东南极Lambert冰川盆地冰盖动力学数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极冰盖的物质和能量变化对全球海平面变化,地球表面的能量平衡,全球水循环等有着重要的影响。南极动力机制作用研究,特别是南极冰盖动力过程的数值模拟仍存在很多不确定性,因此为了更准确地理解其动力过程,精确预测冰盖演化方向和变化状况,在特定区域建立冰盖动力模型显得尤为重要。
     本文首次以东南极冰盖最大的冰川盆地—Lambent冰川盆地为重点研究区域。利用高精度的DEM、厚度、基岩高程数据;采用新的计算方法重新计算了Amery冰架的底部冻融速率;整理最新的PCMEGA数据,并对着陆线附近的高程、冰厚度和基岩高程数据进行了构建;构建流域内表层冰温数据。基于ArcGI S Matlab两大软件划分冰川主流线,并参照上述数据,提取点数据。基于Matlab构建流线模型,模拟冰盖上的压力,应力,应变率,并绘制与距离相关的响应曲线。主要结果如下:
     (1) Lambent冰川盆地中的Amery冰架底部融化速率的最大值为22.1xn行r.在冰架前缘和冰架西部地区存在冰架海冰再冻结的情况,冻结速率约为2.4mlyr a在冰架西端沿海边缘区域的融化速率要明显偏高,那里也是冰流较为活跃的地区。与先前结果对比,本文所得结果在最大值上要低巧%左右,最小值要相差大约三倍。相比冰架边缘,冰架内部融化速率低,也进一步反映了Amery冰架整体上处于一个稳定的状态。
     (2) Amery冰架底部融化速率的最大值为22.1 mlyr,在冰架前缘和冰架西部地区存在冰架海冰再冻结的情况,冻结速率约为2.4mlyr。在冰架西端沿海边缘区域的融化速率要明显偏高,那里也是冰流较为活跃的地区。本文所得底部融化速率最大值要比前人(Wen, 2010 )研究结果要偏低1S%左右,底部冻结速率最大值要相差大约三倍。冰架内部稳定,而边缘区域的融化速率较大,Amery冰架整体上处于一个稳定的状态。
     (3)通过应力、应变率变化的动力过程建立函数和方程,构建冰流模型。该模型体系包括四大模型。分别是冰盖地形模型;水平和垂直流速模型;冰温变化模型;以及流线应力场模型。
     (4)冰川盆地边缘的流速模型表明,在在冰川盆地边缘附近冰流水平速度接近0,而_巨水平速度和垂向速度变化特征明显。在接近冰川盆地边缘的地方驱动应力为零,表明在这一区域内冰盖基本是保持稳定状态。
     (5)冰川盆地边缘附近表面温度分布状况相对简单,在冰川盆地内部附近表面温度分布相对比较复杂,冰盖内部温度分布总体呈现随着深度增加而增加在接近着陆线的区域的温度增加速率较快,这是由于应力增加带来的热量的消耗所致。
     (6)模拟结果表明冰盖存在一个应力变化极值区。在距离着陆线0-200km区域内,应力具有Glen's flow law应力值最大在40-SSkPa之间.水平应力在距离着陆线距离1 OOkm左右处达到最大值,然后向内部边缘与垂直方向快速衰减,至盆地边缘趋于零。垂直应力相对于水平应力来说,数值相对较小,最大应力数值范围65-80kPao应力的增大带来的热通量,造成了着陆线附近的冰温增加。
     (7) Fisher冰川、Mellor冰川和LamberC冰川的三条流线的应变率最大值分别为0.0992/yr, O.Ob351/yr和。0724/yr。每条主流线在靠近着陆线的区域的应变率最大,这主要是由于该区域内冰流流速及其交汇影响。在应变率极值数值,直接影响着冰流汇流区和延伸的冰架上游,可能加速冰架前端纵向裂缝和破碎的产生,从而影响冰山崩解的响应过程。
The change of Antarctic ice sheet mass and energy effect on the global sea level change, and the Earth's surface energy balance, such as the global water cycle have an important impact. Dynamic mechanism of the role of Antarctic research, particularly the Antarctic ice sheet numerical simulation of the dynamic process of many uncertainties still exist, so in order to more accurately understand the dynamic process, to accurately predict the direction of development and changes in ice conditions, ice build momentum in a particular region model is very important.
