AHR和PPAR-γ基因多态性与肿瘤遗传易感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     肺癌是全世界头号癌症“杀手”。吸烟是导致肺癌的主要因素,大约87%的肺癌都是由吸烟引起的。然而,只有不到20%的吸烟者最终会罹患肺癌,提示遗传因素以及基因与吸烟的交互作用在肺癌的发生、发展中可能起到重要作用。
     存在于烟草烟雾中的致癌物多环芳烃(PAHs)的致癌作用主要是通过芳香烃受体(AHR)所介导的,它是一个配体依赖的转录因子,可以调节受烟草烟雾诱导表达的致癌物代谢酶的转录。我们推测AHR基因上的遗传变异可能会影响个体对于肺癌易感性的差异,为了检验这一假设,我们采用了病例-对照的研究方法,选择了该基因上的8个单核苷酸多态(SNP)位点,利用Illumina和Taqman分型方法对500例中国汉族肺癌患者和517例年龄、性别、地区与之相匹配的正常对照进行了基因分型,研究了不同等位基因型、基因型、单倍型与肺癌风险的相关性,并探讨了基因-环境的交互作用与肺癌遗传易感性的关系。对于多重检验可能带来的假阳性问题,本研究采用100,000次的置换检验方法予以控制。
     在单位点分析中,我们发现rs2158041和rs7811989两个SNP位点的基因型分布在病例和对照中存在显著的统计学差异,P值分别为0.0038和0.008。经过置换检验后,这两个位点的基因型分布差异仍显示出显著性(P值分别为0.0193和0.0407)。非条件logistic回归分析表明,rs2158041位点的突变杂合基因型可以显著增加患肺癌的风险(与GG基因型相比,GA基因型的校正OR=1.53,95%CI=1.17-1.99),rs7811989位点的突变杂合基因型对于罹患肺癌具有相同的效应(与GG基因型相比,GA基因型的校正OR=1.48,95%CI=1.13-1.93)。此外,单倍型分析表明,AHR基因的单倍型在病例和对照组中的分布具有显著性差异(全局性检验P=1.38e-5)。我们还发现,当把累计吸烟量作为分类变量或是连续变量来计算时,非同义突变位点rs2066853(p.Arg554Lys)与累计吸烟量均存在统计学上显著的交互作用(P值分别为0.033和0.019)。突变基因型Lys/Lys在重度吸烟者中可以显著增加患肺癌的风险(校正OR=3.36,95%CI=1.07-10.55)。
     以上研究结果提示,AHR基因多态和该基因与吸烟的交互作用可能在肺癌的发病过程中扮演着一定角色。
     第二部分
     很多研究证据表明过氧化物酶增殖活化物受体γ(PPAR-γ)被活化后可以削弱由吸烟引起的炎症反应并且可以抑制肺部肿瘤的生长,提示PPAR-γ在肺癌的发生、发展中可能起到肿瘤抑制因子的作用。我们推测,PPAR-γ基因上的遗传变异可能对个体罹患肺癌的风险造成影响。为了验证这一假设,本文采用病例-对照的研究方法,在中国汉族人群的500例肺癌患者和517例年龄、性别、地区与之相匹配的正常对照中,通过Illumina高通量基因分型技术对该基因上11个SNP多态与肺癌易感性的关系进行了研究,并且探讨了PPAR-γ基因与吸烟的交互作用对于肺癌患病风险的影响。
     我们首次发现,该基因上的7个SNP的突变基因型与肺癌风险降低具有相关性,在显性模型下,rs13073869和rs1899951的P值分别为0.0004和0.0130;在加性模型下,rs4135247的P值为0.0310;在超显性模型下,rs2972162、rs709151、rs1175541和rs1175543的P值分别为0.0468、0.0175、0.0172和0.0386。其中,rs13073869和rs1899951两个位点经过100,000次的置换检验校正后仍为阳性。与单位点分析一致,单倍型和二倍型分析均显示由rs13073869,rs1899951和rs4135247位点组成的单倍型‘AGA'和‘AAA'具有保护效应。与携带有单倍域1中最常见的单倍型‘GGG'的个体相比,单倍型‘AGA'(校正OR=0.80,95%CI=0.65-0.98)和‘AAA'(校正OR=0.57,95%CI=0.37-0.87)的携带者患肺癌的风险显著降低。携带有1~2个‘AGA'拷贝的个体与非携带者相比,罹患肺癌的风险降低了28%(校正OR=0.72,95%CI=0.56-0.93);而携带有1~2个‘AAA'拷贝的个体与非携带者相比,罹患肺癌的风险降低了42%(校正OR=0.58,95%CI=0.37-0.90)。此外,我们发现rs1899951位点与吸烟之间存在显著的基因-环境交互作用。
     根据HapMapⅡ期中国汉族人群的基因分型数据,rs13073869与PPAR-γ3亚型启动子区的已知功能位点C-681G(rs10865710)之间存在完全的连锁不平衡(A等位基因与-681 G等位基因连锁,D'=1.00,r~2=1.00)。此外,rs1899951位点与PPAR-γ2亚型特异外显子B上的已知功能位点p.Pro12Ala(rs1801282)存在完全的连锁不平衡(A等位基因与Ala12等位基因连锁,D'=1.00,r~2=1.00)。这个基因真正的致病位点的确切位置及生物功能有待于进一步的研究和探索。
     第三部分
     神经胶质瘤(简称胶质瘤)是神经系统最常见的原发性肿瘤,占所有脑肿瘤的70%以上。其中,多形性胶质母细胞瘤(简称胶质母细胞瘤)是成年人中恶性程度最高、入侵性最强的胶质瘤。越来越多的体内外研究证实,PPAR-γ被配体活化后可以抑制胶质瘤的生长、增殖,诱导其调亡,并阻断胶质瘤细胞的迁徙和入侵性。
     目前,该基因上已知的功能比较明确的两个位点分别是C-681G(rs10865710)和p.Pro12Ala(rs1801282)。在本论文的第二部分的研究工作中,我们发现与肺癌关联最显著的两个位点rs13073869和rs1899951分别与上述两个已知的功能位点存在完全的连锁不平衡。鉴于脑胶质瘤和肺癌在发病机制上的相关性,以及PPAR-γ在二者中具有相似的抗肿瘤作用,我们推测C-681G和p.Pro12Ala可能会影响脑胶质瘤的遗传易感性。为此,我们在包含有241例胶质母细胞瘤,284例星形细胞瘤(胶质母细胞瘤除外),241例其他类型胶质瘤病例以及824例正常对照的中国人群病例一对照研究中,探讨了C-681G和p.Pro12Ala与脑胶质瘤的相关性。
     logistic回归表明,与C-681G位点的野生型等位基因C相比,突变型等位基因G与胶质母细胞瘤风险降低显著相关(校正OR=0.76;95%CI=0.61-0.96;P=0.020),并且这种保护效应随着突变等位基因数目的增加而增强(趋势检验P=0.024)。p.Pro12Ala与胶质母细胞瘤的相关性没有达到统计学意义的显著性,但表现出保护性趋势(校正OR=0.68;95%CI=0.41-1.15;P=0.151)。因此,在胶质母细胞瘤中,C-681G和p.Pro12Ala的突变等位基因可以看作是潜在的低风险等位基因。然而,在星形细胞瘤和其他胶质瘤类型中,并没有观察到这两个位点的任何效应。
     当我们对这两个位点进行联合效应分析时,与不携带低风险等位基因的个体相比,携带有1个低风险等位基因的个体与胶质母细胞瘤相关性的OR值和95%CI分别为0.85和0.61-1.18,而携带有两个以上低风险等位基因的个体与胶质母细胞瘤相关性的OR值和95%CI分别为0.50和0.32-0.79,显示出PPAR-γ基因功能位点的突变等位基因对胶质母细胞瘤的保护作用具有显著的等位基因剂量依赖效应(趋势检验P=0.004)。
     我们的研究表明PPAR-γ基因的C-681G位点可能在胶质母细胞瘤中发挥作用,这与和它存在完全LD的rs13073869位点突变等位基因在肺癌中的保护效应一致。
PartⅠ
     Lung cancer is the leading cause of cancer deaths in the world with a poor prognosis and an overall 5-year survival rate of<15%.The epidemic of lung cancer is directly attributable to cigarette smoking that accounts for 87 percent of lung cancer cases.However,only a small fraction of smokers(usually<20%)develop lung cancer in their lifetime.It is well established that susceptibility to lung cancer may in part be attributable to inter-individual variation in metabolic activation or detoxification of tobacco carcinogens,suggesting the importance of genetic determinants in lung cancer etiology,including the gene-environment interaction between genetic polymorphisms and environmental factors,such as smoking.
