形变Cu-10%Cr-3%Ag原位复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形变Cu-10%Cr-3%Ag原位复合材料经中频感应加热熔炼、室温线拉并配合中间热处理制备而成。本文对铸态及变形态材料的微观组织结构,强度,导电性进行了研究。
     用扫描电镜观察发现,铸态时Cr相为树枝晶,在线拉过程中,树枝晶沿着线拉方向发生转动并在一端先开始变形成为蝌蚪状,最终变为弯曲薄片状纤维。随形变量增大,纤维得到细化。性能测试结果发现,随形变量增加,强度得到大幅度的提高,当形变量为2.92时,其极限抗拉强度值为485MPa,当形变量为6.2时,极限抗拉强度值为955MPa,分析认为这是由于界面强化和加工硬化为主的各种强化方式综合作用的结果;电阻率随形变量增大而稍稍增大,进行中间热处理后,则大幅度地减小。中间热处理的温度不同,最终材料的强度和导电性也相应地发生变化。形变量一定,温度太高或太低都会使得强度和导电性性能降低。中间热处理温度为420℃-550℃的试验中发现,随中间热处理温度的升高,热处理后进一步拉拔过的材料的电阻率先减小后增加,强度先增加后减小,经485℃热处理后,性能组合最佳。分析认为,变形使电阻率增大的原因是界面散射电阻的增大,中间热处理则主要是使杂质散射电阻减小,为此得出,室温线拉并配合适当中间热处理,可获得强度和导电性的较好结合。
     观察测量发现,Ag在Cu-10%Cr-3%Ag原位复合材料中存在于Cu基体和Cr/Cu界面处,Cr纤维中没有或只有特别少的Ag存在。
     形变Cu-10%Cr-3%Ag原位复合材料拉拔到直径为φ1.0mm的状态下几个较好的电导率和极限抗拉强度组合为:82.8%IACS/791 MPa(φ1mm、B工艺)、80.6%IACS/809 MPa(φ 1mm、A工艺)和78.4%IACS/950MPa(φ1mm、C工艺、485℃)。
The Cu-10%Cr-3%Ag in situ composites that was melted in a vacuum induction furnace and machined by drawing at room temperature combined with intermediate heat treatments. The as-cast alloy and the deformed in situ composites' microstructure, strength, electrical conductivity, and the relationship between them were studied. It was found from SEM conversation that Cr phase transferred from the dendrites in as-cast status to the shape of tadpole paralleling drawing direction which deformation started from one set of the dendrites. At last, they all become into fibers. And the fibers were curl and fold. The heavier the deformation is, the more and firmer the fibers are. It was found from strength and electrical conductivity test that with the increases of the deformation, the composites was greatly strengthened by some kinds of strengthening methods in which the interface strengthen and work hardening play the most important roles. The Ultimate Tensile Strength of the sample at η=2.92 was 485MPa and that of sample at η=6.2 was 955MPa. The resistivity was slightly increased during the deformation processes because of the increase of interface scattering. On the other hand, during the intermediate heat treatments, the solute atoms scattering resistivity was sharply decrease because the Cr atoms precipitate, so the resistivity of deformed composite is lower than that of the cast alloy.
    Almost all of the Ag atoms in deformation Cu-10%Cr-3%Ag in situ composite dissolve in Cu based matrix. Some Ag atoms exist in the interface of Cu/Cu or Cr/Cu.
    The intermediate heat treatments with different temperature (420°C-550°C)
    have different effects on the mechanical property and electrical conductivity;
    Test results show that as increase of intermediate heat temperature from 420°C
    to 550°C, the conductivity decrease first and then increase, and the strength
    increase first and then decrease.
    The sample with intermediate heat temperature at 485°C has the best result.
    Some good combination of mechanical property and electrical risistivity of
引文
[1] GE Jiping. ZHAO Hong and YAO Zaiqi. Strength of deformation-processed Cu-Fe in-situ composites. Trans. Nonferrous Met. Soc. China. Vol: 15. 553-559
    [2] C. Trybus and W. A. Spitzig. Characterization of the strength and microstructural evolution of a heavily cold rolled Cu-20% Nb composite Acta Metall. 37 (1989): p. 1971-1981
    [3] T. Asano. Y. Sakai. M. Oshikiri. K. Inoue. H. Maeda. G. Heremans. L. van Bockstal. L. Li and F. Herlach. Cu-Ag wire pulsed magnets with and without internal reinforcements. IEEE Trans. Magn. 30 (1994): p. 2106-2109