     This is the first east of the Antarctic ice sheet is the largest ice-flow system- Lambert Glacier-Amery lce Shelf system far key research areas. Carry out research in the basin of the ice sheet dynamics, the establishment of numerical model of flow lines for the "Antarctic ice sheet" that today's long-term impact on human life and to contribute to the development of scientific problems. Main contents and conclusions are as follows:
     By high-precision DEM, thickness, bedrock elevation data, and the new calculation method of the Amery lce Shelf,1 recalculate the bottom of the freezing and thawing rate; finishing the latest PCMEGA data, and landing near the line of elevation, ice thickness and bedrock Elevation data were constructed. ArcG1S and Matlab software based on two main lines by glaciers, and the light of the above data, the data extraction points. Construction of flow lines based on Matlab model to simulate the ice sheet on the pressure, stress, vertical shear rate, the level of shear rate and draw distance associated with the response curve
     (1) Create a new calculation method. Amery Ice Shelf at the bottom to re- calculate the melting rate. It was found that the leading edge and the ice shelf ice shelf ice shelf ice west there is the case then freeze, freezing rate of about 2.4mlyr, the whole ice shelf bottom melting rate of maximum maximum 22.1 mlyr. The western end of the ice shelf melting rate of the coastal edge of the area is significantly high. Compared with the previous results, this results in the maximum value of about 15% lower on, to a difference of about three times the minimum. Melting rate of ice shelves within the lower range of the melting rate of}the outflow of large, Amery Ice Shelf is further reflected in a generally stable state.
     (2) Stress, strain rate changing in the dynamic process of establishing the function and equations to build the ice flow model. The model system consists of four models. Are the ice terrain model; horizontal and vertical flow model; ice temperature change models; and rail lines, time and stress model.
     (3) The simulation results show that changes in ice cover there is a mutation in the stress zone. Although the ice sheet elevation with increasing distance from the landing lines decrease linearly, but in the line of 200-}OOkrr} from the landing area near the surface slope has undergone an obvious change in the slope of the slope from the previous negative value of the slope after slope is positive. Meanwhile, in the region before the driver strain was positive, driven stress increases with distance; strain w'as positive after the driver, driver stress with distance increases.
     (4) The edge of glacier flow model shows that basin, near the edge of the glacier basin, the surface temperature distribution is relatively simple, the glacier surface temperature distribution near the basin is relatively complex. Ice temperature distribution within the overall increase with depth show }ed the characteristics of simulation results also show that glacial ice flow near the edge of the basin close to 0. the horizontal velocity, and the horizontal velocity and vertical velocity variations obvious. Glacier Basin, near the edge of the driving stress is zero, indicating that the ice sheet in this region is basically stable state.
     {5) Building an ideal model of ice flow lines, flow lines have been ice momentum, mass and energy balance of the various evolution curve, that in the fixed boundary conditions, the ice sheet in a stable state of the physical characteristics and our current understanding of the Antarctic ice sheet is consistent. Solving the continuity in the specific model equations, consider the ice temperature at the bottom of simulation boundary- conditions required on the computer simulation the stability of this approach makes the changes in vertical velocity at the edge of the basin with glacier is lar},ely consistent understanding The. Evolution has been quantitatively stable state ice ice flow cross-section elevation, temperature field. stress field change. which is conducive to better analyze the evolution of ice sheet changes in the details of the various physical processes.
     The simulation work for the Lambert glacier basin, the dynamics of ice flow to provide many basic data, but also for th.e first time numerical simulation of the ice extended to the region. For the LAS system, the dynamics of ice streams to provide reference for further research, but also contribute to the whole dynamic process of East Antarctica.
引文
秦大河,任贾文,2001.南极冰川学.北京,科学出版社,2-50.
    任贾文,Ian Allison,效存德等,2002.东南极冰盖Lambert冰川流域的物质平衡研究.中国科学(D辑),32 (2),134-140.
    任贾文,秦大河,1995.东南极洲Lambert冰川流域西部地区的雪层剖面和积累速率变化特征.冰川冻土,17(3),274-282.
