抗EGFRvⅢ单克隆抗体制备及其在肝癌治疗中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗体治疗是生物治疗的一个重要方面,也是肿瘤生物治疗的一个重要方向。其中抗表皮生长因子受体(EGFR)治疗性抗体药物已经在多种肿瘤治疗中应用。但是EGFR在多种正常细胞和组织中均有表达,使得EGFR抗体具有一定的局限性,而表皮生长因子受体3型突变体(EGFRvⅢ)仅在肿瘤中存在,因此相对于EGFR,EGFRvⅢ是一个更为理想的靶点。本研究旨在开发抗EGFRvⅢ的单克隆抗体以及验证其在肿瘤治疗中的有效性,为肿瘤治疗药物开发提供一个具有潜在价值的治疗性抗体。
     第一部分
     抗EGFRvⅢ单克隆抗体的制备及其特征分析
     【目的】寻求可以与表皮生长因子受体3型突变体(EGFRvⅢ)受体特异性结合的单克隆抗体。【方法】以EGFRvⅢ重组蛋白和NIH-3T3 EGFRvⅢ稳定转染细胞系为抗原免疫BLAB/c小鼠,利用杂交瘤技术进行脾细胞和SP2/0骨髓瘤细胞系融合筛选得到特异性单克隆抗体细胞株。通过western blot、免疫组化和体内荧光成像等方法鉴定抗体的特异性。利用SPR技术测定抗体亲和力常数,ELISA方法测定抗体亚型,通过抗原分段表达并ELISA方法鉴定抗体结合表位。【结果】通过杂交瘤融合技术,经过融合、筛选和克隆化,获得了多株杂交瘤细胞株。其中单克隆抗体12H23能和表达EGFRvⅢ的U87-EGFRvⅢ细胞结合,和过表达EBFR的A431细胞有较弱的结合,但是和野生型的U87细胞没有明显的结合能力。活体荧光成像分析表明12H23可以富集到U87-EGFRvⅢ种植瘤中。对抗体进一步分析显示12H23属于IgG1亚型,识别的序列包含在EGFR 287—302aa(CC16多肽)内,该多肽的C端对抗体的结合更重要。另外该抗体具有较高的亲和力,其与抗原表位结合的解离常数Kd=1.73×10~(-10)M。【结论】我们利用EGFRvⅢ重组蛋白和NIH-3T3稳转细胞系混合免疫的方法,成功获得了具有与EGFRvⅢ高效结合的单克隆抗体。
     第二部分
     EGFRvⅢ在肝癌中的存在与作用
     【目的】鉴定EGFRvⅢ在肝癌中的存在与作用。【方法】通过western blot及RT-PCR等方法鉴定肝癌细胞系中EGFRvⅢ的表达情况,通过免疫沉淀、westernblot和RT-PCR方法鉴定肝癌组织中EGFRvⅢ的存在。利用稳定转染EGFR或EGFRvⅢ的Huh-7细胞系(分别称为Huh7-EGFR和Huh7-EGFRvⅢ),通过细胞迁移、MTT等实验测定EGFRvⅢ对肝癌细胞系的生长以及对5氟尿嘧啶(5-FU)耐药性的影响。通过体内的成瘤实验测定EGFRvⅢ对肝癌细胞系成瘤能力进行鉴定。【结果】多种肝癌细胞系和肝癌组织中有检测到EGFRvⅢ的存在。EGFRvⅢ阳性的细胞生长速度较快,并且对5-FU较不敏感。Huh7-EGFRvⅢ细胞表现出较快的体内外生长、较强的迁移及较高的5-FU抵抗能力。【结论】EGFRvⅢ在肝癌细胞和肝癌组织中存在,它能够促进肝癌细胞的成瘤,同时和肝癌的5-FU敏感性有关。
     第三部分
     12H23单抗对表达EGFRvⅢ的肝癌细胞系的作用及其与5-FU联合对肝癌作用及初步机理研究
     【目的】验证抗EGFRvⅢ单克隆抗体12H23单独作用或与5-FU联合对肝癌的治疗作用。【方法】通过体外的MTT细胞毒性实验和体内的Huh7-EGFRvⅢ种植肿瘤模型的治疗作用,来验证12H23抗体对细胞增殖的抑制作用和潜在的治疗价值。通过western blot和荧光定量PCR等方法鉴定治疗前后相关基因的表达情况。【结果】12H23抗体在体外可抑制细胞增殖并促进5-FU的杀伤作用。体内治疗实验的结果显示25 mg/kg的12H23抗体可以显著抑制细胞肿瘤的生长,抑制率到达59.8%。此外相对较低浓度(12.5 mg/kg或5 mg/kg)的12H23抗体和5-FU(25 mg/kg)对Huh7-EGFRvⅢ种植瘤均有联合治疗作用。机理研究表明12H23可以通过降低DPD、TS和E2F-1的表达及提高OPRT表达来增强肝癌对5-FU的敏感性。【结论】12H23单抗具有对EGFRvⅢ表达阳性的肝癌的潜在治疗价值。12H23可望和5-FU联用增加对EGFRvⅢ阳性的肝癌的疗效。
     第四部分
     EGFRvⅢ人鼠嵌合单抗的制备及其初步特征分析
     【目的】重组表达EGFRvⅢ嵌合抗体并对抗体特性进行初步分析。【方法】通过RACE方法获得12H23抗体可变区基因序列,通过基因重组技术构建人鼠嵌合抗体的表达质粒,然后转染CHO细胞,筛选得到稳定表达抗体的细胞株,并通过ELISA免疫组合等方法,验证抗体的亲和力和特异性。【结果】成功获得了稳定高表达嵌合抗体的CHO细胞株,表达纯化的C12抗体经ELISA检测显示C12抗体和12H23识别同样的位点,具有类似的亲和力。免疫组化显示,C12抗体可以和EGFRvⅢ以及表达EGFR的Huh-7细胞结合,而与野生型的Huh-7细胞没有明显结合。【结论】我们成功构建了EGFRvⅢ的特异性嵌合抗体,并实现了在CHO细胞上的稳定高表达。而该嵌合抗体C12很好的保留了鼠源的12H23的亲和力和特异性,为后续进一步的临床前和临床实验提供了一个坚实的基础。
EGFRvⅢhave only been observed in cancer but not normal tissues which make it an ideal target for cancer therapy.Antibody therapy has been developed to be potential option for treating cancer.In this study, we developed a monoclonal antibody 12H23 that can specifically recognize EGFRvⅢand also overexpressing EGFR.Additionally,we found EGFRvⅢhave played an important role in HCC tumorigenesis and 5-FU resistance. Hence we tried to use the anti-EGFRvⅢmAb 12H23 for therapy of HCC.The results shown that mAb 12H23 can inhibit EGFRvⅢpositive Huh-7 growth in vivo,and enhance therapeutic effect of 5-FU,which make it a promising agent of HCC therapy.Thereafter,we succefully made the chimeric antibody C12 derived from mAb 12H23.The CHO cell line stably expressing chimeric antibody C12 with a yield of 20 pg/cell/day.Moreover,mAb C12 remains most of the binding affinity and specificity of mAb 12H23.Thus,mAb C12 is promising for the preclinical study.