    [4] D. Raabe and D. Mattissen. Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite Acta Mater. 46 (1998): p. 5973-5984.
    [5] D. Raabe. K. Miyake and H. Takahara, Processing. Microstructure and properties of ternary high-strength Cu-Cr-Ag in situ composites. Materials Science and Engineering A. Volume 291. Issues 1-2. 31 October 2000: 186-197
    [6] Ken R. Anderson and Joanna R. Groza, Microstructural Size Effects in High-Strength High-Conductivity Cu-Cr-Nb Alloys. Metallurgical and Materials Transactions Ao Volume 32A. lssue 5. May 2001: Pages 1211-1224
    [7] Kelly A. and Macmillan N. H. Strong Solids. 3rd edition. Oxford Science Publications. 1986.
    [8] 王深强等.高强高导Cu合金的研究现状与展望.材料工程.1995(7):3
    [9] Taubenblet P W. el al. High conductivity copper and aluminum alloys. Los Angles Calif USA. 1984: 18-27
    [10] Kainuma T. and Watanabe R. Precipitation hardening in Copper-Silver alloy. Journal of the Japanese Institute for Metals. 1969. 33(2): 198-202.
    [11] Dadras M. M. and Morris D. G.. Examination of some high-strength, high-conductivity copper alloys for high-temperature applications. Scripta Materialia. 1997. 38(2): 199-205
    [12] Jack Troxell. Dispersion-strengthened copper-niobium composites. Advanced Materials & Process. 1995. 6: 35-37
    [13] Miyake J. and Fine M. E. Two-step aging of a Cu alloy to optimize combination of strength and electrical conductivity. Scripta Metallurgica et Materialia. 1991. 25(7): 1573-1576
    [14] Weggel R. J.. Rate J. O. and Sakai Y. Strength of Hycon 3 HP Be-Cu and other Cu alloys 20℃ to 200℃. IEEE Trasactions on Magnetics. 1994. 30(4): 2188-2191
    [15] lslamgaliev R. K.. Buchgraber W.. Kolobov Y. R.. Amirkhanov N. M.. Sergueeva A. V… Ivanov K. V and Grabovetskaya G. P. Deformation behavior of Cu-based nanocomposite processed by severe plastic deformation. Materials Science and Engineering. 2001. A319-321: 872-876
    [16] Motyazhev V. I.. Boiko P. A.. Vitryanyuk V. K. and Sleptsov K. Y. Preparation of fine composite powders containing carbides of the transition metals. Soviet Powder Metallurgy and Metal Ceramics. 1970. 87(3): 194-197
    [17] 陈存中.关于开发导电高Cu合金之所见.Cu加工.1985(3):42
    [18] 陈北盈等.Cu和Cu合金.长沙:中南工业大学出版社.1987:89
    [19] Berge P M等.一种新型的高强度高导电率的Cu合金线.Wriejoumal International.1991.(11):62
    [20] Solomon R. R.. Troxell J. D. and Nadkarni A. Glidcop (R) DSC properties in the high temperature-range of 20-350 degrees C. J Nucl Mater A. 1996. 237: 542-546
    [21] 鲁云等.主编.先进复合材料.北京.机械工业出版社.2003.9:68-69
    [22] Choi H. I. Lee K. Y. and Kwun S. 1. Fabrication of high-strength and high-conductivity copper-alloys by rod milling. J Mater Sci Lett. 1997. 16: 1600-1602
    [23] 曾松岩.一种新型制备金属基复合材料的方法—接触反应法.宁航材料工艺.1995,5:27-30
    [24] Bevk J.. Harbison J.P. and Bell J. L. Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites. J. Appl. Phys. 1978. 49: 6031-6038.
    [25] Harbison J. P. and Bevk J. Superconducting and mechanical properties of in situ formed multifilamentary Cu-Nb_3Sn composites. J. Appl. Phys. 1977. 48: 5180-5187.
    [26] Verhoeven J D. Downing H L. Chumbley L S. et al. The resistivity and microstructure of heavily drawn Cu-Nb alloys. J Appl Phys. 1989. 65: 1293-1301
    [27] Popova E N. Popov V V. Rodionova L A. et al. Effect of annealing and doping with Zr on the structure and properties of in situ Cu-Nb composite wire. Scripta Materialia. 2002. 46(3): 193-198
    
