日粮不同硒水平对生长肉兔生长性能、抗氧化、血液生化指标及肝脏GPx1mRNA表达量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验研究了日粮不同硒水平对断奶~3月龄生长肉兔生长性能、抗氧化指标、血液生化指标、血清激素、组织硒沉积、肉品品质以及GSH-Px1 mRNA表达量的影响。试验分断奶~2月龄,2~3月龄两个阶段,选用断奶肉兔120只,随机分为5组,每组的试验兔体重相近、公母各半,5组试验兔的日粮硒添加水平依次为:0、0.15、0.30、0.45、0.60 mg/kg。研究结果如下:
     日粮中不同的硒添加水平对断奶~2月龄的日采食量没有显著影响(P=0.3966)。平均日增重(ADG)、料重比(F/G)受日粮硒水平影响显著(P=0.0294,P=0.0156),日粮中添加硒可显著改善肉兔平均日增重(ADG)和料重比(F/G)。日粮添加不同水平硒对肝脏硒沉积影响极显著(P<0.0001),随硒添加水平的增加硒沉积极显著增加,当硒添加量达到0.45 mg/kg时,硒的沉积量达到最大值。日粮硒水平对肝脏、血清谷胱甘肽过氧化物酶活性(GSH-Px)影响显著(P<0.0001,P=0.0281),对肝脏、血清超氧化物歧化酶(SOD)没有显著影响(P=0.1319,P=0.8848),对肝脏、血清总抗氧化能力(T-AOC)影响显著(P=0.0406,P=0.0414),对肝脏、血清过氧化氢酶(CAT)影响显著(P=0.0209,P=0.0186),0添加组肝脏丙二醛(MDA)含量极显著高于添加组(P=0.0018)。日粮硒水平对血清总蛋白(TP)没有显著影响(P=0.2401);对血清总胆固醇(TC)和甘油三酯(TR)影响显著(P=0.0349,P=0.0001),未添加组总胆固醇(TC)和甘油三酯(TR)含量显著或极显著高于各添加组(P<0.05或P<0.01)。日粮中高水平的硒(0.45、0.60mg/kg)可以极显著的提高高密度脂蛋白(HDL)在血清中的含量(P=0.0077),但HDL在两高水平添加量之间没有显著差异(P>0.05),0、0.15、0.30 mg/kg组之间没有显著差异(P>0.05)。日粮硒水平对低密度脂蛋白(LDL)影响极显著(P=0.0055),未添加组显著高于添加组(P<0.05)。日粮硒水平对肝脏GSH-Px1 mRNA表达量的影响极显著(P<0.0001),0.15mg/kg组极显著高于未添加组和其他各添加组(P<0.01),0和0.30 mg/kg组极显著高于0.45和0.60mg/kg组(P<0.01)。综合本试验指标,当基础日粮硒含量为0.08 mg/kg时,断奶~2月龄肉兔日粮中硒的适宜添加量为0.15 mg/kg。
     日粮硒添加水平对2~3月龄肉兔日采食量(ADI)没有显著影响(P=0.1202),对平均日增重(ADG)和料重比(F/G)影响显著(P=0.0194,P=0.0401),0.15和0.30 mg/kg添加组显著优于未添加组(P<0.05)。日粮硒水平对肝脏、血清和肌肉谷胱甘肽过氧化物酶(GSH-Px)影响显著或极显著(P=0.0114,P=0.0009,P<0.0001),对肝脏和血清超氧化物歧化酶(SOD)影响显著(P=0.0323,P=0.0149),对肝脏过氧化氢酶(CAT)影响显著(P=0.0434),0.30 mg/kg添加组显著高于未添加组(P<0.05),对肝脏和肌肉丙二醛(MDA)浓度影响显著(P=0.029,P=0.0190),对血清总抗氧化能力(T-AOC)影响显著(P=0.0376)。日粮硒水平对肌肉失水率影响显著(P=0.0325),0.15 mg/kg添加组显著优于0和0.6 mg/kg添加组(P<0.05),对肌肉滴水损失影响显著(P=0.0042),未添加组显著高于添加组(P<0.05)。肌肉PH(45 min,24 h)受日粮硒水平影响不显著(P=0.4734,P=0.3051)。日粮中添加硒可以显著降低肌肉剪切力(P=0.0285),极显著提高肌肉、肝脏中的硒浓度(P=0.0054,P=0.0005),随硒添加水平的增加硒沉积极显著增加,当硒添加量达到0.30 mg/kg时,硒的沉积量达到最大值。日粮硒水平显著提高血清总蛋白水平(TP)(P=0.0338),对血清甘油三酯含量没有显著影响(P=0.0895),日粮中添加硒可以显著降低血清中胆固醇(TC)(P=0.0497)和低密度脂蛋白的含量(LDL)(P=0.0386),提高高密度脂蛋白的含量(HDL)(P=0.0235)。日粮硒水平对血清促甲状腺激素(TSH)影响不显著(P=0.0895);日粮中添加硒可以降低血清中四碘甲腺原氨酸(T4)的水平(P=0.0327),并且升高甲状腺激素(T3)的水平(P=0.0107)。日粮硒水平对2~3月龄肉兔肝脏GSH-Px1 mRNA表达量的影响极显著(P<0.01),0.15 mg/kg组极显著高于未添加和其他添加组。综合本试验指标,当基础日粮硒含量为0.08 mg/kg时,2~3月龄肉兔日粮中硒的适宜添加量为0.15 mg/kg。
The experiment was designed to study the effect of dietary different selenium supplement levels on production performance, antioxidant indices, meat quality blood metabolites, serum hormone concentration and liver GPX mRNA expression of weaned to 3 months old meat rabbits. One hundred and twenty weaned growing meat rabbits were allocated to individual cages and randomly divided into five groups. Animals in each group were fed with a diet with the following selenium additional levels: 0, 0.15, 0.30, 0.45 and 0.60 mg/kg selenium in original matter basis respectively. The results were as follows.