     SectionⅠ
     EGFRvⅢtargeting antibody development
     【Objective】To obtain candidate anti-EGFRvⅢantibodies.【Methods】Recombinant EGFRvⅢand NIH-3T3-EGFRvⅢcell line were used for immunization of BLAB/c mice.Anti-EGFRvⅢantibodies were obtained by fusion of spleen B cell with SP2/0 cell and following hybridoma cloning. Western blot,immuno-staining and FACS were applied to identify antibody specificity.In vivo fluorescent imaging system was used to monitor the in vivo distribution of cyanin 5.5 labeled mAb 12H23.Antibody affinity was measured by SPR analysis while antibody subtype and epitope were identified by Elisa analysis.【Results】An antibody clone 12H23 was obtained by hybridoma screening.In FACS assay,the antibody has strong binding to U87-EGFRvⅢ(stably expressing EGFRvⅢ) cells,a relative week binding to A431 cell(overexpressing EGFR),while has no obviously binding to Wt U87 cell.Results from the in vivo fluorescent imaging clearly showed the accumulation of mAb 12H23 to U87-EGFRvⅢxenograft but not U87 xenograft.Further study showed mAb 12H23 is an IgGl subtype, and its binding epitope is located in CC16 peptide(287aa-302aa of EGFR). SPR analysis also showed that 12H23 bind the epitope at a dissociation constant Kd=1.73×10~(-10)M.【Conclusion】We have successfully obtained a candidate antibody targeting EGFRvⅢ.
     SectionⅡ
     Epidermal Growth Factor Receptor vⅢenhance the tumorigenicity and 5-FU resistance in Human Hepatocellular Carcinoma
     【Objective】To determine the biological significance of EGFRvⅢin HCC including tumor progression and chemotherapy resistance.【Methods】To delineate biological characteristic of EGFRvⅢin human HCC cells, different HCC cell lines were evaluated for EGFRvⅢexpression,cell growth and drug resistance.At the same time,EGFRvⅢexpression cassette was introduced by lentivirus vector into representative Huh-7 cell line. The EGFRvⅢ-expressing transfectant was compared with its parent cell for cell proliferation and 5-FU induced apoptosis resistance.【Results】Expression of EGFRvⅢin Huh-7 cells produced constitutively activated EGFRvⅢreceptors.And the EGFRvⅢtransfectants exhibited an about 1.5 fold in cell proliferation in vitro and 2.7 fold in vivo.Huh7-EGFRvⅢcells also showed about 3 fold increase of migration when quantified by transwell migration assay.In addition,Huh7-EGFRvⅢshowed significantly contribution to 5-FU resistance in vitro and in vivo.
     【Conclusion】EGFRvⅢnot only plays a pivotal role in tumorigenicity of human hepatocellular carcinoma but also contribute to the 5-FU resistance of HCC.
     SectionⅢ
     An anti-EGFRvⅢantibody 12H23 as an effective therapeutic agent solely or combining with 5-FU in Human Hepatocellular Carcinoma
     【Objective】To examine the therapeutic effect of anti-EGFRvⅢantibody 12H23 solely or combining with 5-FU on Human Hepatocellular Carcinoma therapy.【Methods】MTT assay were performed of evaluate effect of mAb 12H23 or combination with 5-FU on HCC cells and HCC tumor xenograft therapy with mAb 12H23 or combination with 5-FU also been performed for in vivo effects. The enzymes correlated with 5-FU(TS,DPD,OPRT) and transcription factor E2F-1 in the cells treating with the indicated drugs also were examined.
     【Results】mAb 12H23 can strongly inhibit the growth of Huh7-EGFRvⅢxenograft in vivo.Additionally,12H23 and 5-FU have synergetic growth inhibition effect on the Huh7-EGFRvⅢboth in vitro and in vivo.mab 12H23 treatment on Huh7-EGFRvⅢcan downregulate the expression of E2F-1,TS and DPD while upregulate that of OPRT.【Conclusion】Antibody 12H23 have potential to be used as therapeutics solely or combination with 5-FU for the treatment of EGFRvⅢ-positive HCC.mAb 12H23 treatment can downregulate the expression of E2F-1,TS and DPD while upregulate that of OPRT.
     SectionⅣ
     Engineering and characterization of chimeric monoclonal antibody(C12) for EGFRvⅢtargeting therapy
     【Objective】To produce chimeric mAb derived from 12H23.【Methods】Genes encoding variable fragments were amplified from 12H23 hybridoma,and cloned into expression vector carrying constant region of human heavy chain and light chain.After transfection,CHO-DG44 cell line stably expressing the chimeric antibody named as C12 was selected with methotrexate(MTX).Thereafter,immunostaining and ELISA were applied to analyze the bingding characteristics of the chimeric antibody C12.
     【Results】The vector encoding the chimeric antibody C12 was successfully constructed and introduced into CHO cells.CHO cells can stably express C12 with a yield of 20 pg/cell/day.Additionally,C12 showed almost the same binding affinity and specificity as its parent antibody 12H23.
     【Conclusion】The chimeric monoclonal antibody C12 derived from 12H23 was successfully generated.C12 remains most of the binding affinity and specificity of 12H23.
引文
[1] N. Prenzel, O. M. Fischer, S. Streit, S. Hart, A. Ullrich, The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocrine-related cancer 8 (2001) 11-31.
    [2] D. C. Modjtahedi H The receptor for EGF and its ligands: Expression, prognostic value and target for therapy in cancer. Int J Oncol (1994) 277-296.
    [3] R.I. Nicholson, J. M. Gee, M. E. Harper, EGFR and cancer prognosis. Eur J Cancer 37 Suppl 4 (2001) S9-15.