     Most of the carcinogenic effects of polycyclic aromatic hydrocarbons(PAHs) present in tobacco smoke are mediated by the aryl hydrocarbon receptor(AHR),a ligand-dependent transcription factor that regulates tobacco-induced expression of carcinogen metabolic enzymes.To test the hypothesis that genetic variations in AHR may confer individual susceptibility to lung cancer,we genotyped for eight selected single nucleotide polymorphisms(SNPs)in AHR in a case-control study of 500 lung cancer patients and 517 cancer-free controls in a Chinese population.
     We observed statistically significant differences between case patients and control subjects in genotype distributions for two SNPs(P=0.0038 for rs2158041 and P=0.008 for rs7811989)and the significance remained after applying 100,000-time permutation tests(P=0.0193 for rs2158041 and P=0.0407 for rs7811989).Further logistic regression analyses revealed that the significantly increased lung cancer risk was associated with heterozygous genotypes of rs2158041(adjusted odds ratio=1.53 and 95%confidence interval=1.17-1.99 for GA,compared with the GG genotype)and rs7811989(adjusted odds ratio=1.48 and 95%confidence interval=1.13-1.93 for GA, compared with the GG genotype).Furthermore,haplotype analysis revealed significant differences in haplotype distributions of AHR between cases and controls(Global P= 1.38e-5).We also observed statistically significant interaction between the polymorphism rs2066853(p.Arg554Lys)and cumulative cigarette smoking as a discrete or continuous variable(P=0.033 and 0.019,respectively),and the Lys/Lys genotype conferred an increased risk of lung cancer in the heavy smokers(adjusted odds ratio=3.36 and 95%confidence interval=1.07-10.55).
     These findings suggest that AHR polymorphisms and potential gene-smoking interaction may be involved in the etiology of lung cancer.
     PartⅡ
     Accumulating evidence indicates that activation of the peroxisome proliferator-activated receptor-γ(PPAR-γ)dampens the inflammation cascade caused by cigarette smoking and inhibits tumor growth of the lung,suggesting that it has tumor suppressor functions in the pathogenesis and progression of human lung cancer.We hypothesized that genetic variation in the PPAR-γgene may have an impact on individual risk of lung cancer.To test this hypothesis,we conducted a case-control study of 500 incident lung cancer cases and 517 age and sex frequency-matched cancer-free controls in a Chinese population,and genotyped 11 single nucleotide polymorphisms (SNPs)of PPAR-γusing an Illumina high-throughput genotyping platform.We also investigated potential interactions between polymorphisms of the PPAR-γgene and cigarette smoking in lung cancer risk.The issue of multiple tests was controlled by using 10,000-time permutation tests.
     We found,for the first time,that decreased lung cancer risk was statistically significantly associated with seven SNPs(P=0.0004 for rs13073869 and 0.0130 for rsl899951 in a dominant model;P=0.0310 for rs4135247 in a log-additive model;and P=0.0468 for rs2972162,0.0175 for rs709151,0.0172 for rs11715541 and 0.0386 for rs1175543 in an overdominant model).The difference for two SNPs(rs13073869 and rs1899951)remained significant after applying 10,000-time permutation tests. Consistent with these results of single-locus analysis,both the haplotype and diplotype analyses revealed a protective effect of the haplotype 'AGA' and 'AAA' of rs13073869, rs1899951 and rs4135247.The risk of lung cancer was significantly decreased among individuals carrying the haplotype 'AGA'(adjusted OR=0.80 and 95%CI=0.65-0.98), and 'AAA'(adjusted OR=0.57 and 95%CI=0.37-0.87),compared with those carrying the most common haplotype 'GGG' in block 1.Subjects carrying 1~2 copies of the haplotye 'AGA' had a 28%reduced lung cancer risk(adjusted OR=0.72 and 95% CI=0.56-0.93),and those carrying 1~2 copies of 'AAA' had a 42%reduced lung cancer risk(adjusted OR=0.58 and 95%CI=0.37-0.90)compared with their respective non-carriers Furthermore,we observed a statistically significant interaction between the rs1899951 and cigarette smoking.Our results indicate that PPAR-γpolymorphisms and their interaction with smoking may contribute to the etiology of lung cancer.
     According to the phaseⅡHapMap data on 45 Han Chinese,the rs13073869 polymorphism was in perfect LD(D'=1.00,r~2=1.00)with a OG substitution (rs10865710)in the PPAR-γ~3 regulatory region at position-681 in PPAR-γ~3-specific exon A2(the A allele being associated with the-681 G allele).In vitro,the-681 G allele completely abolished the binding of STAT5B to the cognate promoter element as well as the transactivation of PPAR-γ3 by the growth hormone/STAT5B pathway.Furthermore, rs1899951 is in perfect LD with the non-synonymous polymorphism p.Pro12Ala (rs1801282)in PPAR-γ2-specific exon B(the A allele being associated with the Ala12 allele).This amino acid is located in a PPAR-γ2 domain that enhances ligand independent activation,and the Pro-to-Ala exchange may cause a conformational change in the protein,thus affecting its activity.The exact location and biological functions of the real causal SNPs of the gene is of great interest and warrants further investigation.