    汤国安,刘学军,闾国年,2005.数字高程模型及地学分析的原理与方法.北京,科学出版社,4-187.
    汤国安,杨昕,2006. ArcGIS地理信息系统空间分析实验教程.北京,科学出版社,279-410 .
    唐学远,张占海,孙波,李院生,李娜,王帮兵,张向培,2007.南极冰盖GLIMMER模式试验及其对二维冰流情形的模型简化.自然科学进展,17(4),480-487.
    王清华,宁津生,2002.东南极Lambert冰川-Amery冰架系统平衡通量分布的计算.冰川冻土,24(5),500-505.
    温家洪,孙波,李院生等,2004.南极冰盖的物质平衡研究,进展与展望.极地研究,16(2),114-126.
    Allison I,Barry R G,Goodison B E,2001. Climate and Cryosphere (CliC) Project Science and Co-ordination Plan Version 1. http//clic.npolar.no/clic_5mar.pdf.
    Allison I, Alley R, Fricker H et al.,2009,Ice sheet mass balance and sea level. Antarctic Science, 21, 413-426.
    Bake S,Kwoun O I,Braun A et al.,2005. Digital Elevation Model of the Sulzberger Ice Shelf, West Antarctica, from SAR Interferometry and ICESat laser altimetry. Ieee Geoscience and Remote Sensing Letters,1 - 6.
    Bamber J L,Bindschadler R A,1997. An improved elevation dataset for climate and ice-sheet modelling,validation with satellite imagery. Annals of Glaciology,25,439 - 444.
    Bamber J L, Vaughan D G,Joughin I ,2000. Widespread complex flow in the interior of the Antarctic Ice Sheet,Science,287,1248 - 1250.
    Bamber J L, Gomez-Dans J L, Griggs J A,2009. A New 1 km Digital Elevation Model of the Antarctic Derived from Combined Satellite Radar and Laser Data– Part 1, Data and Methods. The Cryosphere,3,101-111.
    Barker P F,Barrett P J,CooperA F K et al.,1999.Antarctic glacial history from numericalmodels and continentalmargin sediments. Palaeogeog Palaeoclimatol Palaeoecol,150,247-267.
    Bills B G.,Currey D R,Marshall G A,1994. Viscosity estimates for the crust and upper mantle from patterns of lacustrine shoreline deformation in the Eastern Great Basin. Journal of Geophysical Research 99 (B11),22059– 22086.
    Blankenship D D,Morse D L,Finn C A et al.,2001. Geologic controls on the initiation of rapid basal motion for West Antarctic Ice Streams, a geophysical perspective including new airborne radar sounding and laser altimetry results. In, Alley R B,Bindschadler R A (Eds.),The West Antarctic Ice Sheet, Behavior and Environment. Antarctic Research Series,77,American Geophysical Union, Washington,DC, 105– 121.
    Blankenship D D, Bentley C R,Rooney S T et al.,1986. Seismic measurements reveal a saturated, porous layer beneath an active Antarctic ice stream. Nature 322 (6074),54– 57.
    Blunier T,Brook E J,2001. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291 (5501),109–112.
    Braun A,Cheng K,Csatho B et al.,2004. ICESat laser altimetry in the Great Lakes. Proc. Institute of Navigation (ION) 60th Ann. Meeting,Dayton,Ohio,USA.
    Budd W,1966. The dynamics of the Amery Ice Shelf .Glaciol,6(45),335–358.
    Budd W, Smith I L and Wishart E,1967. The Amery Ice Shelf. In Oura, H., ed. Physics of snow and ice. Sapporo, Hokkaido University, Institute of Low Temperature Science,447–467.
    Budd W F,1972. The development of crystal orientation fabrics in moving ice. Z. Gletscherkd. Glazialgeol,8(1–2),65–105.
    Budd W F, Corry M J and Jacka T H,1982. Results from the Amery Ice Shelf project. Ann. Glaciol,3,36–41.
    Budd W F and Rowden-Rich R J M,1985. Finite element analysis of two-dimensional longitudinal section flow on Law Dome.ANARE Res. Notes,28,153–161.
    Budd W F and Jacka T H,1989. A review of ice rheology for ice sheet modelling. Cold Regions Science and Technology 16(2),107–144.