    [4] L. Frederick, G. Eley, X. Y. Wang, C.D. James, Analysis of genomic rearrangements associated with EGRFvIII expression suggests involvement of Alu repeat elements. Neuro-oncology 2 (2000) 159-163.
    [5] E. O. Olapade-Olaopa, D. K. Moscatello, E.H. MacKay, T. Horsburgh, D. P. Sandhu, T. R. Terry, A. J. Wong, F. K. Habib, Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer. British journal of cancer 82 (2000) 186-194.
    [6] G. E. Archer, J. H. Sampson, I. A. Lorimer, R. E. McLendon, C. T. Kuan, A. H. Friedman, H. S. Friedman, I.H. Pastan, D. D. Bigner, Regional treatment of epidermal growth factor receptor vⅢ-expressing neoplastic meningitis with a single-chain immunotoxin, MR-1. Clin Cancer Res 5 (1999) 2646-2652.
    [7] D. K. Moscatello, M. Holgado-Madruga, A. K. Godwin, G. Ramirez, G. Gunn, P. W. Zoltick, J. A. Biegel, R. L. Hayes, A. J. Wong, Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer research 55 (1995) 5536-5539.
    [8] S.K. Batra, S. Castelino-Prabhu, C. J. Wikstrand, X. Zhu, P. A. Humphrey, H. S. Friedman, D.D. Bigner, Epidermal growth factor ligand-independent, unregulated,cell-transforming potential of a naturally occurring human mutant EGFRvⅢ gene.Cell Growth Differ 6 (1995) 1251-1259.
    [9] I.E. Garcia de Palazzo, G. P. Adams, P. Sundareshan, A. J. Wong, J. R. Testa, D. D. Bigner, L. M. Weiner, Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer research 53 (1993) 3217-3220.
    [10]R. Hitt, P. Martin, M. Hidalgo, Cetuximab in squamous cell carcinoma of the head and neck. Future oncology (London, England) 2 (2006) 449-457.
    [11] D. H. Lynch, X. D. Yang, Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment. Seminars in oncology 29 (2002) 47-50.
    [12] R. S. Herbst, E. S. Kim, P.M. Harari, IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody, for treatment of head and neck cancer. Expert opinion on biological therapy 1 (2001) 719-732.
    [13] G. Stragliotto, F. Vega, P. Stasiecki, P. Gropp, M. Poisson, J. Y. Delattre, Multiple infusions of anti-epidermal growth factor receptor (EGFR) monoclonal antibody (EMD 55,900) in patients with recurrent malignant gliomas. Eur J Cancer 32A (1996)636-640.
    [14] C. F. LeMaistre, C. Meneghetti, L. Howes, C. K. Osborne, Targeting the EGF receptor in breast cancer treatment. Breast cancer research and treatment 32 (1994) 97-103.
    [15] H. K. Gan, F. Walker, A. W. Burgess, A. Rigopoulos, A.M. Scott, T. G. Johns, The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 increases the formation of inactive untethered EGFR dimers. Implications for combination therapy with monoclonal antibody 806. The Journal of biological chemistry 282 (2007) 2840-2850.
    [16] C. J. Wikstrand, L. P. Hale, S. K. Batra, M. L. Hill, P. A. Humphrey, S. N. Kurpad, R.E. McLendon, D. Moscatello, C. N. Pegram, C. J. Reist, et al., Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer research 55 (1995) 3140-3148.
    [17] P. A. Humphrey, A. J. Wong, B. Vogelstein, M. R. Zalutsky, G. N. Fuller, G. E. Archer, H. S. Friedman, M. M. Kwatra, S. H. Bigner, D. D. Bigner, Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proceedings of the National Academy of Sciences of the United States of America 87 (1990) 4207-4211.
    [18] D. Hills, G. Rowlinson-Busza, W. J. Gullick, Specific targeting of a mutant, activated FGF receptor found in glioblastoma using a monoclonal antibody. International journal of cancer 63 (1995) 537-543.
    [19] L. Pirofski, A. Casadevall, L. Rodriguez, L. S. Zuckier, M. D. Scharff, Current state of the hybridoma technology. Journal of clinical immunology 10 (1990) 5S-12S;discussion 12S-14S.
    [20]S. Weber, [Monoclonal antibodies and their potential application to medicine]. Zeitschrift fur Erkrankungen der Atmungsorgane 165 (1985) 3-12.
    [21] F. M. Steinberg, J. Raso, Biotech Pharmaceuticals and biotherapy: an overview. J Pharm Pharm Sci 1 (1998) 48-59.
    [22] J. M. Reichert, C. J. Rosensweig, L. B. Faden, M. C. Dewitz, Monoclonal antibody successes in the clinic. Nature biotechnology 23 (2005) 1073-1078.
    [23] A. B. Heimberger, L. E. Crotty, G. E. Archer, K. R. Hess, C. J. Wikstrand, A. H. Friedman, H. S. Friedman, D. D. Bigner, J. H. Sampson, Epidermal growth factor receptor Ⅷ peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res 9 (2003) 4247-4254.
    [24]T.G. Johns, T. E. Adams, J. R. Cochran, N. E. Hall, P. A. Hoyne, M. J. Olsen, Y. S. Kim, J. Rothacker, E. C. Nice, F. Walker, G. Ritter, A. A. Jungbluth, L.J. Old, C. W. Ward, A. W. Burgess, K. D. Wittrup, A.M. Scott, Identification of the epitope for the epidermal growth factor receptor-specific monoclonal antibody 806 reveals that it preferentially recognizes an untethered form of the receptor. The Journal of biological chemistry 279 (2004) 30375-30384.
    [25]M.S. Kies, P.M. Harari, Cetuximab (Imclone/Merck/Bristol-Myers Squibb). Curr Opin Investig Drugs 3 (2002) 1092-1100.
    [26] E. S. Kim, F. R. Khuri, R. S. Herbst, Epidermal growth factor receptor biology IMC-C225). Current opinion in oncology 13 (2001) 506-513.
    [27]P.M. Harari, Epidermal growth factor receptor inhibition strategies in oncology. Endocrine-related cancer 11 (2004) 689-708.
    [28] A. Huether, M. Hopfner, A. P. Sutter, V. Baradari, D. Schuppan, H. Scherubl, Signaling pathways involved in the inhibition of epidermal growth factor receptor by erlotinib in hepatocellular cancer. World J Gastroenterol 12 (2006) 5160-5167.
