三峡库区森林植物多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以132块临时样地、146块固定样地的调查数据和1999-2003年三峡库区森林资源二类调查数据为基础,以三峡库区森林植物多样性研究为主线,应用植被数量分析方法,并将定性和定量方法相结合,从种子植物区系特征、植物群落数量分类与排序及其环境解释、群落物种多样性及环境梯度特征、不同演替阶段森林土壤养分特征、典型针叶林的结构以及林下植物物种的生态位及种间联结特征等方面,比较系统地研究了三峡库区森林植物多样性特征,并分析了库区珍稀濒危物种的现状及其保护对策,对指导三峡库区的生物多样性保护、森林恢复与可持续经营具有重要的理论和现实意义。
     根据吴征镒先生对中国种子植物分布类型的划分,该区种子植物属的分布类型可划分为15个类型及其变型,以热带性质的属分布较多,温带性质的属次之,具有较为明显的过渡性。同时,该区域植物区系起源古老,植物种类丰富多样,共有种子植物5688种,占全国种子植物总数的21%。其中珍稀濒危植物56种,分属34科,48属,约占全国总数的10%。三峡库区珍稀濒危植物具有过渡性、分散性和特有性等特征,而且受人为干扰严重。
     TWINSPAN数量分类结果表明三峡库区森林植物群落可化分为巴山松(Pinus henryi)林、华山松(P. armandii)林、马尾松(P. massoniana)林、杉木(Cunnighamia lanceolata)林、柏木(Cupessus funebris)林、马尾松+栓皮栎(Pinus massoniana+Quercus variabilis)林、马尾松+栲(Pinus massoniana +Castanopsis fargesii)林、马尾松+大头茶(Pinus massoniana+ Grdonia axillaris)林、杉木+栲(Cunnighamia lanceolata+Castamopsis fargesii)林、短柄枹栎(Quercus glandulifera var. brevipetiolata)林、栓皮栎(Q. variabilis)林、白栎(Q. albus)林、槲栎+栓皮栎(Q. aliena+Q. variabilis)林、西南槲树(Q. denlata var. oxyloba)林、亮叶水青冈(Fagus lucida)林、茅栗(Castanea seguinii)林、化香(Platycarya strobilacea)林、红桦(Betaula albo-sinensis)林、糙皮桦(Betula utilis)林、四照花(Dendrobenthamia japonica var. chinensis)林、枫香(Liquidambar formosana)林、华中樱桃+刺叶栎(Cerasus conrodinae+Quercus spinosa)林、连香树+细齿稠李(Cercidiphyllum japonicum+Padus obtusata)林、灯台树(Cornus controversa)林、朴树(Celtis sinensis)林、包槲柯+锥栗(Lithocarpus cleistocarpus+Castanea henryi)林、化香+曼青冈(Platycarya strobilacea+Cyclobalanopsis oxyodon)林、石栎(Lithocarpus glaber)林、甜槠(Castanopsis eyeri)林、红豆树(Ormosia henryi)林、润楠(Machilus pingii)林、大头茶(Gordoniaasillaris)林、刺叶栎(Quercus spinosa)林共33个群落类型;DCA排序结果较好地解释了库区森林植物群落分布及其与环境因子的关系,反映了植物群落所在地环境的温度、海拔和土壤水分的综合梯度,总体趋势表现为:随着海拔高度逐渐升高,水分逐渐减小,气温逐渐降低,植被类型依次为常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林、针阔叶混交林、针叶林。
     三峡库区森林植物群落中灌木层的物种最丰富,其次是草本层,但不同群落之间是波动的。目前,由于环境差异及强烈的人为干扰活动,三峡库区森林植物群落物种多样性在海拔梯度上没有明显的规律。随着由灌丛向针叶林、针阔混交林、落叶阔叶林、常绿阔叶林的正向演替,林下土壤pH值逐步降低,有机质、速效磷逐渐升高,而水解氮逐渐降低,但三者均具有较强的表聚性。
     在三峡库区针叶林约占库区植被的50%,其中马尾松林占34%,杉木林占10%,柏木林占6%;三种林分的物种多样性的总体趋势与库区森林的物种多样性趋势一致。对马尾松林下物种生态位测度表明,菝葜(Smilax davidiana)、铁仔(Myrsine africana)、细齿柃木(Eurya japonica)、小果蔷薇(Rosa cymosa)、黄栀子(Pittosporum phillyraeoides)、算盘子(Glochidion puberum)、乌饭(Vaccinium serrulatum)等灌木种群和铁芒萁(Dicranopteris lineari)、芒(Miscanthus sinensis)、蕨(Pteridium aquilinum)、白茅(Imperata cylindrica)、野古草(Arundinella anomala)、乌蕨(Stenoloma chusanum)等草本种群的生态位宽度较大;展毛野牡丹(Melastoma normle)、烟管荚迷(Viburnum utile)、肖梵天花(Urena lobata)等灌木种群和毛轴碎米蕨(Cheilosoria chusana)、淡竹叶(Lophatherum gracile)、假淡竹叶(Centotheca lappaceus)、黄背茅(Themeda japonica)、斑茅(Saccharum arunndinaceum)、水竹(Phyllostachys heteroclada)、扇叶铁线蕨(Adiantum flabellulatum)、掌叶铁线蕨(Adiantum pedatum)等草本种群的生态位宽度较小。其中灌木种群中细齿铃木和映山红(Rhododendron simsii)、土茯苓(Smilax glabra)和山胡椒(Lindera glauca)、黄荆(Vitex negundo)和地瓜藤(Ficus tikoua)、乌饭和黄栀子,草本种群中掌叶铁线蕨和阔鳞鳞毛蕨(Dryopteris championii)、乌蕨和马尔参(Miscanthus nepalensis)、扇叶铁线蕨和野古草(Arundinella anomala),生态位重叠较大。另外,同属物种,如烟管荚迷和宜昌荚迷(Viburnum erosum),菝葜、粉背菝葜(Smilax hypoglauca)和土茯苓,丝叶苔草(Carex capilliformis)、披针叶苔草(Carex lanceolata)、苔草(Carex baccans)和密叶苔草(Carex maubertiana),掌叶铁线蕨和扇叶铁线蕨,铁芒萁(Dicranopteris lineari)和芒萁(Dicranopteris dichotoma),金星蕨(Parathelypteris- landuligera)和日本金星蕨(Parathelypteris japonica)等之间的生态位重叠程度降低,由于在一定程度上对环境资源需求分化,更利于它们共存于某一小生境中,具有长期生存适应的生态学意义。
     三峡库区马尾松林下灌木中继木和黄栀子为极显著的正关联种对,黄栌、土茯苓、马桑和展毛野牡丹为极显著的负关联。草本中极显著正关联种对为铁芒萁和芒、芒萁和红盖鳞毛蕨(Dryopteris erythrosor)、丝叶苔草和石荠宁(Mosla scabra)等;极显著的负关联为毛轴碎米蕨和淡竹叶、假淡竹叶,黄背茅和水竹等。根据种间联结特征及现实物种分布,将马尾松林下灌木和草本大致分为4个生态种组。第一种组为黄栀子、铁仔、继木、铁芒萁、芒、野古草、蕨等,第二种组为小铁仔、粉背菝葜、地瓜藤、芒萁、狗脊蕨、丝叶苔草、乌蕨等,第三种组为菝葜、细齿铃木、算盘子、毛轴碎米蕨、红盖鳞毛蕨、金星蕨等,第四种组为马桑、烟管荚迷、映山红、苔草、圆果雀稗(Paspalum orbiculare)、刚毛秀竹(Microstegium ciliatum)等。