     PartⅢ
     Gliomas are the most common primary tumors in the central nervous system(CNS), which account for more than 70%of all brain tumors,with glioblastoma multiformes (GBMs)as the most lethal and aggressive intracranial neoplasm striking adults. Increasing evidence demonstrates that PPAR-γactivation by agonists induce apoptosis and inhibit glioma cell migration and brain invasion in vivo and in vitro.
     Two functional polymorphisms have been identified in the PPAR-γgene.One is a praline to alanine substitution,located at codon 12(p.Pro12Ala,rs1801282)of the PPAR-γ2-specific exon B,which may cause a conformational change in the protein thus affecting its activity.Another is a C to G variant(c.-681C>G,rs10865710)in the promoter region for the PPARγ-3 transcript at position-681 from the beginning of exon A2,which completely abolished the binding of STAT5B to the cognate promoter element as well as the transactivation of the PPARγ-3 promoter.The polymorphisms of rs10865710 and rs1899951 which were found to be significantly associated with lung cancer in our study were in perfect LD(D'=1.00,r~2=1.00)with c.-681C>G and p.Pro12Ala,respectively.We hypothesized that these two functional polymorphisms might be the causal loci and may confer individual susceptibility to glioma.
     To test this hypothesis,we investigated the association between these two SNPs and glioma risk in a case-control study of 241 glioblastoma cases,284 astrocytoma cases(except glioblastoma),241 other glioma cases,and 824 healthy controls.We found, for the first time,the variant G allele c.-681C>G was significantly associated with reduced risk of glioblastoma(adjusted OR=0.76;95%CI=0.61-0.96;P=0.020),with the estimated effect following a trend of decreasing magnitude by number of variant alleles (P for trend=0.024).The polymorphism rs1801282 showed a similar trend as rs10865710 toward association in glioblastoma,although it did not reach statistical significance(adjusted OR=0.68;95%CI=0.41-1.15;P=0.151).When the combined effect of these two polymorphisms were examined,the ORs(95%CIs)for glioblastoma were 0.85(0.61-1.18)for subjects possessing only one low-risk allele and 0.50 (0.32-0.79)for those possessing two or three low-risk alleles,compared to subjects without any low-risk allele,suggesting a significant locus dose-response effect on glioblastoma(P for trend=0.004).However,no significant association with risk of astrocytoma and other glioma was observed for p.Pro12Ala or c.-681C>G in our study. These findings suggest that the functional SNP c.-681C>G appears to play a significant role in glioblastoma,the most lethal and aggressive primary brain tumor striking adults.
引文
1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002.CA Cancer J Clin 2005; 55:74-108.
    2. 邹小农.中国肺癌流行病学.中华肿瘤防治杂志; 2007年 14卷12期: 881-883.
    3. American Cancer Society, I. Cancer facts and figures 2003. Atlanta, GA: American Cancer Society 2003.
    4. Khuder SA. Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer 2001; 31:139-148.
    5. Wang SS, Samet JM.Tobacco smoking and cancer: The promise of molecular epidemiology. Salud Publica Mex. 1997; 39: 331-345.
    6. International Agency for Research on Cancer.IARC Mechanism of carcinogenesis in risk identification. World Health Organization 1992; 116.
    7. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999;91: 1194-1210.
    8. Kiyohara C, Otsu A, Shirakawa T, Fukuda S, Hopkin JM. Genetic polymorphisms and lung cancer susceptibility: a review. Lung Cancer 2002; 37:241-256.
    9. Risch A, Plass C.Lung cancer epigenetics and genetics. Int J Cancer. 2008 ;123:l-7
    10. Kiyohara C, Yoshimasu K, Takayama K, Nakanishi Y. Lung cancer susceptibility: are we on our way to identifying a high-risk group? Future Oncol 2007; 3: 617-627.
    11. Gonza'lez, F. J. The role of carcinogen-metabolizing enzyme polymorphism in cancer susceptibility. Reprod. Toxicol 1997; 11: 397-412.
    12. Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland L, Phillips DH, Canzian F, Haugen A. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 2006; 27:560-7.
    13. Popanda O, Schattenberg T, Phong CT, Butkiewicz D, Risch A, Edler L, Kayser K, Dienemann H, Schulz V, Drings P, Bartsch H, Schmezer P. Specific combinations of DNA repair gene variants and increased risk for non-small cell lung cancer. Carcinogenesis 2004;25: 2433-2441.
    14. Reich DE, Lander ES.The allelic spectrum of human disease. Trends Genet 2001; 17: 502-510.
    15. Bacunu SA, Devlin B, Roeder K. The power of genomic control.Am J Human diseases.Science 1996; 273:1516-1517.
    16. Rowland JC, Gustaffson JA. Aryl hydrocarbon receptor-mediate signal transduction. Crit Rev Toxicol 1997; 27:109-134.
    17. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 2004; 279: 23847-23850.
    18. Standiford TJ, Keshamouni VG, Reddy RC. Peroxisome proliferator-activated receptor-{gamma} as a regulator of lung inflammation and repair. Proc Am Thorac Soc 2005; 2:226-231.
    19. Debril MB, Renaud JP, Fajas L, Auwerx J. The pleiotropic functions of peroxisome proliferator-activated receptor gamma. J Mol Med 2001; 79: 30-47.
    20. Kawajiri K, Watanabe J, Eguchi H, Nakachi K, Kiyohara C, Hayashi S. Polymorphisms of human Ah receptor gene are not involved in lung cancer. Pharmacogenetics 1995; 5: 151-158.
    21. Cauchi S, Stucker I, Solas C, Laurent-Puig P, Cenee S, Hemon D, et al. Polymorphisms of human aryl hydrocarbon receptor (AhR) gene in a French population: relationship with CYP1A1 inducibility and lung cancer. Carcinogenesis 2001; 22: 1819-1824.
    22. Kim JH, Kim H, Lee KY, Kang JW, Lee KH, Park SY, et al. Aryl hydrocarbon receptor gene polymorphisms affect lung cancer risk. Lung Cancer 2007; 56: 9-15.
    23. Campa D, Zienolddiny S, Maggini V, Skaug V, Haugen A, Canzian F. Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis 2004; 25:229-235.