     Dietary selenium levels significantly affected average daily gain (ADG) and feed/gain (P=0.0294, P=0.0156), however, selenium supplementation had no influence on average daily intake (ADFI) (P=0.3966). Selenium supplementation had significant influence on liver selenium concentration (P<0.0001), with the highest concentration in 0.45 mg/kg group. Dietary selenium supplementation significantly affected liver and serum GPX (P<0.0001, P=0.0281), but had no influence on their superoxide dismutase (SOD) (P=0.1319, P=0.8848). Liver and serum total antioxidant capacity (T-AOC) and catalase (CAT) (P=0.0406, P=0.0414) was significantly affected by dietary selenium supplementation. Liver malondialdehyde (MDA) (P=0.0018) tend to be higher in control group than in selenium supplementation groups. There was no significant difference on serum total protein (TP) (P=0.2401). Selenium supplementation can reduce serum total cholesterol (TC) (P=0.0349), triglyeride (TRI) (P=0.0001) and low density lipoprotein (LDL-C) concentration (P=0.0055), and at the same time increase the concentration of high density lipoprotein (HDL-C) (P=0.0077). Selenium supplementation significantly affect liver GPX m RNA expression (P<0.0001). In conclusion, the appropriate dietary selenium supplement level of weaned to 2 month-old meat rabbits was 0.15 mg/kg (The concentration of selenium in basal diet was 0.08 mg/kg).
     Different levels of selenium supplementation had no significant difference on rabbits’average daily food intake (ADFI) (P=0.1202), but average daily gain (ADG) and feed/gain were significantly better when selenium levels were 0.15 and 0.30 mg/kg (P=0.0194, P=0.0401). The dietary selenium levels had significant influence on glutathione peroxidase (GSH-Px) activity of liver, serum and muscle (P=0.0114 , P=0.0009, P<0.0001), superoxide dismutase (SOD) activity of liver and serum (P=0.0323, P=0.0149) and catalane (CAT) activity of liver (P=0.0434). The malonaldehyde (MDA) content of liver and muscle (P=0.0291, P=0.0190) and the total antioxidant capacity (T-AOC) (P=0.0376) were significantly affected by the dietary selenium levels. The dietary selenium levels had significant influence on muscle water loss ratio (P=0.0325) and drip loss (P=0.0042) and the muscle water loss ratio in 0.15 mg/kg group was lower than those in no add of selenium and 0.60 mg/kg groups. The shear value of muscle was significantly affected by the dietary selenium levels (P=0.0285) and the value in selenium supplemented groups were lower than that in no add of selenium group. With the increase of dietary selenium levels, the selenium concentration of the muscle and liver increased with the highest concentration in 0.30 mg/kg selenium added group. Rabbits’serum total cholesterol (TC) (P=0.0497) and density lipoprotein (LDL-C) (P=0.0386) were lower and serum total protein (TP) (P=0.0338), high density lipoprotein (HDL-C) (P=0.0235) was higher when feed forage supplemented with different selenium levels. Dietary selenium supplementation had no influence on triglyeride (TRI) (P=0.0895). Selenium supplementation can low the concentration of serum tetraiodothyronine (T4) (P=0.0327), and increase the concentration of serum triiodothyronine (T3) (P=0.0107), but it had no influence on serum thyrotrophic-stimulating hormone (TSH) (P=0.5981). Liver GSH-Px mRNA expression of 2 to 3 month-old rabbits was significantly affect ted by different selenium supplementation levels (P<0.0001), with the highest expression in 0.15 mg/kg group. In conclusion, the appropriate supplementation of selenium in diet of 2 to 3 months old growing meat rabbits was 0.15 mg/kg (The concentration of selenium in basal diet was 0.08 mg/kg).