Based on the investigated data of 132 temporal and 146 permanent plots and the data of national second-class forest resource investigation(1999-2003) in the Three Gorges Reservoir Area, species diversity of the forest communities in the area was mainly studied using the integration of quantitative and qualitative methods, especially quantitative analysis methods. Flora characteristics of seed plants, quantitative classification and ordination of plant communities and their environmental interpretations, plant species diversity and their responses to environment, and changes of soil nutrients along with community succession in the area were analyzed deeply together with the analysis of the community structure and species diversity, niche and interspecific association of under-story species of the main coniferous forest in the area. Current status, existing problems and conservation strategies of the rare and endangered species in the area were also analyzed finally. This study will be significance theoretically and practically of restoration, rehabilitation, and sustainable management for the degraded forest in the area.
     Areal types of genera of seed plants in the area were divided in 15 types according to the method for Areal types’study of Prof. Wu Zhengyi. The dominant type was tropical areal type, then temperate areal type, and the transitional feature was obvious. The origin of the flora was ancient and there were plenty of plant species, including 5688 seed plant species, accounting for 22% of total species in China. There were 56 rare and endangered plant species, belonging to 34 families and 48 genera, and accounting for 10% of the total number in China approximately. They had transitional, decentralized and endemic characteristics and have been disturbed by human activities seriously.
     Plant communities were divided into 33 types by the quantitative method TWINSPAN (TWo INdicator Species ANalysis) in the area. They were Form. Pinus henryi, Form. P. armandii, Form. P. massoniana, Form. Cunnighamia lanceolata, Form. Cupessus funebris, Form. Pinus massoniana+Quercus variabilis, Form. Pinus massoniana +Castanopsis fargesii, Form. Pinus massoniana+ Grdonia axillaris, Form. Cunnighamia lanceolata+Castamopsis fargesii, Form. Quercus glandulifera var. brevipetiolata, Form. Q. variabilis, Form. Q. albus, Form. Q. aliena+Q. variabilis, Form. Q. dentata var. oxyloba, Form. Fagus lucida, Form. Dendrobenthamia japonica var. chinensis, Form. Liquidambar taiwaniana, Form. Castanea seguinii, Form. Platycarya strobilacea, Form. Betaula albo-sinensis, Form. B. utilis, Form. Cerasus conrodinae+Quercus spinosa, Form. Cercidiphyllum japonicum+Padus obtusata, Form. Cornus controversa, Form. Celtis sinensis, Form. Lithocarpus cleistocarpus+Castanea henryi, Form. Platycarya strobilacea+Cyclobalanopsis oxyodon, Form. Lithocarpus glaber, Form. Castanopsis eyeri, Form. Ormosia henryi, Form. Machilus pingii, Form. Gordonia asillaris and Form. Quercus spinosa. Distribution of the plant communities and the relationships with the environmental factors were interpreted well by the result of DCA (Detrended Correspondence Analysis) ordination of the communities. Integration of temperature, elevation, soil water content of the community sites was reflected obviously by the DAC result. The main trend was that soil water content and temperature was decreasing with the elevation increasing, the vegetation types were evergreen broad- leaved forest, evergreen and deciduous broad-leaved mixed forest, deciduous broad-leaved forest, coniferous and board-leaved mixed forest, and coniferous forest respectively.