    24. Kleihues P, Cavenee WK. 2000. Pathology and Genetics of Tumors of the Nervous System. Lyon: IARC Press.
    25. Morosetti R, Servidei T, Mirabella M, Rutella S, Mangiola A, Maira G, et al. The PPARgamma ligands PGJ2 and rosiglitazone show a differential ability to inhibit proliferation and to induce apoptosis and differentiation of human glioblastoma cell lines. Int J Oncol 2004; 25:493-502.
    26. Grammes C, Landreth GE, Schlegel U, Heneka MT. The nonthiazolidinedione tyrosine-based peroxisome proliferator-activated receptor gamma ligand GW7845 induces apoptosis and limits migration and invasion of rat and human glioma cells. J Pharmacol Exp Ther 2005; 313:806-813.
    27. Han S, Roman J. Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol Cancer Ther 2006; 5:430-437.
    28. Zander T, Kraus JA, Grammes C, Schlegel U, Feinstein D, Klockgether T, et al. Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. J Neurochem 2002; 81:1052-1060.
    29. Eyupoglu IY, Hahnen E, Heckel A, Siebzehnrubl FA, Buslei R, Fahlbusch R, et al. Malignant glioma-induced neuronal cell death in an organotypic glioma invasion model. Technical note. J Neurosurg 2005; 102:738-744.
    30. Grammes C, Landreth GE, Sastre M, Beck M, Feinstein DL, Jacobs AH, et al. Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol 2006; 70:1524-1533.
    1. Shields PG. Molecular epidemiology of smoking and lung cancer. Oncogene 2002; 21:6870-6876.
    2. Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa LA. DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 2002; 21: 5450-5461.
    3. Nebert DW, McKinnon RA, Puga A. Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol 1996; 15: 273-280.
    4. Taningher M, Malacarne D, Izzotti A, Ugolini D, Parodi S. Drug metabolism polymorphisms as modulators of cancer susceptibility. Mutat Res 1999,436: 227-261.
    5. Bartsch H, Nair U, Risch A, Rojas M, Wikman H, Alexandrov K. Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiol Biomarkers Prev 2000; 9: 3-28.
    6. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999; 91:1194-1210.
    7. Rowland JC, Gustaffson JA. Aryl hydrocarbon receptor-mediate signal transduction. Crit Rev Toxicol 1997; 27:109-134.
    8. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 2004; 279: 23847-23850.
    9. Uno S, Dalton TP, Dragin N, Curran CP, Derkenne S, Miller ML, et al. Oral benzo[a]pyrene in Cypl knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol Pharmacol 2006; 69:1103-1114.
    10. Hayes, JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30:445-600.
    11. Schrenk D. Impact of dioxin-type induction of drug-metabolizing enzymes on the metabolism of endo- and xenobiotics. Biochem Pharmacol 1998; 55: 1155-1162.
    12. Phillips DH. Fifty years of benzo(a)pyrene. Nature 1983; 303: 468-472.
    13. Stansbury KH, Flesher JW, Gupta RC. Mechanism of aralkyl-DNA adduct formation from benzo[a]pyrene in vivo. Chem Res Toxicol 1994; 7: 254-259.
    14. Shimizu Y, Nakatsuru Y, Ichinose M, Takahashi Y, Kume H, Mimura J, et al. Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 2000; 97:779-782.
    15. Revel A, Raanani H, Younglai E, Xu J, Rogers I, Han R, et al. Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects lung from DNA damage and apoptosis caused by benzo[a]pyrene. J Appl Toxicol 2003; 23: 255-261.
    16. Okey AB, Vella LM, Harper PA. Detection and characterization of a low affinity form of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1-450 by 3-methylcholanthrene. Mol Pharmacol 1989; 35: 823-830.
    17. Nebert DW. The Ah locus: genetic differences in toxicity, cancer, mutation, and birth defects. Crit Rev Toxicol 1989; 20: 153-174.
    18. Poland A, Palen D, Glover E. Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol Pharmacol 1994; 46: 915-921.
    19. Shields PG. Molecular epidemiology of lung cancer. Ann Oncol 1999; 10Suppl5: S7-11.
    20. Harris CC, Autrup H, Connor RD, Barrett LA, McDowell EM, Trump BF. Interindividual variation in binding of benzo[a]pyrene to DNA in cultured human bronchi. Science 1976, 194:1067-1069.
    21. Willey JC, Coy EL, Frampton MW, Torres A, Apostolakos MJ, Hoehn G, et al. Quantitative RT-PCR measurement of cytochromes P450 1A1, 1B1, and 2B7, microsomal epoxide hydrolase, and NADPH oxidoreductase expression in lung cells of smokers and nonsmokers. Am J Respir Cell Mol Biol 1997, 17:114-124.
    22. Kellermann G, Cantrell E, Shaw CR. Variations in extent of aryl hydrocarbon hydroxylase induction in cultured human lymphocytes. Cancer Res 1973; 33: 1654-1656.
    23. Nebert DW, Jensen, NM. The Ah locus: genetic regulation of the metabolism of carcinogens, drugs, and other environmental chemicals by cytochrome P-450-mediated monooxygenases. CRC Crit Rev Biochem 1979; 6: 401-437.
    24. Kouri RE, McKinney CE, Slomiany DJ, Snodgrass DR, Wray NP, McLemore TL. Positive correlation between high aryl hydrocarbon hydroxylase activity and primary lung cancer as analyzed in cryopreserved lymphocytes. Cancer Res 1982; 42: 5030-5037.
    25. Denison MS, Nagy SR.Annu Rev Pharmacol Toxicol 2003; 43:309-334.
    26. Dieter Schrenk. Biochemical Pharmacology 1998; 55:1155-1162.
    27. Amos CI, Caporaso NE, Weston AW. Cancer Epidemiolo Biomarkers Pre 1992; 1:505-513.
    28. Botstein D, Risch. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 2003; 33(Suppl):228-237.
    29. Lewontin RC. On measures of gametic disequilibrium. Genetics 1988; 120: 849-852.
    30. Barrett JC, Fry B, Mailer J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21:263-265.
    31. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225-2229.
    32. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002; 70:425-434.
    33.刘宏亮。博士毕业论文《DNA 损伤修复及叶酸代谢基因单核苷酸多态和中国人群肺癌遗传易感性研究》,2007年。
    34. Hahn ME. The aryl hydrocarbon receptor: a comparative perspective. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1998; 121: 23-53.
    35. Karchner SI, Franks DG, Powell WH, Hahn ME. Regulatory interactions among three members of the vertebrate aryl hydrocarbon receptor family: AHR repressor, AHR1, and AHR2. J Biol Chem 2002; 277: 6949-6959.
    36. Harper PA, Wong JY, Lam MS, Okey AB. Polymorphisms in the human AH receptor. Chem Biol Interact 2002; 141: 161-187.
    37. Martey CA, Baglole CJ, Gasiewicz TA, Sime PJ, Phipps RP. The aryl hydrocarbon receptor is a regulator of cigarette smoke induction of the cyclooxygenase and prostaglandin pathways in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2005; 289: L391-399.