    Budd W F,Coutts B,Warner R C,1998. Modelling the Antarctic and northern-hemisphere ice sheet changes with global climate through the glacial cycle. Ann Glaciol,27,153—160.
    Clarke G K C,Nitsan U,PatersonW,1977. Strain heating and creep instability in glaciers and ice sheets. Rev Geophys &Space Phys,15,235—247.
    Comiso J C,2000. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J . Climate 13 (10),1674–1696.
    Conway H,Hall B L,Denton G H et al.,1999. Past and future grounding-line retreat of the West Antarctic ice sheet. Science 286 (5438),280– 283.
    Craven M,2004. Initial borehole results from the Amery Ice Shelf hot-water drilling project. Ann. Glaciol.,39,531–539.
    Craven M,2005. Borehole imagery of meteoric and marine ice layers in the Amery Ice Shelf, East Antarctica.Glaciol,51(172),75–84.
    Craven M,Allison I,Fricker H A et al.,2010. Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica.Glaciol.,55(192),717–728.
    Cutler P M,MacAyeal D R,Mickelson D M et al.,2000. A numerical investigation of ice-lobe–permafrost interaction around the southern Laurentide Ice Sheet. Journal of Glaciology 46 (153),311–325.
    Damm V,2007. A Subglacial Topographic Model of the Southern Drainage Area of the Lambert Glacier/Amery Ice Shelf System– Results of an Airborne Ice Thickness Survey South of the Prince Charles Mountains,Terra Antartica,14(1), 85-94.
    Davis C H,Li Y,McConnell J R et al.,2005. Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise. Science,308,1898 - 1901.
    Doake C S M,Corr H F J,Rott H et al.,1998. Breakup and conditions for stability of the northern Larsen ice shelf Antarctica.Nature,391,778—780.
    Engelhardt H,Kamb B,1998. Basal sliding of ice stream B,West Antarctica. Journal of Glaciology 44 (147),223– 230.
    Engelhardt H,Kamb B and Bolsey R,2000. A hot-water icecoring drill. J. Glaciol., 46(153), 341–345.
    Fortuin J P F,Oerlemans J,1990. Parameterization of the annual surface temperature and mass balance of Antarctica. Annals of Glaciology 14,78–84.
    Fricker H A,Hyland G,Coleman R et al.,2000a. Digital elevation models for the Lambert Glacier-Amery Ice Shelf system,East Antarctica,from ERS-1 satellite radar altimetry. Journal of Glaciology,46(155),553 - 560.
    Fricker H A,Warner R C,Allison I,2000b. Mass balance of the Lambert Glacier-Amery Ice Shelf system,East Antarctica,a comparison of computed balance fluxes and measured fluxes. Journal of Glaciology,46(155),561 - 570.
    Fricker H A,Popov S,Allison I et al.,2001.Distribution of marine ice under the Amery Ice Shelf,East Antarctica.Geophys. Res. Lett.,28(11),2241–2244.
    Fricker H A,Allison I,Craven M et al.,2002. Redefinition of the Amery Ice Shelf,East Antarctica,grounding zone. Journal of Geophysical Research,107(B5),ECV1/1 - 1/9.
    Fricker H A,Young N W ,Coleman R et al.,2005. Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica. Geophys. Res. Lett.,32(2),L02502.(10.1029/2004GL021036.)
    Galton-Fenzi B K,Maraldi C,Coleman R et al.,2008.The cavity under the Amery Ice Shelf,East Antarctica,Glaciol,54(188),881–887.
    Giovinetto M B,Bentley C R,1985. Surface balance in ice drainage systems of Antarctica, Antarctic Journal of the United States,20,6 - 13.
    GiovinettoM B,Zwally H J,1995.An assessment of the mass budgets of Antarctica and Greenland using accumulation derived from remotely sensed data in areas of dry snow. Zeits Gletscherkunde & Glazialgeol,31,25-37.
    Giovinetto M B,Zwally H J,2000. Spatial distribution of net surface accumulation on the Antarctic ice sheet. Annals of Glaciology,31,171 - 178.
    Glen J W,1955. The creep of polycrystalline ice. Proceedings of the Royal Society, vol. 228 of A, pp. 519–538.