     Plant species richness index of shrub was the highest and that of herb was higher, but they were fluctuant in different communities. Because of the environmental heterogeneity and the strong artificial disturbance, there was no obvious trend of the diversity indices of the communities along with the elevation. With the positive succession of the vegetation, shrub—coniferous forest—coniferous and broad-leaved mixed forest—deciduous broad-leaved forest—evergreen broad-leaved forest in the area, soil pH value decreased gradually, organic matter and available phosphorus of the soil increased while hydrolysable nitrogen decreased gradually, though all of them distributed principally in surface layer.
     Coniferous forest occupied approximately 50% in the middle and low mountain area in the Three Gorges Reservoir Area, Pinus massoniana forest 34%, Cunnighamia lanceolata forest 10%, and Cupessus funebris forest 6%. The main trend of the species diversity of this three forest types was as same as that of the forest in the area. The niche breadths of the shrub species populations, Smilax davidiana,Myrsine Africana, Eurya japonica, Rosa cymosa, Pittosporum phillyraeoides, Glochidion puberum and Vaccinium serrulatum, and the herb species populations, Dicranopteris linearis, Miscanthus sinensis, Pteridium aquilinum, Imperata cylindrica, Arundinella anomala and Stenoloma chusanum, were higher, while that of the shrub species populations, Melastoma normale, Viburnum utile and Urena lobata, and the herb species populations, Cheilosoria chusana, Lophatherum gracile, Centotheca lappacea, Themeda japonica, Saccharum arunndinaceum, Phyllostachys heteroclada, Adiantum flabellulatum and Adiantum pedatum, was lower relatively in Pinus massoniana community. The niche overlaps between the shrub species populations of Eurya japonica and Rhododendron mucronulatum, Smilax glabra and Lindera glauca, Vitex negundo and Ficus tikoua, Vaccinium serrulatum and Pittosporum phillyraeoides, and herb species populations of Adiantum pedatum and Dryopteris championii, Stenoloma chusanum and Miscanthus nepalensis, Adiantum flabellulatum and Arundinella anomala, were higher in Pinus massoniana community. In addition, the overlaps among the species populations belonging to the same genus, Viburnum utile and V. erosum, Smilax davidiana, S. hypoglauca and S. glabra, Carex capilliformis, C. lanceolata, C. baccans and C. maubertiana, Adiantum pedatum and A. flabellulatum, Dicranopteris linearis and D. dichotoma, Parathelypteris glanduligera and P. japonica, were lower relatively. This could be helpful for the coexistence of the species in a small area.
     The interspecific association between the shrub species populations, Loropetalum chinense and Pittosporum phillyraeoides, was positive significantly, while the associations between the populations of Cotinus coggygria, Smilax glabra, Coriaria nepalensis and Melastoma normle were negative significantly in Pinus massoniana community. The interspecific association between the herb species populations, Dicranopteris linearis and Miscanthus sinensis, D. dichotoma and Dryopteris erythrosora, C. capilliformis and Mosla scabra, were positive significantly, while the associations between the populations of Cheilosoria chusana and Lophatherum gracile, Centotheca lappacea, Themeda japonica and Phyllostachys heteroclada, were negative significantly. Understory species of the Pinus massoniana community were divided into four ecological species groups based on their intrespecific association characteristics. The first group included Pittosporum phillyraeoides, Myrsine africana, Loropetalum chinense, Rosa cymosa, Dicranopteris linearis, Miscanthus sinensis, Arundinella anomala and Pteridium aquilinum etc.; the second included Myrsine semiserrata, Smilax hypoglauca, Ficus tikoua, Dicranopteris dichotoma, Woodwardia japonica, Carex capilliformis and Stenoloma chusanum etc.; the third included Smilax davidiana, Eurya japonica, Glochidion puberum, Cheilosoria chusana, Dryopteris erythrosora and Parathelypteris glanduligera etc.; and the fourth included Coriaria nepalensis, Viburnum utile, Rhododendron mucronulatum, Carex baccans, Paspalum orbiculare and Microstegium ciliatum etc..