    38. Marlowe JL, Puga A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem 2005; 96: 1174-1184.
    39. Senft AP, Dalton TP, Nebert DW, Genter MB, Puga A, Hutchinson RJ, et al. Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor. Free Radic Biol Med 2002; 33: 1268-1278.
    40. Poland A, Palen D, Glover E. Tumour promotion by TCDD in skin of HRS/J hairless mice. Nature 1982; 300: 271-273.
    41. Chang JT, Chang H, Chen PH, Lin SL, Lin P. Requirement of aryl hydrocarbon receptor overexpression for CYP1B1 up-regulation and cell growth in human lung adenocarcinomas. Clin Cancer Res 2007; 13: 38-45.
    42. Kawajiri K, Watanabe J, Eguchi H, Nakachi K, Kiyohara C, Hayashi S. Polymorphisms of human Ah receptor gene are not involved in lung cancer. Pharmacogenetics 1995; 5: 151-158.
    43. Cauchi S, Stucker I, Solas C, Laurent-Puig P, Cenee S, Hemon D, et al. Polymorphisms of human aryl hydrocarbon receptor (AhR) gene in a French population: relationship with CYP1A1 inducibility and lung cancer. Carcinogenesis 2001; 22: 1819-1824.
    44. Kim JH, Kim H, Lee KY, Kang JW, Lee KH, Park SY, et al. Aryl hydrocarbon receptor gene polymorphisms affect lung cancer risk. Lung Cancer 2007; 56: 9-15.
    45. Wu X, Zhao H, Amos CI, Shete S, Makan N, Hong W, et al. p53 Genotypes and haplotypes associated with lung cancer susceptibility and ethnicity. J Natl Cancer Inst 2002; 94: 681-690.
    46. Lee KM, Choi JY, Park SK, Chung HW, Ahn B, Yoo KY, et al. Genetic polymorphisms of ataxia telangiectasia mutated and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2005; 14: 821-825.
    47. Hu Z, Shao M, Yuan J, Xu L, Wang F, Wang Y, et al. Polymorphisms in DNA damage binding protein 2 (DDB2) and susceptibility of primary lung cancer in the Chinese: a case-control study. Carcinogenesis. 2006; 27:1475-1480.
    48. Ma H, Xu L, Yuan J, Shao M, Hu Z, Wang F, et al. Tagging single nucleotide polymorphisms in excision repair cross-complementing group 1 (ERCC1) and risk of primary lung cancer in a Chinese population. Pharmacogenet Genomics 2007; 17: 417-423.
    49. Brennan P. Gene-environment interaction and etiology of cancer: what does it mean and how can we measure it? Carcinogenesis 2002,23:381-387.
    50. Smart J, Daly AK. Variation in induced CYP1A1 levels: relationship to CYP1A1, Ah receptor and GSTM1 polymorphisms. Pharmacogenetics 2000; 10:11-24.
    51. Smith GB, Harper PA, Wong JM, Lam MS, Reid KR, Petsikas D, et al. Human lung microsomal cytochrome P4501A1 (CYP1A1) activities: impact of smoking status and CYP1A1, aryl hydrocarbon receptor, and glutathione S-transferase Ml genetic polymorphisms. Cancer Epidemiol Biomarkers Prev 2001; 10: 839-853.
    52. Anttila S, Lei XD, Elovaara E, Karjalainen A, Sun W, Vainio H, et al. An uncommon phenotype of poor inducibility of CYP1A1 in human lung is not ascribable to polymorphisms in the AHR, ARNT, or CYP1A1 genes. Pharmacogenetics 2000; 10: 741-751.
    53. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452:633-637.
    54. Thorgeirsson TE, Geller F, Sulem P, Rafhar T, Wiste A, Magnusson KP, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008; 452:638-642
    55. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008; 40:616-622.
    56. Altshuler D, Daly M. Guilt beyond a reasonable doubt. Nat Genet 2007; 39:813-815.
    57. Chanock SJ, Hunter DJ. Genomics: when the smoke clears .... Nature 2008; 452:537-538.
    1. Parkin,D.M., Bray.F., Ferlay,J., and Pisani,P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108.
    2. American Cancer Society, I. Cancer facts and figures 2003. Atlanta, GA: American Cancer Society 2003.
    3. Tsou,J.A., Hagen,J.A., Carpenter,C.L., and Laird-Offringa,I.A. DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 2002; 21: 5450-5461.
    4. Nadel,J.A. Role of epidermal growth factor receptor activation in regulating mucin synthesis. Respir Res 2001; 2:85-89.
    5. Adler,K.B., Fischer,B.M., Wright,D.T., Cohn,L.A., and Becker,S. Interactions between respiratory epithelial cells and cytokines: relationships to lung inflammation. Ann NY Acad Sci 1994;725: 128-145.
    6. Takeyama,K., Jung,B., Shim,J.J., Burgel,P.R., Dao-Pick,T., Ueki,I.F., Protin,U., Kroschel,P., and Nadel,J.A. Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am J Physiol Lung Cell Mol Physiol 2001:280, L165-172.
    7. Jones,R, Bolduc,P., and Reid,L. Goblet cell glycoprotein and tracheal gland hypertrophy in rat airways: the effect of tobacco smoke with or without the anti-inflammatory agent phenylmethyloxadiazole. Br J Exp Pathol 1973; 54:229-239.
    8. Balkwill,F. and Mantovani,A. Inflammation and cancer: back to Virchow? Lancet 2001;357: 539-545.
    9. Fitzpatrick,F.A. Inflammation, carcinogenesis and cancer. Int Immunopharmacol 2001; 1:1651-1667.
    10. Godschalk,R., Nair,J., van Schooten,J.F.J., Risch,A., Drings,P., Kayser,K., Dienemann,H. and Bartsch,H. Comparison of multiple DNA adduct types in tumor adjacent human lung tissue: effect of cigarette smoking. Carcinogenesis 2002; 23:2081-2086.
    11. Ames,B.N., Gold,L.S. and Willett,W.C. The causes and prevention of cancer. Proc Natl Acad Sci U S A 1995; 92: 5258-5265.
    12. Boffett,P., Ye,W., Boman,G. and Nyren. Lung cancer risk in a population-based cohort of patients hospitalized for asthma in Sweden. Eur Respir J 2002; 19: 127-133.
    13. Sasco,A.J., Merrill,R.M., Dari,I., Benhaim-Luzon,V., Carriot,F., Cann,C.I. and Bartal,M. A case-control study of lung cancer in Casablanca, Morocco. Cancer Causes Control 2002; 13: 609-616.