    Greve R,MacAyeal D R,1996. Dynamic / thermodynamic simulations of Laurentide ice sheet instability. Ann Glaciol,23,328-335.
    Greve R,Blatter H,2009. Dynamics of Ice Sheets and Glaciers. Springer, Berlin, Germany etc., 287 pp.
    Griggs J A ,Bamber J L,2009. A New 1 km Digital Elevation Model of Antarctica Derived from Combined Radar and Laser Data– Part 2, Validation and Error Estimates. The Cryosphere,3,113–123.
    Grosfeld K.,Gerdes R,Determann J,1997. Thermohaline circulation and interaction between ice shelf cavities and the adjacent open ocean. Geophys. Res,102(C7),15,595–610.
    Harrison W D,Echelmeyer K A,Larsen C F, 1998. Measurement of temperature in a margin of Ice Stream B, Antarctica: implications for margin migration and lateral drag. Journal of Glaciology,44,615-724.
    Herzfeld U C,Stosius R,Schneider M,2000. Geostatistical methods for mapping Antarctic ice surfaces at continental and regional scales. Annals of Glaciology,30,76 - 82.
    Herzfeld U C,2004. Atlas of Antarctica,Topographic maps from geostatistical analysis of satellite radar altimeter data. Springer Verlag Heidelberg,New York,Tokyo,1 - 364.
    Humbert A,Kleiner T,Mohrholz C O et al.,2009. A comparative modeling study of the Brunt Ice Shelf/Stancomb-Wills Ice Tongue system, East Antarctica .Glaciol,5(189), 3–65.
    Huybrechts P,1992. The Antarctic ice sheet and environmental change, a three-dimensional modelling study, Reports on polar research,99,P241.
    Huybrechts P et al.,1996. The EISMINT benchmarks for testing ice-sheetmodels. Ann Glaciol,23,1-12.
    Huybrechts P et al.,1998. Report of the Third EISMINT Workshop on Model Intercomparison. Strasbourg, European Science Foundation.
    Huybrechts P,DeWolde J,1999.The dynamic response of the Greenland and Antarctic ice sheets to multip lecentury climatic warming. J Climate,12 (8),2169-2188.
    Huybrechts P,Steinhage D,Wilhelms F,2000. Balance velocities and measured properties of the Antarctic ice sheet from a new compilation of gridded data for modeling. Annals of Glaciology,30,52 - 60.
    Huybrechts P,2002. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews, 21(1-3),203 - 231.
    Jacka T H and J Li,1994. The steady-state crystal size of deforming ice. Ann. Glaciol,20,13–18.
    Jacobs S S,Helmer H H,Doake C S M et al.,1992. Melting of ice shelves and the mass balance of Antarctica. Journal of Glaciology 38, 375– 387.
    James T S,Ivins E R,1998. Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum. Journal of Geophysical Research 103 (B3), 4993– 5017.
    Jamieson S S R,Hulton N R J,Sugden D E et al.,2005. Cenozoic landscape evolution of the Lambert basin,East Antarctica, the relative role of rivers and ice sheets. Global and Planetary Change,45,1-3, 35-49.
    Jenkins A and Doake C S M,1991. Ice–ocean interaction on Ronne Ice Shelf, Antarctica. J. Geophys. Res., 96(C1), 791–813.
    Jenkins A and Bombosch A,1995. Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes. Geophys. Res., 100(C4), 6967–6981.
    Jenssen D,1977. A three-dimensional polar ice sheet model. J Glaciol, 18 (80),373-389.
    Jones P D, Reid P A. 2001. A data bank of Antarctic surface temperature and pressure data. ORNL/CDIAC-27, NDP-032. Oak Ridge, Tennessee:Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.
    Joughin I,Tulaczyk S,2002. Positive mass balance of the Ross ice streams,West Antarctica. Science,295(5554),476 - 480.
    Kamb W B,2001. Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In, Alley R B,Bindschadler R A (Eds.)The West Antarctic Ice Sheet, Behavior and Environment. Antarctic Research Series,77,American Geophysical Union, Washington DC,pp. 157– 199.