引文
[1]马克平试论生物多样性的概念生物多样性, 1993, 1(1):20-22
    [2]王献溥,刘玉凯生物多样性的理论与实践北京:中国环境科学出版社, 1994, 23-49
    [3]中国科学院生物多样性委员会生物多样性研究的原理与方法北京:中国科学技术出版社, 1994, 1-240
    [4]陈灵芝,马克平生物多样性科学:原理与实践上海:上海科学技术出版社, 2001, 1-232
    [5] Phillips O L. The changing ecology of tropical forests. Biodiversity and Conservation, 1997, 6: 291-311
    [6] West N E. Biodiversity of rangelands. Journal of Range Management. 1992, 46, 2-13
    [7] Rapport D J, Whitford W G. How ecosystems respond to stress. BioScience, 1999, 49: 193-203
    [8] Ehrlich P R ,Wilson E O. Biodiversity Studies: Science and Policy. Science. 1991, 253, 758-762
    [9] Wilson E.O.The current state of biological diversity. Biodiversity (Edited by Wilson E.O. ), National Academy Press ,Washington D. C. 1988, 3-18
    [10] Naeem S, Thompson L J, Lawler S P. Declining biodiversity can alter the performance of ecosystems. Nature, 1994, 368:734-736
    [11] Grime J P. Benefits of plant diversity to ecosytems: immediate, filter and founder effects. Journal of Ecology, 1998, 86:902-910
    [12] Schonewald-Cox, Chambers S M. Genetic and conversation. Benjamin Cummings Publishing Co., MenloPark, Cal.1983
    [13] Vitousek P M. Beyond Global Warming: Ecology and Global Change Ecology. 1994, 75(7):186l-1876
    [14] Tilman D, Downing J A. Biodiversity and Stability in grasslands. Nature. 1994, 367:363-365
    [15]徐琪,刘逸农三峡库区移民环境容量研究北京:科学出版社, 1993,40-82
    [16] Li Hemin, Paul Waley, Phil Rees. Reservoir resettlement in China: past experience and the Three Gorges Dam. The Geographical Journal. 2001, 167(3):195-201
    [17] Meng Q H, Fu B J, Yang L Z. Effects of land use on soil erosion and nutrient loss in the Three Gorges Reservoir Area, China. Soil Use and Management. 2001,17(4):288-292
    [18] William Lowry. Potential Focusing Projects and Policy Change. Policy Studies Journal.2006, 34(3):313-335
    [19] Ziqiang Tian, Weilie Chen, Changming Zhao. Plant biodiversity and its conservation strategy in the in-undation and resettlement districts of the Yangtze Three Gorges, China Acta Ecologica Sinica, 2007, 8: 3110-3118
    [20]娄治平,马克平,佟凤勤生物多样性保护与持续利用研究世界科技研究与发展, 1996(5):52-55
    [21]陈灵芝中国的生物多样性:现状与保护对策北京:科学技术出版社,1993
    [22]徐海根,马克平自然保护区与生物多样性信息共享,资源科学, 2001,23(1): 60-63
    [23] Vitousek P M, Hooper D U. Biological diversity and terrestrial ecosystem biogeochemistry. In: Schulze,E .D., Mooney,H .A.( Eds.), Biodiversity and Ecosystem Function, Springerverlag, Berlin, Germany,1993,3-14
    [24] Woodhand F I. How many species are required for a functional ecosystem? Biodiversity and ecosystem function (Edited by Schulze E D and Mooney H A, Springerverlag), 1993:271-291
    [25]张贵,肖化顺,曾思齐三峡库区森林生态经济系统的现状预警分析湖南师范大学自然科学学报, 2004, 27(1):83-88
    [26]国家环保总局2006年度三峡库区生态环境监测公报,2006,北京
    [27]陈国阶三峡工程对生态和环境的影响研究北京:科学出版社,1993
    [28]吴征镒中国植被北京:科学出版社,1980
    [29]陈灵芝,陈伟烈中国退化生态系统研究北京:中国科学技术出版社,1995,61-93
    [30]黄时达三峡工程与环境污染及人群健康,北京:科学出版社,1994
    [31]中国科学院《中国自然地理》编辑委员会编中国自然地理.古地理(上册),北京:科学出版社,1984
    [32]中国科学院《中国自然地理》编辑委员会中国自然地理----植物地理(上册),北京:科学出版社,1983
    [33]王荷生植物区系地理北京:科学出版社,1992
    [34]汪劲武种子植物分类学北京:高等教育出版社,1985
    [35]吴征镒,周浙昆,孙航等种子植物分布区类型及其起源和进化昆明:云南科技出版社, 2006
    [36]陈伟烈,张喜群,梁松筠等三峡库区植物与复合农林系统北京:科学出版社, 1994
    [37]程瑞梅,肖文发三峡库区主要针叶林多样性研究应用生态学报, 2005, 16(9):1791-1794
    [38]程瑞梅,肖文发,李新新等三峡库区柏木林研究林业科学研究, 2004,7(3):382-386
    [39] Hill M O, Gauch H G. Detrended correspondence analysis: an improved ordination technique. Vegetation, 1980, 42:47-58
    [40] Smith P G. Quantitative Plant Ecology. London: University of California Press, 1983
    [41] Kenneth A Kershaw, John Henry, H Looney. Quantitative and dynamic plant ecology. London: Edward Arnold, 1985
    [42] McDonald D J, Cowling R M, Boucher C. Vegetation-environment relationships on a species-rich coastal mountain range in the fynbos biome (South Africa). Vegetation, 1996, 123:165-182
    [43]江洪川西北甘南云冷杉林的数量分类植物生态学报,1994,18(4):297-305
    [44]史作民,刘世荣,程瑞梅等河南宝天曼植物群落数量分类与排序林业科学, 2000,36(6): 20-27
    [45] Hill M O., DECORANA-a FORTRAN program for detrended correspondence analysis and reciprocal averaging, Ithaca: Cornell University Press , 1979, 1-49
    [46]张新时西藏阿里植物群藩的间接梯度分析数量分类与环境解释植物分类与地植物学学报, 1991,15(2):101-113
    [47]徐斌,赵哈林,徐措沙地草场放牧试验植物群落的TW1NSPAN数量分析植物生态学报, 2000, 24(2):252-256
    [48]刘海江,郭柯浑善达克沙地丘间低地植物群落的分类与排序生态学报, 2003, 23(10): 2163-2169.