    [29] T. Okabe, I. Okamoto, S. Tsukioka, J. Uchida, T. Iwasa, T. Yoshida, E. Hatashita, Y. Yamada, T. Satoh, K. Tamura, M. Fukuoka, K. Nakagawa, Synergistic antitumor effect of S-1 and the epidermal growth factor receptor inhibitor gefitinib in non-small cell lung cancer cell lines: role of gefitinib-induced down-regulation of thymidylate synthase. Molecular cancer therapeutics 7 (2008) 599-606.
    [30]H. G. Yi, H. J. Kim, Y. J. Kim, S. W. Han, D. Y. Oh, S. H. Lee, D. W. Kim, S. A. 1m, T. Y. Kim, C. S. Kim, D. S. Heo, Y. J. Bang, Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are effective for 1 eptomeningeal metastasis from non-small cell lung cancer patients with sensitive EGFR mutation or other predictive factors of good response for EGFR TKI. Lung cancer (Amsterdam, Netherlands) (2008).
    [31]K. Hotta, K. Kiura, H. Ueoka, M. Tabata, K. Fujiwara, T. Kozuki, T. Okada, A. Hisamoto, M. Tanimoto, Effect of gefitinib ('Iressa', ZD1839) on brain metastases in patients with advanced non-small-cell lung cancer. Lung cancer (Amsterdam, Netherlands) 46 (2004) 255-261.
    [32] A. F. Costa, G. B. Sander, P. D. Picon, Cetuximab in colon cancer. The New England journal of medicine 351 (2004) 1575-1576; author reply 1575-1576.
    [33]T. Hisaka, H. Yano, M. Haramaki, I. Utsunomiya, M. Kojiro, Expressions of epidermal growth factor family and its receptor in hepatocellular carcinoma cell lines: relationship to cell proliferation. International journal of oncology 14 (1999) 453-460.
    [34] K. Hamazaki, Y. Yunoki, H. Tagashira, T. Mimura, M. Mori, K. Orita, Epidermal growth factor receptor in human hepatocellular carcinoma. Cancer detection and prevention21 (1997) 355-360.
    [35] A. Huether, M. Hopfner, V. Baradari, D. Schuppan, H. Scherubl, EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer. Biochemical pharmacology 70 (2005) 1568-1578.
    [36] F. Cappuzzo, F. R. Hirsch, E. Rossi, S. Bartolini, G. L. Ceresoli, L. Bemis, J. Haney,S. Witta, K. Danenberg, I. Domenichini, V. Ludovini, E. Magrini, V. Gregorc, C.Doglioni, A. Sidoni, M. Tonato, W. A. Franklin, L. Crino, P. A. Bunn, Jr., M.Varella-Garcia, Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. Journal of the National Cancer Institute 97 (2005) 643-655.
    [37]L. Xu, Zhang Chang-qing, Feng Kai-tao, Li Jin-qing, Clinical Significance of EGFR and EGFRvⅢ Expression in Tumor and Liver Tissue of HCC. Journal of Sun Yat-sen University (Medical Sciences) 27 (2006) 467-471.
    [38]F. Ciardiello, G. Tortora, Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur j Cancer 39(2003) 1348-1354.
    [39] C. Mamot, D. C. Drummond, U. Greiser, K. Hong, D. B. Kirpotin, J. D. Marks, J. W. Park, Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvⅢ-overexpressing tumor cells. Cancer research 63 (2003) 3154-3161.
    [40] J. C. Sok, F. M. Coppelli, S.M. Thomas, M. N. Lango, S. Xi, J. L. Hunt, M. L. Freilino, M. W. Graner, C. J. Wikstrand, D. D. Bigner, W. E. Gooding, F. B. Furnari, J. R. Grandis, Mutant epidermal growth factor receptor (EGFRvⅢ) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res 12 (2006) 5064-5073.
    [41] P. A. Philip, M. R. Mahoney, C. Allmer, J. Thomas, H. C. Pitot, G. Kim, R. C. Donehower, T. Fitch, J. Picus, C. Erlichman, Phase Ⅱstudy of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 23 (2005) 6657-6663.
    [42] M. B. Thomas, R. Chadha, K. Glover, X. Wang, J. Morris, T. Brown, A. Rashid, J. Dancey, J. L. Abbruzzese, Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer 110 (2007) 1059-1067.
    [43] T. D. Barber, B. Vogelstein, K. W. Kinzler, V. E. Velculescu, Somatic mutations of EGFR in colorectal cancers and gl ioblastomas. The New England journal of medicine 351 (2004) 2883.
    [44] J. W. Lee, Y. H. Soung, S. Y. Kim, W. S. Park, S. W. Nam, J. Y. Lee, N. J. Yoo, S. H. Lee, Absence of EGFR mutation in the kinase domain in common human cancers besides non-small cell lung cancer. International journal of cancer 113 (2005) 510-511.
    [45] H. Shigematsu, A. F. Gazdar, Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. International journal of cancer 118 (2006) 257-262.
    [46] N. Shinojima, K. Tada, S. Shiraishi, T. Kamiryo, M. Kochi, H. Nakamura, K. Makino, H. Saya, H. Hirano, J. Kuratsu, K. Oka, Y. Ishimaru, Y. Ushio, Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer research 63 (2003) 6962-6970.
    [47] M. M. Feldkamp, P. Lala, N. Lau, L. Roncari, A. Guha, Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 45 (1999) 1442-1453.
    [48] M. Nagane, H. Lin, W. K. Cavenee, H. J. Huang, Aberrant receptor signaling in human malignant gliomas: mechanisms and therapeutic implications. Cancer letters 162 Suppl (2001) S17-S21.
    [49] M. Nagane, Y. Narita, K. Mishima, A. Levitzki, A. W. Burgess, W. K. Cavenee, H. J. Huang, Human glioblastoma xenografts overexpressing a tumor-specific mutant epidermal growth factor receptor sensitized to cisplatin by the AG1478 tyrosine kinase inhibitor. Journal of neurosurgery 95 (2001) 472-479.
    [50] C. Ou, F.X. Wu, Y. Luo, J. Cao, Y. N. Zhao, W. P. Yuan, Y. Li, J. J. Su, Expression and significance of epidermal growth factor receptor variant type Ⅲ in hepatocellular carcinoma. Ai zheng = Aizheng = Chinese journal of cancer 24 (2005)166-169.