    14. Cohen,B.H., Diamond,E.L., Graves,C.G, Kreiss,P., Levy,D.A., Menkes,H.A., Permutt,S., Quaskey,S. and Tockman,M.S. A common familial component in lung cancer and chronic obstructive pulmonary disease. Lancet 1977; 2: 523-526.
    15. Days RA, Jones DC. Emerging roles of PPARs in inflammation and immunity.Nat Revs/Immunol 2002; 2:748-759.
    16. Standiford,T,J., Keshamouni,V.G. and Reddy,R.C. Peroxisome proliferator-activated receptor-(gamma) as a regulator of lung inflammation and repair. Proc Am Thorac Soc 2005; 2: 226-231.
    17. Kota,B.P., Huang,T.H. and Roufogalis,B.D. An overview on biological mechanisms of PPARs. Pharmacol Res 2005; 51: 85-94.
    18. Debril,M.B., Renaud,J.P., Fajas,L. and Auwerx,J. The pleiotropic functions of peroxisome proliferator-activated receptor gamma. J Mol Med 2001; 79:30-47.
    19. Kersten,S., Desvergne,B. and Wahli,W. Roles of PPARs in health and disease. Nature 2000; 405:421-424.
    20. Keshamouni,V.G., Reddy,R.C., Arenberg,D.A., Joel,B., Thannickal,V.J., Kalemkerian,G.P. and Standiford,T.J. Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression in non-small-cell lung cancer. Oncogene 2004; 23:100-108.
    21. Inoue,K., Kawahito,Y., Tsubouchi.Y., Yamada,R., Kohno,M., Hosokawa,Y., Katoh,D., Bishop-Baile,D., Hla,T. and Sano,H. Expression of peroxisome proliferator-activated receptor (PPAR)-gamma in human lung cancer. Anticancer Res 2001; 21: 2471-2476.
    22. Tsubouchi,Y., Sano,H., Kawahito,Y., Mukai,S., Yamada,R., Kohno,M., Inoue,K.., Hla,T. and Kondo,M. Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun 2000; 270: 400-405.
    23. Li,M., Lee.T.W., Mok,T.S., Warner,T.D., Yim,A.P. and Chen,G.G. Activation of peroxisome proliferator-activated receptor-gamma by troglitazone (TGZ) inhibits human lung cell growth. J Cell Biochem 2005; 96: 760-774.
    24. Bren-Mattison,Y., Van Putten,V., Chan,D., Winn,R., Geraci,M.W. and Nemenoff,R.A. Peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC). Oncogene 2005; 24: 1412-1422.
    25. Han,S. and Roman,J. Suppression of prostaglandin E2 receptor subtype EP2 by PPARgamma ligands inhibits human lung carcinoma cell growth. Biochem Biophys Res Commun 2004; 314: 1093-1099.
    26. Satoh,T., Toyoda,M., Hoshino,H., Monden,T., Yamada,M., Shimizu,H., Miyamoto,K. and Mori,M. Activation of peroxisome proliferator-activated receptor-gamma stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells. Oncogene 2002; 21: 2171-2180.
    27. Fajas,L., Auboeuf,D., Raspe,E., Schoonjans,K., Lefebvre,A.M., Saladin,R., Najib,J., Laville,M., Fruchart,J.C., Deeb,S., Vidal-Puig,A., Flier,J., Briggs,M.R., Staels,B., Vidal,H. and Auwerx,J. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 1997; 272: 18779-18789.
    28. Fajas,L., FruchartJ.C. and Auwerx,J. PPARgamma3 mRNA: a distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBS Lett 1998; 438: 55-60.
    29. Akaike,H. A new look at the statistical model identification. IEEE Trans Automat Contr 1974: 19,716-723.
    30. Lewontin,R.C. On measures of gametic disequilibrium. Genetics 1988; 120: 849-852.
    31. Gabriel,S.B., Schaffner,S.F., Nguyen,H., Moore,J.M., Roy,J., Blumenstiel,B., Higgins,J., DeFelice,M., Lochner,A., Faggart,M, Liu-Cordero,S.N., Rotimi,C, Adeyemo,A., Cooper,R., Ward,R., Lander,E.S., Daly,M.J. and Altshuler,D. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225-2229.
    32. Stephens,M. and Donnelly,P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162-1169.
    33. Abbott,W., Gane,E., Winship,I., Munn,S. and Tukuitonga,C. Polymorphism in intron 1 of the interferon-gamma gene influences both serum immunoglobulin E levels and the risk for chronic hepatitis B virus infection in Polynesians. Immunogenetics 2007; 59: 187-195.
    34. Zhou,L., Nian,M., Gu,J. and Irwin,D.M. Intron 1 sequences are required for pancreatic expression of the human proglucagon gene. Am J Physiol Regul Integr Comp Physiol 2006; 290: R634-641.
    35. Kawada,N., Moriyama,T., Ando,A., Koyama,T, Hori,M., Miwa,T. and Imai,E. Role of intron 1 in smooth muscle alpha-actin transcriptional regulation in activated mesangial cells in vivo. Kidney Int 1999; 55: 2338-2348.
    36. Estany,J., Tor,M, Villalba,D., Bosch,L., Gallardo,D., Jimenez,N., Altet,L., NogueraJ.L., Reixach,J., Amills,M. and Sanchez,A. Association of a CA repeat polymorphism at intron 1 of the IGF1 gene with circulating insulin-like growth factor 1 concentration, growth and fatness in swine. Physiol Genomics 2007;31: 236-243.
    37. Sasaki,H., Tanahashi,M., Yukiue,H., Moiriyama,S., Kobayashi,Y., Nakashima,Y., Kaji,M., Kiriyama,M., Fukai,I., Yamakawa,Y. and Fujii,Y. Decreased perioxisome proliferator-activated receptor gamma gene expression was correlated with poor prognosis in patients with lung cancer. Lung Cancer 2002; 36: 71-76.
    38. Keshamouni.V.G., Reddy,R.C, Arenberg,D.A., Joel,B., Thannickal,V.J., Kalemkerian,G.P. and Standiford,T,J. Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression in non-small-cell lung cancer. Oncogene 2004; 23: 100-108.
    39. Meirhaeghe,A., Fajas,L., Gouilleux,F., Cottel,D., Helbecque,N., Auwerx,J. and Amouyel,P. A functional polymorphism in a STAT5B site of the human PPARy3 gene promoter affects height and lipid metabolism in a French population. Arterioscler Thromb Vasc Biol 2003; 23: 289-294.
    40. Stumvoll,M. and Haring,H. The peroxisome proliferator-activated receptor-gamma2 Pro 12Ala polymorphism. Diabetes 2002;51: 2341-2347.
    41. HuangJ.T., Welch,J.S., Ricote,M., Binder,C.J., Willson,T.M., Kelly,C., Witztum, J.L., Funk,C.D., Conrad,D. and Glass,C.K. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 1999; 400:378-382.