    [49]张金屯数量生态学北京:科学出版社, 2004
    [50]艾尼瓦尔·吐尔,阿地里江·阿不都拉,阿不都拉·阿巴斯天山森林生态系统树生地衣植物群落数量分类及其物种多样性的研究植物生态学报, 2005,29(4):615-622
    [51]兰国玉,雷瑞德秦岭华山松群落数量分类研究生态学杂志, 2006,25(2):119-124
    [52] Burke A. Classification and ordination of plant communities of the Naukluft Mountains, Namibia. Journal of Vegetation Science, 2001, 12: 53-60
    [53] Cilliers S S, Bredenkamp G J. Classes of synanthropic vegetation in urban open spaces of Potchefstroom, South Africa. Proceedings IAVES Symposium, 2000, 218-221
    [54] Olvera Vargas M,Figuero Rangel B L., Zonation and management of mountain forests in the Sierra de Manantlán, México. Proceedings IAVES Symposium, 2000, 207-209
    [55] Palmer M W. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology, 1993, 74: 2215-2230
    [56] Russell Smith J. Classification, species richness, and environment relations of monsoon rain forest in northern Australia. Journal of Vegetation Science, 1990, 2: 259-278
    [57] Velázquez, A. Multivariate analysis of the vegetation of the volcanoes Tláloc and Pelado, Mexico. Journal of Vegetation Science, 1994, 5: 263-270
    [58]张金屯模糊数学排序及其应用生态学报, 1992,12(4):325-331
    [59]胡理乐,毛志宏,朱教君等辽东山区天然次生林的数量分类生态学报, 2005, 25(11):2848-2854
    [60]张金屯植被数量分析方法的发展当代生态学博论,北京:中国科学技术出版社, 1992,249-265
    [61]张峰,张金屯我国植被数量分类和排序研究进展山西大学学报(自然科学版), 2000, 23 (3):278-282
    [62]程瑞梅,肖文发三峡库区植被分类系统初探环境与开发,1999,14(2):4-7
    [63]贺金生,陈伟烈陆地植物群落物种多样性的梯度变化特征植物生态学报, 1997, 17(1):91-99
    [64] Magurran A E. Ecological diversity and its Measurement.Great Britain, Princeton, New Jersey: Princeton University Press.1988,1-179
    [65]马克平生物多样性测度度方法(I)生物多样性, 1994,2(3):162-168
    [66]马克平,刘玉明生物多样性测度度方法(II)生物多样性, 1994, 2(4): 231-239
    [67]马克平,刘灿然,刘玉明生物多样性测度方法(III)生物多样性, 1995, (1):38-43
    [68]刘灿然,马克平生物群落多样性的测度方法(V)生物群落物种数目的估计方法I生态学报, 1997,17(6):602-610
    [69] Spellerberg I F, Fedor P J A. Tribute to Claude Shannon(1916-2001) and a plea for more rigorous use of species richness, species diversity and the Shannon-Wiener idex. Global Ecology and Biogeography, 2001,12:177-179
    [70] Veech J A, Summerville K S, Crist T O. The additive partitioning of species diversity: Recent revival of an old idea.Oikos, 2002,99:3-9
    [71] Whittaker R H, Niering W A.Vegetation of the Santa Catalina Mountains, Arizona: V. Biomass. Production, and diversity along the elevation gradient. Ecology, 1975, 56:771~790
    [72]林金安,生物学导论哈尔滨:东北林业大学出版社,1993
    [73]贺金生,陈伟烈,李凌浩中国中亚热带东部常绿阔叶林主要类型的群落多样性特征植物生态学报,1998,22(4):219-228
    [74]高贤明,陈灵芝北京山区辽东栎物种多样性研究植物生态学报,1998,22(1):23-32
    [75]黄建辉,陈灵芝北京东灵山地区森林植被的生态多样性分析植物学报,1994,36(增刊):178-186
    [76]黄建辉物种多样性形成机制和空间格局研究生物多样性,1994,2(2):103-107
    [77]谢晋阳,陈灵芝暖温带落叶阔叶林的物种多样性特征生态学报,1994,14(4):337-344
    [78]阿守珍,卜耀军,温仲明黄土丘陵区不同植被类型土壤养分效应研究西北林学院学报, 2006,21(6):58-62.
    [79]何园球,沈其荣,王兴祥红壤丘岗区人工林恢复过程中的土壤养分状况土壤, 2003,35(3):222-226
    [80]宋洪涛,张劲峰滇西北亚高山地区黄背栎林植被演替过程中的林地土壤化学响应西部林业科学, 2007,36(2):23-27
    [81]周莉,代力民,谷会岩长白山阔叶红松林采伐迹地土壤养分含量动态研究应用生态学报, 2004,15(10):1771-1775
    [82]中华人民共和国林业行业标准LY/T1210~1275-1999森林土壤分析方法中国标准出版社, 1999
    [83]鲍士旦土壤农化分析北京:中国农业出版社,2000,39
    [84]中国科学院南京土壤研究所土壤理化分析上海:上海科学出版社, 1978,103-104,132-136,146-150
    [85]侯琳,雷瑞德,王得祥黄龙山林区封育油松林土壤养分研究西北农林科技大学学报(自然科学版), 2007,2(2):48-52
    [86]刘艳,周国逸,褚国伟等鼎湖山针阔混交林土壤酸度与土壤养分的季节动态生态环境, 2005,14(1):81-85
    [87]周晓峰中国森林与生态环境北京:中国林业出版社,1999,116-147
    [88]温仲明,焦峰,赫晓慧等黄土高原森林边缘退耕地植被自然恢复及其对土壤养分变化的影响草业科学, 2007,16(1):43-52
    [89]许明祥,刘国彬黄土丘陵区刺槐人工林土壤养分特征及演化植物营养与肥料学报, 2004,10(1):40-46
    [90]徐鹏,赵东,赵勇黄河小浪底库区不同恢复阶段土壤退化评价安徽农业科学, 2007,35(10):2959-2961
    [91]胡玉福,邓良玉,张世熔川中丘陵区不同利用放式的土壤养分特征研究水土保持学报, 2006,20(6):85-89
    [92]侯本栋,马风云,刑尚军等黄河三角洲不同演替阶段湿地群落的土壤和植被特征浙江林学院学报, 2007,24(3):313-318.