    [28] Raabe D. Mattissen D. Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite. Acta Materialia. 1998. 46( 16): 5973-5984
    
    [29] Pourrahimi S. Nayeb-hashemi H. and Foner S. Strength and microstructure of powder metallurgy processed restacked Cu-Nb microcomposites. Metall Trans. 1992. 2: 573-586
    
    [30] Botcharova E. Heilmaier M. Freudenberger J. et ah Supersaturated solid solution of niobium in copper by mechanical alloying. Journal of Alloys and Compounds. 2003. 351(1-2): 119-125
    
    [31] Spitzig W A. Pelton A. R. Laabs F C. Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites. Acta metall. 1987. 35: 2427-2442
    
    [32] Trybus C L. Spitzig W A. Characterization of the strength and microstructural evolution of a heavily cold rolled Cu-20%Nb composite. Acta Metall. 1989. 37: 1971-1981
    
    [33] Ellis T W. Kim S T. Verhoeven J D. Deformation-processed Cu-Cr alloys: Role of age hardening. Journal of Materials Engineering and Perfoamance. 1995. 4(5): 581-586
    
    [34] Frommeyer G. Wassermann G Microstructure and anomalous mechanical properties of in situ-produced silver-copper composite wires. Acta Metall. 1975. 23: 1353-1360
    
    [35] Sakai Y. Inoue K. Asano T. et ah Development of a high strength. high conductivity copper-silver alloy for pulsed magnets. IEEE Trans Magn. 1992. 28: 888-891
    
    [36] Sakai Y. Schneider-Muntau H J. Ultra-high strength. high conductivity Cu-Ag allow wires. Acta Metall. 1997.45: 1017-1023
    
    [37] Bryskin B. Ohriner E K. Processing of high strength high conductivity tungsten-copper composite. Metal Powder Report. 1998. 53(2): 40
    
    [38] Spitzig W A. Krotz P D. CoMParison of the strengths and microstructures of Cu-20%Ta and Cu-20%Nb in situ composites. Acta Metall. 1988. 36: 1709-1715
    
    [39] Verhoeven J D. Spitzig W A. Jones L L. et ah Development of deformation processed copper-refractory metal composite alloys. J. Mater. Eng. 1990. 12: 127-139
    