    [51] I. K. Mellinghoff, M. Y. Wang, I. Vivanco, D. A. Haas-Kogan, S. Zhu, E. Q. Dia, K. V. Lu, K. Yoshimoto, J. H. Huang, D. J. Chute, B. L. Riggs, S. Horvath, L. M. Liau, W. K. Cavenee, P. N. Rao, R. Beroukhim, T. C. Peck, J. C. Lee, W. R. Sellers, D. Stokoe, M. Prados, T. F. Cloughesy, C. L. Sawyers, P. S. Mischel, Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. The New England journal of medicine 353 (2005) 2012-2024.
    [52] I. Okamoto, L. C. Kenyon, D. R. Emlet, T. Mori, J. Sasaki, S. Hirosako, Y. Ichikawa, H. Kishi, A. K. Godwin, M. Yoshioka, M. Suga, M. Matsumoto, A. J. Wong, Expression of constitutively activated EGFRvⅢ in non-small cell lung cancer. Cancer science 94 (2003) 50-56.
    [53] H. Ge, X. Gong, C. K. Tang, Evidence of high incidence of EGFRvⅢ expression and coexpression with EGFR in human invasive breast cancer by laser capture microdissection and immunohistochemical analysis. International journal of cancer 98 (2002) 357-361.
    [54] H. Fernandes, S. Cohen, S. Bishayee, Glycosylation-induced conformational modification positively regulates receptor-receptor association: a study with an aberrant epidermal growth factor receptor (EGFRvⅢ/DeltaEGFR) expressed in cancer cells. The Journal of biological chemistry 276 (2001) 5375-5383.
    [55] T. G. Johns, I. Mellman, G. A. Cartwright, G. Ritter, L. J. Old, A. W. Burgess, A.M. Scott, The antitumor monoclonal antibody 806 recognizes a high-mannose form of the EGF receptor that reaches the cell surface when cells over-express the receptor. Faseb J 19 (2005) 780-782.
    [56] Y. Liu, C.T. Kuan, J. Mi, X. Zhang, B. M. Clary, D. D. Bigner, B. A. Sullenger, Aptamers selected against the unglycosylaled EGFRvⅢ ectodomain and delivered intracellularly reduce membrane-bound EGFRvⅢ and induce apoptosis. Biological chemistry 390 (2009) 137-144.
    [57] A. Herskovic, K. Martz, M. al-Sarraf, L. Leichraan, J. Brindle, V. Vaitkevicius, J. Cooper, R. Byhardt, L. Davis, B. Emami, Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. The New England journal of medicine 326 (1992) 1593-1598.
    [58] U. Vanhoefer, P. Rougier, H. Wilke, M. P. Ducreux, A. J. Lacave, E. Van Cutsem, M. Planker, J.G. Santos, P. Piedbois, B. Paillot, H. Bodenstein, H. J. Schmoll, H.Bleiberg, B. Nordlinger, M. L. Couvreur, B. Baron, J. A. Wils, Final results of a randomized phase Ⅲ trial of sequential high-dose methotrexate, fluorouracil, and doxorubicin versus etoposide, leucovorin, and fluorouracil versus infusional fluorouracil and cisplatin in advanced gastric cancer: A trial of the European Organization for Research and Treatment of Cancer Gastrointestinal Tract Cancer Cooperative Group. J Clin Oncol 18 (2000) 2648-2657.
    [59]M. K. Gibson, Y. Li, B. Murphy, M. H. Hussain, R. C. DeConti, J. Ensley, A. A. Forastiere, Randomized phase III evaluation of cisplatin plus fluorouracil versus cisplatin plus paclitaxel in advanced head and neck cancer (E1395) : an intergroup trial of the Eastern Cooperative Oncology Group. J Clin Oncol 23 (2005) 3562-3567.
    [60] O. D. Hughes, M. C. Bishop, A. C. Perkins, M. Frier, M. R. Price, G. Denton, A. Smith,R. Rutherford, P. A. Schubiger, Preclinical evaluation of copper-67 labelled anti-MUCl mucin antibody C595 for therapeutic use in bladder cancer. European journal of nuclear medicine 24 (1997) 439-443.
    [61] E. C. Lai, C.M. Lo, S. T. Fan, C. L. Liu, J. Wong, Postoperative adjuvant chemotherapy after curative resection of hepatocellular carcinoma: a randomized controlled trial. Arch Surg 133 (1998) 183-188.
    [62]T. Kanmematsu, Is postoperative chemotherapy effective for the prevention of recurrence after surgery for hepatocellular carcinoma? Hepato-gastroenterology 43 (1996) 1404.
    [63] N. Nagasue, H. Yukaya, Y. C. Chang, A. Yamanoi, H. Kohno, T. Hayashi, T. Nakamura, Assessment of pattern and treatment of intrahepatic recurrence after resection of hepatocellular carcinoma. Surgery, gynecology & obstetrics 171 (1990) 217-222.
    [64]B.I. Carr, Hepatocellular carcinoma: current management and future trends. Gastroenterology 127 (2004) S218-224.
    [65] A. X. Zhu, Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be? The oncologist 11 (2006) 790-800.
    [66] S. Iwatsuki, T. E. Starzl, D. G. Sheahan, I. Yokoyama, A. J. Demetris, S. Todo, A. G. Tzakis, D. H. Van Thiel, B. Carr, R. Selby, et al., Hepatic resection versus transplantation for hepatocellular carcinoma. Annals of surgery 214 (1991) 221-228;discussion 228-229.
    [67] H. Bismuth, L. Chiche, R. Adam, D. Castaing, T. Diamond, A. Dennison, Liver resection versus transplantation for hepatocellular carcinoma in cirrhotic patients. Annals of surgery 218 (1993) 145-151.
    [68] Y. Nakashima, O. Nakashima, C. C. Hsia, M. Kojiro, E. Tabor, Vascularization of small hepatocel lular carcinomas: correlation with differentiation. Liver 19 (1999) 12-18.
    [69] M. Nagane, A. Levitzki, A. Gazit, W. K. Cavenee, H. J. Huang, Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proceedings of the National Academy of Sciences of the United States of America 95 (1998) 5724-5729.
    [70] D. Raben, B. Helfrich, D. C. Chan, F. Ciardiello, L. Zhao, W. Franklin, A. E. Baron, C. Zeng, T. K. Johnson, P. A. Bunn, Jr., The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin Cancer Res 11 (2005) 795-805.
    [71] J. Baselga, L. Norton, J. Albanell, Y. -M. Kim, J. Mendelsohn, Recombinant Humanized Anti-HER2 Antibody (HerceptinTM) Enhances the Antitumor Activity of Paclitaxel and Doxorubicin against HER2/neu Overexpressing Human Breast Cancer Xenografts, 1998,pp. 2825-2831.