    Khazendar A , Jenkins A,2003. A model of marine ice formation within Antarctic ice shelf rifts,Geophys. Res.,108(C7), 3235.
    Kiernan R,2001. Ice sheet surface velocities along the Lambert Glacier Basin traverse route, Cooperative Research Centre for Antarctica and the Southern Ocean,University of Tasmania. Hobart,Antarctic CRC Research Report,No.23,1 - 76.
    Le Meur E.,Huybrechts P,1996. A comparison of different ways of dealing with isostasy, examples from modelling the Antarctic ice sheet during the last glacial cycle. Annals of Glaciology 23,309– 317.
    Lemke P,Ren J, Alley R B,Allison I,Carrasco J,Flato G, Fujii Y, Kaser G, Mote P, Thomas R H, and Zhang T. Observations, Changes in snow, ice and frozen ground, in Climate Change 2007, The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, U K, Cambridge Univ Press, 2007, 337–383.
    Lingle C S,Lee L-h,Zwally H J et al.,1994. Recent elevation increase on Lambert Glacier,Antarctica,from orbit cross-over analysis of satellite-radar altimetry[J]. Annals of Glaciology,20,26 - 32.
    Lingle C S,Covey D N,1998. Elevation changes on the East Antarctic ice sheet,1978-93 ,from satellite radar altimetry,a pre2 liminary assessment[J]. Annals of Glaciology,27,7 - 18.
    Liu H,1999. Generation and refinement of a continental scale ditital elevation model by integrating cartographic and remotely sensed data,A GIS-based approach. Ph.D.thesis, Ohio State University,Columbus.
    Liu H,Jezek K C, Li B,1999. Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data,A geographic information system based approach. Journal of Geophysical Research, 104(B10),23199 - 23213.
    Lorius C et al.,1985. A 150 000-year climatic record from Antarctic ice. Nature, 316,591—596.
    Luckman A, Murray T, Lange R de et al.,2006. Rapid and synchronous ice-dynamic changes in East Greenland, Geophys Res Lett, 3(33).
    Lythe M B,Vaughan D G,the BEDMAP Consortium,2001. BEDMAP,A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research letters,106(B6),11,335 - 11351.
    MacAyeal D R,1992. Irregular oscillations of the West Antarctic ice sheet. Nature,35929—35932.
    MacAyeal D R.,Rignot E and Hulbe C L,1998. Ice-shelf dynamics near the front of the Filchner–Ronne Ice Shelf,Antarctica, revealed by SAR interferometry, model/interferogram comparison.Glaciol.,44(147),419–428.
    Mantripp D R,Ridley J K,Rapley C G,1992. Antarctica map from the Geosat Geodetic Mission. EOS,73(51),545,549 - 550.
    Manson R,Coleman R,Morgan P et al.,2000. Ice velocities of the Lambert Glacier from static GPS observations. Earth Planets Space,52,1031 - 1036.
    Magruder L A,Schutz B E,Silverberg E C,2003. Laser pointing angle and time of measurement vertification of the ICESat laser altimeter using a ground-based electro-optical detection system. Journal of Geodesy,77(3-4),148 - 154.
    Mayer C,Huybrechts P,1999. Ice dynamic conditions across the grounding zone, Ekstrêmisen, East Antarctica.Glaciol,45(150),384-393.
    Mayewski P A,Goodwin I D,1997. International Trans Antarctic Scientific Expedition (ITASE) "200 Years of Past Antarctic Climate and Environmental Change", Science and Implementation Plan, 1996[R]. PAGES Workshop Report Series 97-1,48p.
    McConnell R K ,1968. Viscosity of the mantle from relaxation time spectra of isostatic adjustment. Journal of Geophysical Research 73,7089–7105.
    McLean M, Reitmayr G,2005. An Airborne Gravity Survey South of the Prince Charles Mountains, East Antarctica. Terra Antartica,12(2),p. 99-108.
    Moore I D,Grayson R B,Landson A R,1991. Digital Terrain Modelling, a Review of Hydrological, Geomorphological, and Biological Applications. Hydrological Processes, 5,3 - 30.
    Oerlemans J,1983. A numerical study on cyclic behaviour of polar ice sheets. Tellus,35A,81-87.