    [93]耿增超,张社奇,王国栋等黄土高原油松人工林地土壤养分及化学性质的时空效应西北农林科技大学学报,2006,34(8):89-92
    [94]李恩香,蒋忠诚,曹建华广西弄拉岩溶植被不同演替阶段的主要土壤因子及溶蚀率对比研究生态学报, 2004,24(6):49-53
    [95]张鼎华,范少辉亚热带常绿阔叶林和杉木皆发后林地土壤肥力的变化应用与环境生物学报2002,8(2):115-119
    [96]肖鹏飞,张世熔,黄丽琴成都平原区土壤速效磷时空变化特征水土保持学报, 2005,19(4):89-100
    [97] Cain S A.The species area.Amer. Middland Nature.1938,19:573-581
    [98]肖文发,李建文,于常青三峡库区陆生动植物生态重庆:西南师范大学出版社, 2000
    [99]中国植被编辑委员会中国植被北京:科学出版社,1995,143-156
    [100]贺金生,陈伟烈Plant species diversity of the degraded ecosystems in the Three Gorges region, ACTA ECOLOGICA SINICA,1998,18(4):399-407
    [101] Rey Benayas J M. Patterns of diversity in the strata of boreal mountain forest in British Columbia. Journal of Vegetation Science.1995,6:95-98
    [102]王伯荪,李鸣光,彭少麟种群生态学广州:广东高等教育出版社1995,132-148
    [103] Silvertown J, Dodd M E, Cowing D J.Hydrologically defined niches reveal a basis for species richness in plant communities. Nature, 1999,400:61-63
    [104] Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecology letters, 2005(8):993-1009
    [105] Whittaker R H.Communities and ecosystem, New York:Macmillan,1970,21-23
    [106] Grinnell J.The niche relationships of the California thrasher, Auk,1917,21:364- 382
    [107]谢正苗,吕军,俞劲炎红壤退化过程与生态位研究应用生态学报, 1998,9 (6):669-672
    [108]雷利平,王孝安,郭华等子午岭地区辽东栎和油松林建群种的更新生态位宽度分析西北植物学报, 2007,27(7):1446-1453
    [109] Peterson A T, Cohoon K P. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling,1999(117):159-164
    [110] Underwood E C, Klinger R, Moore P E. Predicting patterns of non-native plate invasions in Yosemite National Park,California,USA,Diversity﹠Distribution,2004(10):447-459
    [111] Shugart H H, Bonan G B, Rasteeler E B. Niche theory and community organization.Canada Journel of Botany.1998,66:2634-2639
    [112] Thompson K, Gaston KJ,Band S R. Range size,dispersal and niche breadth in the herbaceous flora of central England.Journal Eco1ogy.1999,87:155-158
    [113] Chiras D. Environmental Science (Third edition). The Benjamin Publishing Company,Inc California.New York,Sydney,Tokyo,1991,52-53
    [114]王刚,赵松岭,张鹏云等关于生态位定义探讨及生态位重叠计测公式改进研究生态学报, 1984,4(2):119-126
    [115]王刚生态位理论若干问题探讨兰州大学学报(自然科学版),1990,26(2):109-11
    [116] Pielou E C. Niche width and niche overlap:A method for measuring them. Ecology, 1972,53:687-692
    [117]余世孝鼎潮山厚壳桂群落优势种生态宽度与重叠之研究热带亚热带森林生态系统研究(3集),北京:科学出版社,1985,32-41
    [118]史作民,程瑞梅,刘世荣宝天曼落叶阔叶林种群生态位特征应用生态学报, 1999,10(3):265-269
    [119]王建华,赵群芬,李旭光南川金佛山甄子岩灌丛群落优势种群生态位特征四川师范大学学报(自然科学版),2001,24(5):79-83
    [120]杨自辉,方峨天,刘虎俊民勤绿洲边缘地下水位变化对植物种群生态位的影响生态学报,2007,27(11):4900-4906
    [121] Levins R. Evolution in Changing Environmengts: Some Theoretical Explorations. Princeton: Princeton University Press,1968
    [122] Hurlbert. The measurement of niche overlap and some relatives. Ecology, 1978, 59(1):67-77
    [123] Pianka E R.The structure of lizard communities.Ann Rev Ecology Systematic, 1973, 4:65-74.
    [124]张金屯植被数量生态学方法北京:中国科学技术出版社,1995.90-93.
    [125]王伯荪,李鸣光,彭少麟植物种群学广州:广东高等教育出版社,1995.132-148.
    [126]董全民,赵新全,马玉寿等高寒小嵩草草甸暖季草场主要植物种群的生态位生态学杂志, 2006,25(11):1323-1327
    [127]唐冰南亚热带人工马尾松林下植物组成特征及主要木本种群生态位研究应用生态学报, 2005,16(9):1786-1790
    [128]宫贵权,程积民,米湘成古田山常绿阔叶林木本植物与生境的相关性中国水土保持科学, 2007,5(3):79-83
    [129]王刚关于生态位定义的探讨及生态位计策公式改进的研究生态学报, 1984,4(2):119-126
    [130]刘世荣,蒋有绪,史作民中国暖温带森林生物多样性研究中国科技出版社, 1998,99-105.