    [72]N. Moosmann, V. Heinemann, Cetuxiraab plus XELIRI or XELOX for first-line therapy of metastatic colorectal cancer. Clinical colorectal cancer 7 (2008) 110-117.
    [73] T. Y. Seiwert, D. J. Haraf, E. E. Cohen, K. Stenson, M. E. Witt, A. Dekker, M. Kocherginsky, R. R. Weichselbaum, H. X. Chen, E. E. Vokes, Phase I study of bevacizumab added to fluorouracil- and hydroxyurea-based concomitant chemoradiotherapy for poor-prognosis head and neck cancer. J Clin Oncol 26 (2008) 1732-1741.
    [74] H. Saeki, S. Yanoma, S. Takemiya, Y. Sugimasa, M. Akaike, N. Yukawa, Y. Rino, T. Imada, Antitumor activity of a combination of trastuzumab (Herceptin) and oral fluoropyrimidine S-1 on human epidermal growth factor receptor 2-overexpressing pancreatic cancer. Oncology reports 18 (2007) 433-439.
    [75]L.M. Weiner, An overview of monoclonal antibody therapy of cancer. Seminars in oncology 26 (1999) 41-50.
    [76]M. C. Green, J. L. Murray, G. N. Hortobagyi, Monoclonal antibody therapy for solid tumors. Cancer treatment reviews 26 (2000) 269-286.
    [77]Y. Wada, K. Yoshida, T. Suzuki, H. Mizuiri, K. Konishi, K. Ukon, K. Tanabe, Y. Sakata, M. Fukushima, Synergistic effects of docetaxel and S-l by modulating the expression of metabolic enzymes of 5-fluorouracil in human gastric cancer cell lines.International journal of cancer 119 (2006) 783-791.
    [78]R.B. Diasio, B. E. Harris, Clinical pharmacology of 5-fluorouracil. Clinical pharmacokinetics 16 (1989) 215-237.
    [79]D.M. Thomas, J. R. Zalcberg, 5-fluorouracil: a pharmacological paradigm in the use of cytotoxics. Clinical and experimental pharmacology & physiology 25 (1998) 887-895.
    [80]L. Griffiths, I.J. Stratford, Platelet-derived endothelial cell growth factor thymidine phosphorylase in tumour growth and response to therapy. British journal of cancer 76 (1997) 689-693.
    [81]G.J. Peters, C. L. van der Wilt, B. van Triest, G. Codacci-Pisanelli, P. G. Johnston, C.J. van Groeningen, H. M. Pinedo, Thymidylate synthase and drug resistance. Eur J Cancer 31A (1995) 1299-1305.
    [82]A.A. Piper, R. M. Fox, Biochemical basis for the differential sensitivity of human T- and B-1ymphocyte lines to 5-fluorouracil. Cancer research 42 (1982) 3753-3760.
    [83] N. Hanada, H. W. Lo, C. P. Day, Y. Pan, Y. Nakajima, M. C. Hung, Co-regulation of B-Myb expression by E2F1 and EGF receptor. Molecular carcinogenesis 45 (2006) 10-17.
    [84]D. Ginsberg, EGFR signaling inhibits E2Fl-induced apoptosis in vivo: implications for cancer therapy. Sci STKE 2007 (2007) pe4.
    [85]G. Kohler, C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256 (1975) 495-497.
    [86] A. Hertel, R. P. Baum, B. Auerbach, A. Herrmann, G. Hor, [The clinical relevance of human anti-mouse-antibody (HAMA) in immunoscintigraphy]. Nuklearmedi /.in 29 (1990)221-227.
    87]J.J. Tjandra, L. Ramadi, I.F. McKenzie, Development of human anti-murine antibody (HAMA) response in patients. Immunology and cell biology 68 ( Pt 6) (1990) 367-376.
    [88] G. R. Mirick, B. M. Bradt, S. J. Denardo, G. L. Denardo, A review of human ant i-globul in antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging 48 (2004) 251-257.
    [89] P. Hwu, J. C. Yang, R. Cowherd, J. Treisman, G. E. Shafer, Z. Eshhar, S. A. Rosenberg, In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer research 55 (1995) 3369-3373.
    [90] W. Y. Hwang, J. C. Almagro, T. N. Buss, P. Tan, J. Foote, Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods (San Diego, Calif 36 (2005) 35-42.
    [91] S. O'Brien, T. Jones, Humanization of monoclonal antibodies by CDR grafting. Methods in molecular biology (Clifton, N. J 207 (2003) 81-100.
    [92] L. L. Green, Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. Journal of immunological methods 231 (1999) 11-23.
    [93] D. L. Siegel, Research and clinical applications of antibody phage display in transfusion medicine. Transfusion medicine reviews 15 (2001) 35-52.
    [94] J. J. Trill, A. R. Shatzman, S. Ganguly, Production of monoclonal antibodies in COS and CHO cells. Current opinion in biotechnology 6 (1995) 553-560.
    [95] J. Attal, M. C. Theron, C. Puissant, L. M. Houdebine, Effect of intercistronic length on internal ribosome entry site (IRES) efficiency in bicistronic mRNA. Gene expression 8 (1999) 299-309.
    [96]B.K. Lo, Antibody humanization by CDR grafting. Methods in molecular biology (Clifton, N. J 248 (2004) 135-159.
    [97] H. Wu, Y. Nie, W. D. Huse, J. D. Watkins, Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues. Journal of molecular biology 294 (1999) 151-162.
    [98]G.M. Studnicka, S. Soares, M. Better, R. E. Williams, R. Nadell, A. H. Horwitz, Human-engineered monoclonal antibodies retain full specific binding activity by preserving non-CDR complementarity-modulating residues. Protein engineering 7 (1994) 805-814.
    [99] G. Ritter, L. S. Cohen, C. Williams, Jr., E. C. Richards, L. J. Old, S. Welt, Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer research 61 (2001) 6851-6859.
    [100] A.M. Scott, F.T. Lee, W. Hopkins, J. S. Cebon, J. M. Wheatley, Z. Liu, F. E. Smyth, C. Murone, S. Sturrock, D. MacGregor, N. Hanai, K. Inoue, M. Yamasaki, M. W. Brechbiel,I.D. Davis, R. Murphy, A. Hannah, M. Lim-Joon, T. Chan, G. Chong, G. Ritter, E. W.Hoffman, A. W. Burgess, L. J. Old, Specific targeting, biodistribution, and lack of immunogenicity of chimeric anti~GD3 monoclonal antibody KM871 in patients with metastatic melanoma: results of a phase I trial. J Clin Oncol 19 (2001) 3976-3987.