    Oerlemans J., van der Veen C J,1984. Ice Sheets and Climate. D.Reidel Publishing, Dordrecht.
    O’Farrell et al.,1997.Impact of transient increases in atmospheric CO2 on the accumulation and mass balance of the Antarctic ice sheet. Ann Glaciol,25,137-144.
    Parizek B R., Alley R B., Hulbe C L.,2003. Subglacial thermal alance permits ongoing grounding line retreat along the Siple coast of West Antarctica. Annals of Glaciology 36, 251– 256.
    Pattyn F,1996. Numerical modelling of a fast flowing outlet glacier, experiments with different basal conditions. Ann Glaciol,23,237-246.
    Payne A J,1995. Limit cycles in the basal thermal regime of ice heets. Journal of Geophysical Research 100 (B3), 4249– 4263.
    Payne A J et al.,2000. Results from the EISMINT Phase simp lified geometry experiments, the effects of thermomechanical coupling.Glaciol,46(153),227-238.
    Rignot E,2002a. East Antarctic glaciers and ice shelves mass balance from satellite data. Annals of Glaciology,34,228 - 234.
    Rignot E, Thomas R H,2002b. Mass Balance of Polar Ice Sheets. Science,297(5586),1502–1506, doi, 10.1126/science.1073888.
    Rignot E,Casassa G,Gogineni P et al,2004. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys.Res.Lett.,31(18),L18401. (10.1029/2004GL020697.)
    Rignot E and Kanagaratnam P, 2006a. Changes in the velocity structure of the Greenland ice sheet. Science, 311(5763), 986–990
    Rignot E,2006b. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Phil Trans A Royal Soc, 364(1844),1637–1655
    Rignot E, Box J E, Burgess E et al. 2008, Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys Res Lett, 35(20).
    Ritzwoller M H, Shapiro N M, Levshin A L et al.,2001. The structure of the crust and upper mantle beneath Antarctica and the surrounding oceans. Journal of Geophysical Research 106, 20645–30670.
    Roberts D,Craven M,Cai M H et al.,2007. Protists in the marine ice of the Amery Ice Shelf,East Antarctica Polar Biol.,30(2),143–153.
    Russell-Head D S,Budd W F,1979. Ice-sheet flow properties derived from bore-hole shear measurements combined with icecore studies, Glaciol.,24(90),117–130.
    Scambos T A,Bohlander J A,Shuman C A et al.,2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett.,31(18),L18402.(10.1029/2004GL020670.)
    Scambos T A,Haran T M,Fahnestock M A et al.,2007. MODIS-based Mosaic of Antarctica (MOA) data sets, continent-wide surface morphology and snow grain size. Remote Sens. Environ.,111(2–3),242–257.
    SCAR,2003. Some Antarctic Statistics. http//www.scar.org/Antarctic%20Info/Ant%20stats.html Schubert G, Yuen D A,1982. Initiation of ice ages by creep instability and surging of the East Antarctic ice sheet,Nature,296,127-130.
    Skvarca P,Rack W,Rott H et al.,1998. Evidence of recent climaticwarming on the eastern Antarctic Peninsula. Ann Glaciol,27,628-632.
    Steig E J ,Schneider D P,Rutherford S D et al.,2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year, Nature, 457,459.
    The ISMASS Committee,2004. Recommendations for the collection and synthesis of Antarctic Ice Sheet mass balance data. Global and Planetary Change,42,1 - 15.
    Thomas R H,1979.The dynamics of marine ice sheets .Glaciol,24(90),167-177.
    Thomas R H,Abdalati W,Krabill W B et al., 2003. Investigation of surface melting and dynamic thinning of Jakobshavn Isbrae, Greenland, J Glaciol, 49(165), 231–239.
    Thomas R H,Frederick E,Krabill W et al.,2006. Progressive increase in ice loss from Greenland. Geophys Res Lett, 33(10).
    Tulaczyk S,Kamb B,Engelhardt H F,2000. Basal mechanics of Ice Stream B,West Antarctica, 1. Till mechanics. Journal of Geophysical Research 105 (B1),463– 481.
    Tushingham A M,PeltierW R,1991. Ice-3G, a new global model of Late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change.Geophys Res,96(B3),4497-4523.
