can independently regulate COX-2 gene transcription in macrophages. FEBS Lett 496: 147-151
    14. Koon HW, Zhao D, Zhan Y et al (2006) Substance P stimulates cyclooxygenase-2 and prostaglandin E2 expression through JAK-STAT activation in human colonic epithelial cells. J Immunol 176: 5050-5059
    15. Schroer K, Zhu Y, Saunders MA et al (2002) Obligatory role of cyclic adenosine monophosphate response element in cyclooxygenase-2 promoter induction and feedback regulation by inflammatory mediators. Circulation 105: 2760 -2765
    16. Saunders MA, Sansores-Garcia L, Gilroy DW et al (2001) Selective uppression of CCAAT/enhancer-binding protein beta binding and cyclooxygenase-2 promoter activity by sodium salicylate in quiescent human fibroblasts. J Biol Chem 276: 18897-18904
    17. Zhu Y, Saunders MA, Yeh H et al (2002) Dynamic regulation of cyclooxygenase-2 promoter activity by isoforms of CCAAT/enhancer-binding proteins. J Biol Chem 277: 6923- 6928
    18. Simon LS (1999) Role and regulation of cyclooxygenase-2 during inflammation. Am J Med 106: 37S-42S
    19. Tsujii M, Kawano S, DuBois RN (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 94: 3336 -3340
    20. Trifan OC, Hla T (2003) Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J Cell Mol Med 7: 207-222
    21. Sheu ML, Ho FM, Yang RS et al (2005) High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase-regulated cyclooxygenase-2 pathway. Arterioscler Thromb Vasc Biol 25: 539-545
    22. Kuwano T, Nakao S, Yamamoto H et al (2004) Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J 18: 300-310
    23. Robertson RP (1998) Dominance of cyclooxygenase-2 in the regulation of pancreatic islet prostaglandin synthesis. Diabetes 47: 1379-1383
    24. Tran PO, Gleason CE, Poitout V et al (1999) Prostaglandin E(2) mediates inhibition of insulin secretion by interleukin-1 beta. J Biol Chem 274: 31245-31248
    25. Tran PO, Gleason CE, Robertson RP (2002) Inhibition of interleukin-1β-induced COX-2 and EP3 gene expression by sodium salicylate enhances pancreatic islet β-cell function. Diabetes 51: 1772-1778
    26. Shanmuqam N, Gaw Gonzalo IT, Natarajan R (2004) Molecular mechanisms of high glucose-induced cyclooxygenase-2 expression in monocytes. Diabetes 53: 795-802
    27. Wardlaw SA, Zhang N, Belinsky SA (2002) Transcriptional regulation of basal cyclooxygenase-2 expression in murine lung tumor-derived cell lines by CCAAT/enhancer-binding protein and activating transcription factor/cAMP response element-binding protein. Mol Pharmacol 62: 326-333
    28. Norata GD, Callegari E, Inoue H et al (2004) HDL3 induces cyclooxygenase-2 expression and prostacyclin release in human endothelial cells via a p38 MAPK/CRE-dependent pathway: effects on COX-2/PGI-synthase coupling. Arterioscler Thromb Vasc Biol 24: 871-877
    29. Pathak SK, Bhattacharyya A, Pathak S et al (2004) Toll-like receptor 2 and mitogen- and stress-activated kinase 1 are effectors of mycobacterium avium-induced cyclooxygenase-2 expression in macrophages. J Biol Chem 279: 55127-55136
    30. Yang F, Bleich D (2004) Transcriptional Regulation of Cyclooxygenase-2 Gene in Pancreatic β-Cells. J Biol Chem 279: 35403-35411
    31. Tsatsanis C, Androulidaki A, Venihaki M et al (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38: 1654-1661
    32. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB 79: 726-735
    33. Ito H, Duxbury M, Benoit E et al (2004) Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Res 64: 7439-7446
    34. Goetze S, Kintscher U, Kaneshiro K et al (2001) TNFα induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signalregulated kinases 1/2. Atherosclerosis 159: 93-101
    35. Yeo SJ, Gravis D, Yoon JG et al (2003) Myeloid Differentiation Factor 88-dependent Transcriptional Regulation of Cyclooxygenase-2 Expression by CpG DNA. J Biol Chem 278: 22563-22573
    36. Dell'Albani P, Santangelo R, Torrisi L et al (2001) JAK/STAT Signaling pathway mediates Cytokine induced iNOS expression in primary astroglial cell cultures. J Neurosci Res 65: 417-424
    37. Rane SG, Reddy EP (2000) Janus kinases: components of multiple signaling pathways. Oncogene 19: 5662
    38. O'Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109: S121-S131