    42. Wang,A.C., Dai,X., Luu,B. and Conrad,D.J. Peroxisome proliferator-activated receptor-gamma regulates airway epithelial cell activation. Am J Respir Cell Mol Biol 2001; 24:688-693.
    43. Ma,H., Xu,L., Yuan,J., Shao,M., Hu,Z., Wang,F., Wang,Y, Yuan,W., Qian,J., Wang,Y, Xun,p., Liu,H., Chen,W., Yang,L., Jin,G., Huo,X., Chen,F., Shugart,YY, Jin,L., Wei,Q., Wu,T.,Shen,H, Huang,W. and Lu,D. Tagging single nucleotide polymorphisms in excision repair cross-complementing group 1 (ERCC1) and risk of primary lung cancer in a Chinese population. Pharmacogenet Genomics 2007;17:417-423.
    44. Ohashi,J. and Tokunaga,K. The power of genome-wide association studies of complex disease genes: statistical limitations of indirect approaches using SNP markers. J Hum Genet 2001;46:478-482
    45. Pritchard, J.K. and Cox, N.J. The allelic architecture of human disease genes: common disease-common variant.. .or not? Hum Mol Genet 2002; 11:2417-2423.
    46. Nyholt, D.R. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 2004;74:765-769.
    47. Churchill, G.A. and Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994; 138: 963-971.
    48. Dudbridge,F., Gusnanto,A., and Koeleman,B.P. Detecting multiple associations in genome-wide studies. Hum Genomics 2006; 2:310-317.
    49. Dudbridge,F. and Koeleman,B.P. Efficient computation of significance levels for multiple associations in large studies of correlated data, including genomewide association studies. Am J Hum Genet 2004; 75:424-435.
    50. Dudbridge,F. A note on permutation tests in multistage association scans. Am J Hum Genet 2006; 78:1094-1095.
    1. Relling MV, Rubnitz JE, Rivera GK, Boyett JM, Hancock ML, Felix CA,et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet (North American Edition) 1999; 354:34-39.
    2. Kleihues P, Cavenee WK. 2000. Pathology and Genetics of Tumors of the Nervous System. Lyon: IARC Press.
    3. Ichimura K, Ohgaki H, Kleihues P, Collins VP. Molecular pathogenesis of astrocytic tumours. J Neurooncol 2004;70:137-60
    4. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol 2005; 109:93-108.
    5. DeAngelis LM. Brain tumors. N Engl J Med 2001; 344:114-123.
    6. Bondy ML, Wang LE, El-Zein R, de Andrade M, Selvan MS, Bruner JM, Levin VA, Alfred Yung WK, Adatto P, Wei Q. Gamma-radiation sensitivity and risk of glioma. J Natl Cancer Inst 2001; 93:1553-1557.
    7. Mohrenweiser HW, Wilson DM, Jones IM. Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat Res 2003; 526:93-125.
    8. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il'yasova D, et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 2008; 113:1953-1968.
    9. Berge K, Tronstad KJ, Flindt EN, Rasmussen TH, Madsen L, Kristiansen K, et al. Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways. Carcinogenesis 2001; 22:1747-1755.
    10. Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 2004; 5:419-429.
    11. Strakova N, Ehrmann J, Dzubak P, Bouchal J, Kolar Z. The synthetic ligand of peroxisome proliferator-activated receptor-gamma ciglitazone affects human glioblastoma cell lines. J Pharmacol Exp Ther 2004; 309:1239-1247.
    12. Kato M, Nagaya T, Fujieda M, Saito K, Yoshida J, Seo H. Expression of PPARgamma and its ligand-dependent growth inhibition in human brain tumor cell lines. Jpn J Cancer Res 2002; 93:660-666.
    13. Morosetti R, Servidei T, Mirabella M, Rutella S, Mangiola A, Maira G, et al. The PPARgamma ligands PGJ2 and rosiglitazone show a differential ability to inhibit proliferation and to induce apoptosis and differentiation of human glioblastoma cell lines. Int J Oncol 2004; 25:493-502.
    14. Grommes C, Landreth GE, Schlegel U, Heneka MT. The nonthiazolidinedione tyrosine-based peroxisome proliferator-activated receptor gamma ligand GW7845 induces apoptosis and limits migration and invasion of rat and human glioma cells. J Pharmacol Exp Ther 2005; 313:806-813.
    15. Han S, Roman J. Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol Cancer Ther 2006; 5:430-437.
    16. Shimada T, Kojima K, Yoshiura K, Hiraishi H, Terano A. Characteristics of the peroxisome proliferator activated receptor gamma (PPARgamma) ligand induced apoptosis in colon cancer cells. Gut 2002; 50:658-664.
    17. Eibl G, Wente MN, Reber HA, Hines OJ. Peroxisome proliferator-activated receptor gamma induces pancreatic cancer cell apoptosis. Biochem Biophys Res Commun 2001; 287:522-529.
    18. Zander T, Kraus JA, Grommes C, Schlegel U, Feinstein D, Klockgether T, et al. Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. J Neurochem 2002; 81:1052-1060.
    19. Eyupoglu IY, Hahnen E, Heckel A, Siebzehnrubl FA, Buslei R, Fahlbusch R, et al. Malignant glioma-induced neuronal cell death in an organotypic glioma invasion model. Technical note. J Neurosurg 2005; 102:738-744.
    20. Grommes C, Landreth GE, Sastre M, Beck M, Feinstein DL, Jacobs AH, et al. Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol 2006; 70:1524-1533.
    21. Meirhaeghe A, Fajas L, Gouilleux F, Cottel D, Helbecque N, Auwerx J, et al. A functional polymorphism in a STAT5B site of the human PPAR gamma 3 gene promoter affects height and lipid metabolism in a French population. Arterioscler Thromb Vasc Biol 2003; 23:289-294.
    22. Deeb SS, Fajas L, Nemoto M, Pihlajam(?)ki J, Mykk(?)nen L, Kuusisto J, et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998; 20: 284-287.
    23. Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neurooncology 1999; 1: 44-51.
    24. Jung V, Romeike BFM, Henn W, et al. Evidence of focal genetic microheterogeneity in glioblastoma multiforme by area-specific CGH on microdissected tumor cells. J Neuropathol ExpNeurol 1999; 58: 993-9.
    25. von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN: Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 1993;3: 19-26.
    26. James CD, Carlbom E, Dumanski JP, Hansen M, Nordenskjold M, Collins VP, Cavenee WK: Clonal genomic alterations in glioma malignancy stages. Cancer Res 1988; 48: 5546-5551.
    27. Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H: Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol (Berl) 1997; 94: 303-309.