    Vaughan D G,Doake C S M,1996. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature,379,328-331.
    Vaughan D G,Bamber J L,Giovinetto M B et al.,1999. Reassessment of net surface mass balance in Antarctica . Journal of Climate,12(4),933 - 946.
    Vaughan D G et al.,2001. Climate Change: Devil in the Detail,Science, 293,1777-1779.
    Velicogna I,Wahr J,2002. Postglacial rebound and Earth’s viscosity structure from GRACE.Journal of Geophysical Research ,107(B12),2376 ,doi 10.1029/2001JB001735.
    Wahr J,Wingham D,Bentley C,2000. A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. Journal of Geophysical Research,105(B7),16279 - 16294.
    Warner R C,Budd W F,1998.Modelling the long-term response of the Antarctic ice sheet to global warming. Ann Glaciol,27,161-168.
    Warner R C and Budd W F,2000. Derivation of ice thickness and bedrock topography in data-gap regions over Antarctica. Annals of Glaciology,31,191-197
    Warrick R A,Provost C L,Meier M F et al.,1996. Changes in sea level. In, Houghton J T et al. Climate Change 1995, The Science of Climate Change. Contribution of Working Group Ito the Second Assessment Report of Intergovernmental Panel on Climate Change. Cambridge University Press,New York,359 - 405.
    Weertman J,1957. Deformation of floating ice shelves,Glaciol,3,38-42.
    Wen J H,Jezek K C, Fricker H A et al.,2006. Accumulation variability and mass budgets of the Lambert Glacier-Amery Ice Shelf system at high elevations. Annals of Glaciology,43,351 -360.
    Wen J H,Jezek K C,Fricker H A et al.,2007. Mass budgets of the Lambert, Mellor and Fisher glaciers and basal fluxes beneath their flowbands on Amery Ice Shelf. Science in China (Series D),50,1693-1706.
    Wen J H et al.,2010. Basal Melting and Freezing Under the Amery?Ice?Shelf, East Antarctica. Journal of Glaciology 56(195), 81-90.
    Williams M J M,Warner R C,Budd W F,1998a. The effectsof ocean warming on melting and ocean circulation under the Amery Ice Shelf, East Antarctica. Ann. Glaciol., 27,75–80.
    Williams M J M,Jenkins A,and Determann J,1998b. Physical controls on ocean circulation beneath ice shelves revealed by numerical models. American Geophysical Union,285–300.
    Williams M J M,Grosfeld K,Warner R C,2001.Ocean circulation and ice-ocean interaction beneath the Amery Ice Shelf, Antarctica. J GEOPHYSICAL RES ,106(10), 22383-22399.
    Wingham D J,Ridout A J,Scharroo R et al.,1998. Antarctic elevation change from 1992-1996. Science,282,456 - 458.
    Wingham D J, Francis C R, Baker S,et al. 2006.A mission to determine the fluctuations in Earth’s land and marine ice fields, Adv. Space Res, 37(4),841–871.
    Young N W,Hyland G,2002. Velocity and strain rates derived from InSAR analysis over the Amery Ice Shelf, East Antarctica.Ann. Glaciol.,34, 228–234.
    Yu J ,2006. Investigation of glacial dynamics in lambert glacial basin using satellite remote sensing techniques,Doctor of Philophy,60-63.
    Yu J, Liu H, Jezek K C, Warner R C, and Wen?J,2010. Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier–Amery Ice Shelf system by incorporating Radarsat SAR interferometry and ICESat laser altimetry measurements,J GEOPHYSICAL RES, 115, 11102-11118,doi,10.1029/2010JB007456
    Zwally H J,Bindschadler R A,Brenner A C et al.,1983. Surface elevation contours of Greenland and Antarctic ice sheers[J]. Journal of Geophysical Research,88(C3),1589 - 1596.
    Zwally H J,Shuman C,2002. ICESat,Ice,Cloud, and Elevation Satellite,Brochure FS-2002-9-047-GSFC, 23 pp,NASA/GSFC,Greenbelt,Maryland,USA.
    Zwally H J,Giovinetto M B,Li J et al.,2005. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise,1992-2002. Journal of Glaciology,51(175),509 - 527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700