    [131]王惠,邵国凡,代力民采伐干扰下长白山阔叶红松林主要灌木种群生态位动态特征东北林业大学学报, 2007,35(11):27-31
    [132]吴刚,梁秀英,张旭东长白山红松阔叶林主要树种高度生态位的研究应用生态学报, 1999 ,10 (3) :262-264
    [133]陈存及,陈新芳,刘金福人工-天然杉阔混叫林种群生态位及竞争研究林业科学, 2004,40(1):78-83
    [134] Chesson P. Multispecies competition in variable environment. Theoretial Population Biology. 1994,45:227-276
    [135] Gunatilleke C V S, Gunatilleke I A U N , Esufali S. et al. Species habitat associations in a Sri Lankan dipterocarp forest. Journal of Tropical Ecology, 2006,22(3):371-384
    [136]张桂莲,张金屯关帝山神尾沟优势种生态位分析武汉植物学研究, 2002,20(3):203-208
    [137]张林静,岳明,赵桂仿不同生态位计测方法在绿洲荒漠过渡带上的应用比较生态学杂志, 2002,21(4):71-75
    [138] Davies S J, Tan S, Lafrankie J V. et al. Soil related floristic variation in a hyperdiverse dipterocarp forest, in Roubik D W, Sakai S, Hamid Karim A A. Pollination ecology and the rain forest, Sarawak Studies.New York:Springer Verlag,2005:22-34
    [139] Anon Newsletter of the Center for Tropical Forest Science. Inside CTFS Summer, 2003,15:1120-1126
    [140]郑元润大青沟森林植物群落主要木本植物生态位研究植物生态学报, 1999,23(5):475-479.
    [141] Greig Smith Quantitative plant ecology (3rd version). Oxford: Blaekwell Science Publications.1983,105-112
    [142]王伯荪编植物群落学北京:高等教育出版社,1985
    [143] Janson S,Vegelius J. Measure of ecological association. Oecologia, 1981,49: 371-376
    [144]温远光,黄棉大明山中山植被恢复过程植物物种多样性的变化植物生态学报, 1998,22(1):33-40
    [145]秦新生,刘苑秋,邢福武低丘人工林林下植被物种多样性初步研究热带亚热带植物学报, 2003,11(3):223-228
    [146] Whittaker R H著(王伯逊译)植物群落排序北京:科学出版社.1986
    [147]史作民,刘世荣宝天曼落叶阔叶林种间联结性研究林业科学,2001,37(2):29-35
    [148]何友均,崔国发,邹大林三江源自然保护区玛珂河林区寒温性针叶林优势灌木种间联结研究林业科学,2006,42(12):26-29
    [149]林伟强,刘慧明,张璐广州帽峰山次生林主要种群种间联结性研究生态科学, 2004,23(1):42-46.
    [150] Hurlbert S H. A conficent of interspecific association, Ecology,1969,50:1-9
    [151]骆土寿,李意德,陈德祥等海南岛鸡毛松人工林群落种间联结性研究生态学杂志,2005,24(6):591-594
    [152]伊林克,李涛塔里木河中下游地区荒漠河岸林群落种间关系分析植物生态学报, 2005, 29(2):226-234
    [153]陈文年,吴宁,罗鹏岷江上有祁连山圆柏群落优势种群间的联结性应用与环境生物学报, 2004,10(6):712-717
    [154] Jonsson B G, Moen J. Patterns in species associations in plant communities: The importance of scale. Journal of Vegetation Science.1998,9:327-332
    [155]胡理乐,闫伯前,刘琪璟等南方丘陵人工林林下植物种间关系分析应用生态学报, 2005,16(11):2849-2854
    [156]刘金福,洪伟,樊后保天然格式栲林乔木种群种间关联性研究林业科学, 2001,37(4):117-123
    [157]杜道林,刘玉成,李睿缙云山亚热带栲树林优势种群间联结性研究植物生态学报, 1995,19(2):
    [158]盖新敏甜楮天然林优势种群的联结性研究甘肃农业大学学报,2006,41(3):76-80
    [159]杜道林,刘玉成,苏洁四川缙云山大头茶与森林优势种群间联结性研究西南师范大学学报(自然科学版),1995,20(1):67-73
    [160]郭忠玲,马元丹,郑金长白山落叶阔叶混交林的物种多样性、种群空间分布格局及种间关联性研究应用生态学报, 2004,15 (11):2013-2018
    [161]王新功武夷山米槠林优势种种间联结性研究中国生态农业学报, 2003, 11(3): 25-28
    [162]曹培健,丁炳扬,李伟成等凤阳山福建柏群落主要种群种间联结性研究浙江大学学报, 2006,33(6):124-128
    [163]周先叶,王伯荪,李鸣光广东黑石顶自然保护区森林次生演替过程中群落种间联结性分析植物生态学报,2000,24(3):332-339
    [164]傅立国,金鉴明中国植物红皮书北京:科学出版社,1992
    [165]国家环境保护局三峡库区生态环境监测公报1998-2007
    [166]张文辉,许晓波,周建云濒危植物秦岭冷杉地理分布和生物生态学特性研究生物多样性, 2004,12(4): 419-426.