    28. Reifenberger G, Ichimura K, Reifenberger J, Elkahloun AG, Meltzer PS, Collins VP: Refined mapping of 12ql3-ql5 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 1996; 56: 5141-5145.
    29. Stewart B, Kleihues P. World Cancer Report. IARC Press, Lyon 2003.
    30. Ricote M, Li AC, Willson TM, Kelly C J, Glass CK.The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation.Nature. 1998;391:79-82.
    31. Liang QC, Xiong H, Zhao ZW, Jia D, Li WX, Qin HZ, Deng JP, Gao L, Zhang H, Gao GD.Inhibition of transcription factor STAT5b suppresses proliferation, induces G1 cell cycle arrest and reduces tumor cell invasion in human glioblastoma multiforme cells. Cancer Lett. 2009; 273:164-171.
    32. Zhou XP, Smith WM, Gimm O, Mueller E, Gao X, Sarraf P, et al.Over-representation of PPARgamma sequence variants in sporadic cases of glioblastoma multiforme: preliminary evidence for common low penetrance modifiers for brain tumour risk in the general population.J Med Genet. 2000; 37:410-414.
    33. Little MP, De Vathaire F, Shamsaldin A, Oberlin O, Campbell S, Grimaud E,et al. Risks of brain tumour following treatment for cancer in childhood: Modification by genetic factors, radiotherapy and chemotherapy. International Journal of Cancer 1998; 78:269-275.
    34. UNSCEAR. Sources and effects of ionizing radiation. Report to the General Assembly, with scientific annexes; 2000.
    35. Boice Jr, Auvinen A. Epidemiologic studies of pilots and aircrew. Health Physics 2000; 79:576-584.
    36. Sadetzki S, Starinsky S, Novikov I, Lerman Y, Goldman B, Friedman E. Genotyping of patients with sporadic and radiation-associated meningiomas.Cancer Epidemiol Biomarkers Prev 2005;14:969-976.
    37.Ahlbom A,Green A,Kheifets L,Savitz D,A S.Epidemiology of health effects of radiofrequency exposure Environ Health Perspect 2004;112:1741-1754.
    38.Simmons.N,Laws.E.Glioma occurrence after sellar irradiation:case report and review..Neurosurgery1998;42:172-178.
    39.Kundi.M,Hansen.M,Hardell.L,Mattsson.M.Mobile telephones and cancer-a review of epidemiological evidence.J Toxicol Envrion Health Part B 2004;7:351-384.
    40.Sch(u|¨)z J,Jacobsen R,Olsen JH,Boice JD,McLaughlin JK.Cellular telephone use and cancer risk:an update of a nationwide Danish cohort.J Natl Cancer Inst 2006;98:1707-1713.
    1. Keavney B. Genetic association study in complex disease. Journal of Human Hypertension 2000, 14:361-367.
    2. Lander ES, Schork NJ1 Genetic dissection of complex traits. Science, 1994, 265: 2037-2048.
    3. Collins FS, Patrinos A, Jordan E, Chakravarti A, Gesteland R, Walters L. New goals for the US Human Genome Project: 1998-2003. Science 1998; 282: 682-689.
    4. Palmer LJ, Cookson WOCM. Using Single Nucleotide Polymorphisms (SNPs) as a means to understanding the pathophysiology of asthma. Respir Res 2001; 2: 102-112.
    5. Palmer L, Cardon LR. Shaking the tree: mapping complex disease genes with linkage disequilibrium. Lancet 2005; 366:1223-1234.
    6. Cordell HJ, Clayton DG Genetic association studies. Lancet 2005; 366:1121-1131.
    7. Nielsen DM, Ehm MG, Weir BS. Detection marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus. Am J Hum Genet 1998; 63:1531-1540.
    8. Consortium TIH.The international hapmap roject. Nature 2003; 426: 789-796.
    9. Consortium TIH. A haplotype map of the human genome. Nature 2005; 437: 1299-1320.
    10. Hattersley AT, McCarthy MI.What makes a good genetic association study? Lancet 2005; 366:1315-1323.
    11. Newton-Cheh C, Hirschhorn JN. Genetic association studies of complex traits: Design and analysis issues. Mutat Res 2005, 573: 54-69.
    12. Sham PC, Cherny SS, Purcell S, Hewitt JK. Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. Am J Hum Genet 2000;66:1616-1630.
    13. Marchini J, Cardon LR, Phillips MS, Donnelly P. The effects of human population structure on large genetic association studies. Nat Genet 2004; 36: 512-517.
    14. Bogardus ST Jr, Concato J, Feinstein AR. Clinical epidemiological quality in molecular genetic research: the need for methodological standards. JAMA 1999; 281: 1919-26.
    15. Kang SJ, Gordon D, Finch SJ. What SNP genotyping errors are most costly for genetic association studies? Genet Epidemiol 2004; 26: 132-141.
    16. Gordon D, Finch SJ, Nothnagel M, Ott J. Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms.Hum Hered 2002; 54: 22-33.
    17. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440-9445.
    18. Nyholt DR. A simple correction for multiple testing for single nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 2004; 74: 765-769.
    19. Colhoun HM, McKeigue PM, Smith GD. Problems of reporting genetic associations with complex outcomes. Lancet 2003; 361:865-872.
    20. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308: 385-389.
    21. Rosskopf D, Bornhorst A, Rimmbach C, Schwahn C, Kayser A, Kruger A, et al. Comment on "a common genetic variant is as-sociated with adult and childhood obesity". Science 2007; 315: 187.
    22. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the fto gene is associated with body mass index and pre-disposes to childhood and adult obesity. Science, 2007, 316(5826): 889-894.
    23. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker P, Chen H, et al. Genome-wide associa-tion analysis identifies loci for type 2 diabetes and triglyc-eride levels. Science, 2007, 316: 1331-1336.
    24. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genome-wide association analysis of coronary artery disease. N Engl J Med, 2007, 357(5): 443-453.
    25. Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at lp11.2 and 14q24.1 (RAD51Ll).Nat Genet. 2009. [Epub ahead of print]
    26. Sun J, Zheng SL, Wiklund F, Isaacs SD, Li G, Wiley KE, et al. Sequence variants at 22q13 are associated with prostate cancer risk.Cancer Res 2009; 69(l):10-15.
    27. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452:633-637.
    28. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008; 452:638-642
    29. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008; 40:616-622.
    30. Wang H, Thomas DC, Pe'er I, Stram DO. Optimal two-stage genotyping designs for genome-wide associa-tion scans. Genet Epidemiol 2006; 30: 356-368.
    31. Altshuler D, Daly M. Guilt beyond a reasonable doubt. Nat Genet 2007; 39:813-814.
    32. Christensen K, Murray JC. What genome-wide association studies can do for medicine. N Engl J Med, 2007, 356:1094-1097.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700