    39. Bernard C, Merval R, Lebret M et al (1999) Oncostatin M induces interleukin-6 and cyclooxygenase-2 expression in human vascular smooth muscle cells: synergy with interleukin-1β. Circ Res 85: 1124-1131
    40. Kim HY, Park EJ, Joe EH et al (2003) Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglial. J Immunol 171: 6072-6079
    41. Hanna N, Bonifacio L, Reddy P et al (2004) IFN-gamma-mediated inhibition of COX-2 expression in the placenta from term and preterm labor pregnancies. Am J Reprod Immunol 51:311-318
    42. Darnell JE Jr (1997) STATs and gene regulation. Science 277: 1630-1635
    43. Kovarik P, Mangold M, Ramsauer K et al (2001) Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J 20: 91-100
    44. Tabatabaie T, Waldon AM, Jacob JM et al (2000) COX-2 inhibition prevents insulin-dependent diabetes in low-dose streptozotocin-treated mice. Biochem Biophys Res Commun 273: 699-704
    45. Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110: 851-860
    46. Persaud SJ, Burns CJ, Belin VD et al (2004) Glucose-induced regulation of COX-2 expression in human islets of Langerhans. Diabetes 52: S190-S192
    47. Tanabe T, Tohnai N (2002) Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat 68: 95-114
    48. Cardenas C, Muller M, Jaimovich E et al (2004) Carrasco Depolarization of skeletal muscle cells induces phosphorylation of cAMP response element binding protein via calcium and protein kinase Calpha. J Biol Chem 279: 39122-39131
    49. Wu GY, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 98: 2808-2813
    50. Togo T (2004) Long-term potentiation of wound-induced exocytosis and plasma membrane repair is dependent on cAMP-response element-mediated transcription via a protein kinase C- and p38 MAPK-dependent pathway. JBiol Chem 279: 44996-45003
    51. Lee CW, Nam JS, Park YK et al (2003) Lysophosphatidic acid stimulates CREB through mitogen- and stress-activated protein kinase-1. Biochem Biophys Res Commun 305: 455-461
    52. Sharrocks AD, Brown AL, Ling Y et al (1997) The ETS-domain transcription factor family. Int J Biochem Cell Biol 29: 1371-1387
    53. Yordy JS, Muise-Helmericks RC (2000) Signal transduction and the Ets family of transcription factors. Oncogene 19: 6503-6513
    54. Barry OP, Kazanietz MG, Pratico D et al (1999) Arachidonic Acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway. J Biol Chem 274: 7545-7556
    55. Kim JY, Ahn MH, Song HO et al (2006) Involvement of MAPK activation in chemokine or COX-2 productions by Toxoplasma gondii. Korean J Parasitol 44: 197-207
    56. Guo YS, Cheng JZ, Jin GF et al (2002) Gastrin stimulates cyclooxygenase-2 expression in intestinal epithelial cells through multiple signaling pathways. J Biol Chem 277: 48755-48763
    57. Abiru S, Nakao K, Ichikawa T et al (2002) Aspirin and NS-398 inhibit hepatocyte growth factor-induced invasiveness of human hepatoma cells. Hepatology 35: 1117-1124
    58. Guo YS, Hellmich MR, Wen XD et al (2001) Activator protein-1 transcription factor mediates bombesin-stimulated cyclooxygenase-2 expression in intestinal epithelial cells. J Biol Chem 276: 22941-22947
    59. Barrios-Rodiles M, Chadee K (1998) Novel regulation of cyclooxygenase-2 expression and prostaglandin E2 production by IFN-gamma in human macrophages. J Immunol 161: 2441-2448
    60. Chen B, He L, Savell VH et al (2000) Inhibition of the interferon-gamma/signal transducers and activators of transcription (STAT) pathway by hypermethylation at a STAT-binding site in the p21WAFl promoter region. Cancer Res 60: 3290-3298
    61. Coccia EM, Del Russo N, Stellacci E et al (1999) STAT1 activation during monocyte to macrophage maturation: role of adhesion molecules. Int Immunol 11: 1075-1083
    62. Ohmori Y, Schreiber RD, Hamilton TA (1997) Synergy between interferon-gamma and tumor necrosis factoralpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J Biol Chem 272: 14899-14907
    63. Ezernieks J, Schnarr B, Metz K et al (1996) The human IgE germline promoter is regulated by interleukin-4, via an interferon-gamma-activated site and its flanking regions. Eur J Biochem 240: 667-673
    64. Ala-aho R, Johansson N, Grenman R et al (2000) Inhibition of collagenase-3 (MMP-13) expression in transformed human keratinocytes by interferon-gamma is associated with activation of extracellular signal-regulated kinase-1, 2 and STAT1. Oncogene 19: 248-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700