    [167]韦霄,蒋运生,韦记青珍稀濒危植物金花茶地理分布与生境调查研究生态环境, 2007,16(3):895-899
    [168]国家环境保护局自然保护司保护区与物种管理处珍稀濒危植物保护与研究北京:中国环境科学出版社,1991:1-136
    [169]周先容金佛山自然保护区珍稀濒危植物评价体系初探西南农业大学学报(自然科学版), 2005,27(5):665-667
    [170]王立龙珍稀濒危植物小花木兰传粉生物学研究生态学杂志,2005,24 (8):853-857
    [171]宋萍,洪伟,吴承祯珍稀濒危植物桫椤种群结构与动态研究应用生态学报, 2005,16(3):413-418
    [172]胡理乐,闫伯前,江明喜等濒危植物毛柄小勾儿茶生存群落的数量分类生态学杂志, 2006,25(5):492-496
    [173] Gentry A H. Changes in plant community diversity and floristic composition on environmental and geographical gradients.Ann.Missouri Bot.Card.1988,75,1-34
    [174] Whittaker R H.Vegetation of the Siskiyou Mountains.Oregon and California. Ecological Monographs 1960,30:279-338
    [175] Whittaker R H, Niermg W A.Vegetation of the Santa Catalina Mountains Arizona, a gradment analysis of the south slope Ecdogy,1965,46:429-452
    [176] Whittaker R H, Niering W A. Vegetation of the Santa Catalina Mountains, Arizona: Biomass production and diversity along the elevation gradient. Ecology,1975,56:771-790
    [177] Gentry A H Diversity and phytogeography of newtropical vascular epiphytes. Ann. Missouri Bot.Card.1987,74:205-233
    [178] Hamilton A C, Perrott R A. A study of altitudinal zonation in the montane forest belt of Mt. Elgon, Kenya,Uganda Vegetatio. 1981,45:107-125
    [179] Wilson J B, Lee W G, Mark A F.Species diversity in relation to ultramafic substrate and to altitude in souchwestern New Zealand. Vegetatio.1990,86:15-20
    [180] Itow S. Species turnover and diversity patterns along an elevation broad-leaved forest coenocline. Journal of vegetation Science.1991,2:477-484
    [181] Daubenmire R, Daubenmire J B. Forest vegetation of eastern Washington and northern Idaho.Washington Agric. Expt. Sta. Tech. Bull.,1968,60:1-104
    [182] Baruch Z. Ordination and classification of vegetation along an altitudinal gradient in the Venezuelan paramos.Vegetatio.1984,55:115-126
    [183] Wilson J B, Sydes M T. Some tests for niche limitation by examination of species diversity in the Dunedm area. New Zealand. N. Z. J. Bot.,1988,26:237-244
    [184]王刚植物群落中生态位重叠的计测植物生态学与地植物学丛刊1984,8(4): 329-334
    [185]余世孝基础生态位及其中心点的涵义与测度中山大学学报(然科学版) 1993, (4):69-80
    [186]余世孝, L.奥罗西生态位分离的涵义与测度植物生态学与地植物学学报, 1993, 17(3):253-263
    [187]余世孝, L.奥罗西物种多维生态位测度生态学报, 1994,14(1):33-39
    [188]尚玉昌现代生态学中的生态位理论生态学进展,1988,5(2):77-84
    [189]陈波,周兴民三嵩草群落中若干植物种的生态位宽度与重叠分析植物生态学报, 1995,19(2):158-169
    [190]王仁忠放牧影响下羊草草地主要植物种群生态位宽度与生态位重叠的研究植物生态学报, 1997,21(4):301-311
    [191]冯云,马克明,张育新北京东灵山辽东栎(Quercus liaotungensis)林沿海拔梯度的物种多度分布生态学报, 2007,27(11):4743-4750
    [192]张桂萍,张峰,茹文明山西绵山植被优势种群生态位研究植物研究,2006,26(2): 176-181
    [193]贺山峰,蒋德明,李晓兰小叶锦鸡儿固沙群落草本种群重要值与生态位的研究干旱区资源与环境, 2007,21(10):150-155
    [194] Hutchinson G. E. Concluding remarks. Quant. Biol.1957, 22:415-427
    [195] Emlen J M. Niche and genes: some further thoughts. Am.Nat. 1975,109:472-476
    [196] Schoener T W. Some methods for calculating competition coeffiecients from resource-utilization spectra. The American Naturalist,1974,68:437-447
    [197] Pianka E R. Niche overlap and diffuse competition. Proc. Natl. Acad. Sci., U.S. 1974,71:2141-2145
    [198] Pianka E R. Niche relation of dissert Lizards. In Cody M, Diamond J (eds.) Ecology and evolution of communities.Cambridge, Harvard University Press, 1975,292-314
    [199] Larson D W. Habitat overlap separation in two Umbilicaria lichens: possible mechanism. Oecologia (Berlin),1984,62,118-125
    [200] Suhonen Predation risk influences the use of foraging sites by tits Ecology, 1993,4(4):1197-1203
    [201] Huston Biological diversity, soil, and economics Science, 1993,262,1676-1680
    [202] Dayan T, Simberloff D.Character displacement, sexual dimorphism,and morphological variation among British and Irish mustelids Ecology, 1994,75(4):1063-1073
    [203] Watkins A,Wilson J B. Plant community structure and plant litter:experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos,1994,79(2):247-258
    [204] Palmer M V, Marel E. Variation in species richness ,species association and nich limitation, Oikos,1995,73:203-213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700