    [1]J.M.Woof,D.R.Burton,Human antibody-Fc receptor interactions illuminated by crystal structures.Nature reviews 4(2004) 89-99.
    [2]G.Kohler,C.Milstein,Continuous cultures of fused cells secreting antibody of predefined specificity.Nature 256(1975) 495-497.
    [3]L.M.Weiner,Fully human therapeutic monoclonal antibodies.J Immunother 29(2006) 1-9.
    [4]M.J.Glennie,J.G.van de Winkel,Renaissance of cancer therapeutic antibodies.Drug discovery today 8(2003) 503-510.
    [5]O.H.Brekke,I.Sandlie,Therapeutic antibodies for human diseases at the dawn of the twenty-first century.Nat Rev Drug Discov 2(2003) 52-62.
    [6]H.P.Vollmers,S.Brandlein,Nature's best weapons to fight cancer.Revival of human monoclonal IgM antibodies. Human antibodies 11 (2002) 131-142.
    [7] A. Jakobovits, R.G. Amado, X. Yang, L. Roskos, G. Schwab, From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nature biotechnology 25(2007)1134-1143.
    [8] R.M. Hoet, E.H. Cohen, R.B. Kent, K. Rookey, S. Schoonbroodt, S. Hogan, L. Rem, N. Frans, M. Daukandt, H. Pieters, R. van Hegelsom, N.C. Neer, H.G. Nastri, I.J. Rondon, J.A. Leeds, S.E.Hufton, L. Huang, I. Kashin, M. Devlin, G. Kuang, M. Steukers, M. Viswanathan, A.E. Nixon, D.J. Sexton, H.R. Hoogenboom, R.C. Ladner, Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nature biotechnology 23 (2005) 344-348.
    [9] C. Rothe, S. Urlinger, C. Lohning, J. Prassler, Y. Stark, U. Jager, B. Hubner, M. Bardroff, I. Pradel, M. Boss, R. Bittlingmaier, T. Bataa, C. Frisch, B. Brocks, A. Honegger, M. Urban, The human combinatorial antibody library HuC AL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. Journal of molecular biology 376 (2008) 1182-1200.
    [10] J. Osbourn, L. Jermutus, A. Duncan, Current methods for the generation of human antibodies for the treatment of autoimmune diseases. Drug discovery today 8 (2003) 845-851.
    [11] J. Hanes, C. Schaffitzel, A. Knappik, A. Pluckthun, Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nature biotechnology 18 (2000) 1287-1292.
    [12] J.R. McWhirter, A. Kretz-Rommel, A. Saven, T. Maruyama, K.N. Potter, C.I. Mockridge, E.P. Ravey, F. Qin, K.S. Bowdish, Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 1041-1046.
    [13] S. Frederickson, M.W. Renshaw, B. Lin, L.M. Smith, P. Calveley, J.P. Springhorn, K. Johnson, Y. Wang, X. Su, Y. Shen, K.S. Bowdish, A rationally designed agonist antibody fragment that functionally mimics thrombopoietin. Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 14307-14312.
    [14] J. Li, T. Sai, M. Berger, Q. Chao, D. Davidson, G. Deshmukh, B. Drozdowski, W. Ebel, S. Harley, M. Henry, S. Jacob, B. Kline, E. Lazo, F. Rotella, E. Routhier, K. Rudolph, J. Sage, P. Simon, J. Yao, Y. Zhou, M. Kavuru, T. Bonfield, M.J. Thomassen, P.M. Sass, N.C. Nicolaides, L. Grasso, Human antibodies for immunotherapy development generated via a human B cell hybridoma technology. Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 3557-3562.
    [15] L. Presta, Antibody engineering for therapeutics. Current opinion in structural biology 13 (2003) 519-525.
    [16] L.J. Holt, C. Herring, L.S. Jespers, B.P. Woolven, I.M. Tomlinson, Domain antibodies: proteins for therapy. Trends in biotechnology 21 (2003) 484-490.
    [17] I. Kostareva, F. Hung, C. Campbell, Purification of antibody heteropolymers using hydrophobic interaction chromatography. Journal of chromatography 1177 (2008) 254-264.
    [18] R. Bargou, E. Leo, G. Zugmaier, M. Klinger, M. Goebeler, S. Knop, R. Noppeney, A. Viardot, G. Hess, M. Schuler, H. Einsele, C. Brandl, A. Wolf, P. Kirchinger, P. Klappers, M. Schmidt, G.Riethmuller, C. Reinhardt, P.A. Baeuerle, P. Kufer, Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science (New York, N.Y 321 (2008) 974-977.
    [19] S. Siberil, C.A. Dutertre, C. Boix, E. Bonnin, R. Menez, E. Stura, S. Jorieux, W.H. Fridman, J.L. Teillaud, Molecular aspects of human FcgammaR interactions with IgG: functional and therapeutic consequences. Immunology letters 106 (2006) 111-118.
    [20] R.L. Shields, J. Lai, R. Keck, L.Y. O'Connell, K. Hong, Y.G. Meng, S.H. Weikert, L.G. Presta. Lack of fucose on human IgGl N-linked oligosaccharide improves binding to human Fcgamma RⅢ and antibody-dependent cellular toxicity. The Journal of biological chemistry 277 (2002)26733-26740.
    [21] L.G Presta, R.L. Shields, A.K. Namenuk, K. Hong, Y.G. Meng, Engineering therapeutic antibodies for improved function. Biochemical Society transactions 30 (2002) 487-490.
    [22] E. Lunde, V. Lauvrak, I.B. Rasmussen, K.W. Schjetne, K.M. Thompson, T.E. Michaelsen, O.H. Brekke, L.M. Sollid, B. Bogen, I. Sandlie, Troybodies and pepbodies. Biochemical Society transactions 30 (2002) 500-506.
    [23] Y. Zhao, M. Russ, C. Morgan, S. Muller, H. Kohler, Therapeutic applications of superantibodies. Drug discovery today 10 (2005) 1231-1236.
    [24] G. Suntharalingam, M.R. Perry, S. Ward, S.J. Brett, A. Castello-Cortes, M.D. Brunner, N. Panoskaltsis, Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412.The New England journal of medicine 355 (2006) 1018-1028.