    [40] Colin J. Thilly L. Lecouturier F. et ah Axial and radial interface instabilities of copper/tantalum cylindrical conductors. Acta Metall. 1999. 47(9): 2761-2768
    [41] 葛继平.形变Cu-Ag-Nb原位复合材料的微观组织.中国有色金属学报.1998.9:164-167
    [42] 葛继平.Cu-Ag-Cr合金的线拉形变过程.中国有色金属学报.1998.9:159-163
    [43] Shoujin Sun. Structure and residual stress of Cr fibers in Cu-15Cr in-situ composites. Metall. Trans. 2001. 32A: 1225-1232
    [44] Spaic S. and Pristavec M. Precipitation and precipitation hardening in Cu-Ag alloys with Zr addition. Metall. 1996. 4: 254-256
    [45] Ellis T. W.. Kim S. T. and Verhoeven J. D. Deformation-processed Cu-Cr alloys: Role of age hardening. Journal of Materials Engineering and Perfoamance. 1995. 4(5): 581-586
    [46] Dadras M. M. and Morris D. G.. Examination of some high-strength, high-conductivity copper alloys for high-temperature applications. Scripta Materialia. 1997. 38(2): 199-205
    [47] D Raabe, K. Miyake. H. Takahara. Processing microstructure and properties of ternary high-strength Cr-Cr-Ag in situ composites. 6 December 1999
    [48] Go Y. S. and Spitzig W. A. Strengthening in deformation- processed Cu-20%Fe composites. J. Mater. Sci. 1991. 26: 163-171
    [49] Luiz Brandao and Peter N. Kalu. The effect of fabrication mode on microstructure. texture and strength in cu-nb/ti composite. Scripta Materialia. 1998. 39(1): 27-33
    [50] He L. and Ma E. Processing and microhardness of bulk Cu-Fe nanocomposites. Nanostructured Materials. 1996. 7(3-4): 327-339
    [51] Konstantinidis D.A. and Aifantis E. C. On the "anomalous" hardness of nanocrystalline materials. Nanostruct Mater. 1998. 10: 1111-1118
    [52] Yao Y. and Wang T. C. The modified Peierls-Nabarro model of interfacial misfit dislocation. Acta Materialia. 1999. 47(10): 3063-3068
    [53] Hong S. I. Yield strength of a heavily drawn Cu-20% Nb filamentary microcomposite. Scripta Mater. 1998. 39: 1685-1691
    [54] Sun S. Structures and Residual Stresses of Cr Fibers in Cu-15Cr Composites. Metal. Mater. Trans. 2001. A32: 1225-1232[4]
    [55] Benghalem A. and Morris D. G. Microstructure and strength of wire-drawn Cu-Ag filamentary composites. Acta Mater. 1997. 45(1): 397-406
    [56] Miyake J. and Fine M. E. Two-step aging of a Cu alloy to optimize combination of strength and electrical conductivity. Scripta Metallurgica et Materialia. 1991. 25(7): 1573-1576
    [57] Spitzig W. A. and Biner S. B. CoMParison of strengthening in wire-drawn or rolled Cu-20%Nb with a dislocation accumulation model. J. Mater. Sci. 1993b. 28(17): 4623-4629
    [58] Kasaba K.. Katagiri K.. Shoji Y.. Takahashi T.. Watanabe K.. Noto K.. Goto K.. Saito T. and Kono O. Stress/strain dependence of critical current in Nb3Sn superconducting wires stabilized with Cu-Nb microcomposites-effect of Nb content. Cryogenics. 2001. 41(1): 9-14
    [59] Sakai Y. and Schneider-Muntau H. -J. Ultra-high strength, high conductivity Cu-Ag allow wires Acta Metall. 1997. 45: 1017-1023
    [60] Hong S I and Hill M A. Microstructural stability and mechanical response of Cu-Ag microcomposite wires. Acta Metall. Mater. 1998. 46: 4111-4122
    [61] Hong Sun Ig and Hill Mary Ann. Microstructural stability of Cu-Nb microcomposite wires fabricated by the bundling and drawing process. Materials Science and Engineering A. 2000. 28(1-2): 189-197
    [62] Ellis T. W.. Kim S. T. and Verhoeven J. D. Deformation-processed Cu-Cr alloys: Role of age hardening. Journal of Materials Engineering and Perfoamance. 1995. 4(5): 581-586
    [63] 宋学孟.主编.金属物理性能分析.机械工业出版社.1981:20-25
    [64] 何启基.金属的力学性能.北京:冶金工业出版社.1982:193
    [65] Kaveh M. and Wiser N. Deviations from Matthiessen's rule for the electrical resistivity of dislocations. J. Phys. F: Met. Phys. 1986. 16: 795-802.
    [66] Heringhaus F.. Raabe D. and Gottstein G.. On the correlation of microstructure and electromagnetic properties of heavily cold worked Cu-20wt%Nb wires. Acta Metall. Mater. 1995. 43: 1467-1476
    [67] K. R. Anderson. J. R. Gorza. R. L. Dreshfield. D. Ellis. Metall. Mater. Trans. 26A (1995) 197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700