    [25] A. Orlova, V. Tolmachev, R. Pehrson, M. Lindborg, T. Tran, M. Sandstrom, F.Y. Nilsson, A. Wennborg, L. Abrahmsen, J. Feldwisch, Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer research 67 (2007) 2178-2186.
    [26] V. Tolmachev, A. Orlova, R. Pehrson, J. Galli, B. Baastrup, K. Andersson, M. Sandstrom, D. Rosik, J. Carlsson, H. Lundqvist, A. Wennborg, F.Y. Nilsson, Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer research 67 (2007) 2773-2782.
    [27] G. Helguera, S.L. Morrison, M.L. Penichet, Antibody-cytokine fusion proteins: harnessing the combined power of cytokines and antibodies for cancer therapy. Clinical immunology (Orlando,Fla 105 (2002) 233-246.
    [28] L.H. Stockwin, S. Holmes, The role of therapeutic antibodies in drug discovery. Biochemical Society transactions 31 (2003) 433-436.
    [29] J. Rogers, R.J. Schoepp, O. Schroder, T.L. Clements, T.F. Holland, J.Q. Li, J. Li, L.M. Lewis, R.P. Dirmeier, G.J. Frey, X. Tan, K. Wong, G. Woodnutt, M. Keller, D.S. Reed, B.E. Kimmel, E.C.Tozer, Rapid discovery and optimization of therapeutic antibodies against emerging infectious diseases. Protein Eng Des Sel 21 (2008) 495-505.
    [30] P.R. Hinton, M.G. Johlfs, J.M. Xiong, K. Hanestad, K.C. Ong, C. Bullock, S. Keller, M.T. Tang, J.Y. Tso, M. Vasquez, N. Tsurushita, Engineered human IgG antibodies with longer serum half-lives in primates. The Journal of biological chemistry 279 (2004) 6213-6216.
    [31] C.S. Fishburn, The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. Journal of pharmaceutical sciences 97 (2008) 4167-4183.
    [32] S.R. Hamilton, R.C. Davidson, N. Sethuraman, J.H. Nett, Y. Jiang, S. Rios, P. Bobrowicz, T.A. Stadheim, H. Li, B.K. Choi, D. Hopkins, H. Wischnewski, J. Roser, T. Mitchell, R.R. Strawbridge,J. Hoopes, S. Wildt, T.U. Gerngross, Humanization of yeast to produce complex terminally sialylated glycoproteins. Science (New York, N.Y 313 (2006) 1441-1443.
    [33] R.M. Twyman, S. Schillberg, R. Fischer, Transgenic plants in the biopharmaceutical market. Expert opinion on emerging drugs 10 (2005) 185-218.
    [34] R. Fischer, Y.C. Liao, K. Hoffmann, S. Schillberg, N. Emans, Molecular farming of recombinant antibodies in plants. Biological chemistry 380 (1999) 825-839.
    [35] K.M. Cox, J.D. Sterling, .J.T. Regan, J.R. Gasdaska, K.K. Frantz, C.G. Peele, A. Black, D. Passmore, C. Moldovan-Loomis, M. Srinivasan, S. Cuison, P.M. Cardarelli, L.F. Dickey, Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nature biotechnology 24 (2006) 1591-1597.
    [36] M. Marignani, S. Angeletti, G. delle Fave, Monoclonal antibody therapy and non-Hodgkin's lymphoma. The New England journal of medicine 360 (2009) 192-193; author reply 193.
    [37] F. Meric-Bernstam, M.C. Hung, Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy. Clin Cancer Res 12 (2006) 6326-6330.
    [38] R.A. Larson, New agents for induction and postremission therapy of acute myeloid leukemia. Leukemia 15 (2001) 675-676.
    [39] B.D. Cheson, J.P. Leonard, Monoclonal antibody therapy for B-cell non-Hodgkin's lymphoma. The New England journal of medicine 359 (2008) 613-626.
    [40] R.O. Dillman, Radiolabeled anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoma. J Clin Oncol 20 (2002) 3545-3557.
    [41] G. Giaccone, Epidermal growth factor receptor inhibitors in the treatment of non-small-cell lung cancer. J Clin Oncol 23 (2005) 3235-3242.
    [42] R.J. Mayer, Targeted therapy for advanced colorectal cancer-more is not always better. The New England journal of medicine 360 (2009) 623-625.
    [43] R.M. Giusti, K.A. Shastri, M.H. Cohen, P. Keegan, R. Pazdur, FDA drug approval summary: panitumumab (Vectibix). The oncologist 12 (2007) 577-583.
    [44] J. Xu, Z.Y. Shen, X.G. Chen, Q. Zhang, H.J. Bian, P. Zhu, H.Y. Xu, F. Song, X.M. Yang, L. Mi, Q.C. Zhao, R. Tian, Q. Feng, S.H. Zhang, Y. Li, J.L. Jiang, L. Li, X.L. Yu, Z. Zhang, Z.N. Chen, A randomized controlled trial of Licartin for preventing hepatoma recurrence after liver transplantation. Hepatology (Baltimore, Md 45 (2007) 269-276.
    [45] G. Valabrega, F. Montemurro, M. Aglietta, Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol 18 (2007) 977-984.
    [46]B. Vincenzi, G. Schiavon, M. Silletta, D. Santini, G. Tonini, The biological properties of cetuximab. Critical reviews in oncology/hematology 68 (2008) 93-106.
    [47] J.H. van Krieken, A. Jung, T. Kirchner, F. Carneiro, R. Seruca, F.T. Bosman, P. Quirke, J.F. Flejou, T. Plato Hansen, G. de Hertogh, P. Jares, C. Langner, G. Hoefler, M. Ligtenberg, D. Tiniakos, S.Tejpar, G. Bevilacqua, A. Ensari, KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Arch 453 (2008) 417-431.
    [48] F. Di Nicolantonio, M. Martini, F. Molinari, A. Sartore-Bianchi, S. Arena, P. Saletti, S. De Dosso, L. Mazzucchelli, M. Frattini, S. Siena, A. Bardelli, Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26 (2008) 5705-5712.
    [49] M. Jhawer, S. Goel, A.J. Wilson, C. Montagna, Y.H. Ling, D.S. Byun, S. Nasser, D. Arango, J. Shin, L. Klampfer, L.H. Augenlicht, R. Perez-Soler, J.M. Mariadason, PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer research 68 (2008) 1953-1961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700