引文
董文甫.哺乳动物硒蛋白的研究进展,中国畜牧兽医, 2007; 34 (1): 24-27
    段序梅.硒代谢及其抗癌作用的生化机理.国外医学地理分册,1999; 20(2): 52~54
    
    甘璐,王琼,徐辉碧.硒对大鼠肝脏抗氧化酶活性及基因表达的影响.中国公共卫生. 2003,19(2):159-160
    高爱琴,郑丹,凌全,王乃凤.添加不同水平无机硒对0-3周龄肉仔鸡生产性能的影响[J].内蒙古农业大学学报, 2005, 26: 46-48.
    高铭宇,杨鹰,袁莉,刘欣,杨保收,金久善,陈越.硒和锌相互作用及对肉用鸡胰腺抗氧化功能的影响[J].中国兽医科技, 2001, 31: 23-26.
    韩博,史言,王伟,等.硒碘缺乏对黄牛自由基及甲状腺激素代谢的研究.东北农业大学学报.1999, 30(20): 167-175
    侯少范,王卫中等.多元素与骨节病关系的稳定性研究.地理研究,1994,13(4): 28-35.
    李爱阳,赵宏,等.硒、维生素E联用对高胆固醇血症家兔血液流变性的影响.微循环学杂志. 1997,7(3): 24-26
    李保玉,金毅,王凡.不同类型克山病心肌间质纤维化的形态学研究.中华病理学杂志, 1998, 27:13
    李家奎,王小龙.硒的生物转化研究进展[J].中国兽医杂志.2002,3(28): 35-37
    林藩平.维生素E和微量元素硒在营养和免疫上的重要作用——二者可用于预防乳牛乳房炎.福建畜牧兽医(增刊).1994: 27-29
    林藩平.硒营养研究的最新进展.福建畜牧兽医, 2002(2): 45-51
    刘荣建.酶的代谢特点.生物学通报.1994, 29(2): 19.
    刘为民,李广生,张秀云,等.硒和维生素E不足对大鼠血液流变学影响初探.营养学报. 1995, 17(1): 22
    鲁玉花,王星所,董秀钿.日粮添加硒对山羊瘤胃消化代谢的影响[J].河南农业大学学报. 1996, 30(1): 33- 36.
    陆通,阮景纯,王芸,等.微量元素硒对实验性动脉粥样硬化消退的影响.营养学报. 1993, 15(2): 163-168
    倪银星.硒蛋白、硒与内分泌激素的关系研究进展[J].国外医学卫生学分册, 2002, 29(1): 38-42
    曲彦,刘成玉,王玉贞.急性心肌梗塞患者红细胞变形能力与红细胞膜结合硒关系的研究.山东医药. 1994, 34(12): 14-15
    王凡,李广生,刘家骝.我国五种主要地方病的病理学研究进展.中华病理学杂志, 1995, 24: 252
    王凡,李广生.克山病病理学研究新进展.中国地方病学杂志. 1989, 8: 52
    王强,徐辉碧.微量元素硒的毒性[J].生命的化学, 1994,14 (2): 34-35
    夏献民,于树玉.硒的抗癌机制的研究———对酵解及有关硒的影响[J] . 中华肿瘤杂志. 1987, 9 (4): 255-257
    胥保华.纳米硒对Avian肉鸡的生物学效应及其分子机理的研究[D].博士学位论文.杭州:浙江大学, 2003
    许斌,韩博,等.奶牛碘缺乏症及其防治试验.畜牧与兽医.2000, 32(1): 13-15
    尹兆正,冯杰.蛋氨酸硒对肉用仙居鸡生长性能、硒存留率和胴体特性的影响.中国畜牧杂志. 2004, 40(4): 13-15
    尹兆正,钱利纯,李肖梁,等.蛋氨酸硒对生长猪生长性能、胴体特性和肉质的影响[J].中国畜牧杂志, 2005, 41: 35-37
    袁建敏,呙于明.硒的生物学功能及其在蛋鸡生产中的应用.中国饲料.1998, 17: 7-9
    张春香,岳文斌,张晓峰,等.不同硒水平对山羊生长性能和血液理化指标的影响[J].中国畜牧杂志, 2007, 43: 36-38.
    张海棠,王自良,赵坤.硒的营养机理及其在肉用畜禽生产中的应用.粮食与饲料工业. 1999, 10: 34-36
    张巧娥,杨库崔慰贤.不同硒水平对生长育肥猪生产性能的影响[J]. 黑龙江畜牧兽医, 2003, 8: 6-9.
    张勇.硒与人类肿瘤.国外医学:肿瘤学分册.1991,18(5): 292-293.
    张在香,杨晓光,等.低硒大鼠不同组织硒蛋白利用硒的优先性.基础医学与临床. 2000, 20(5): 68-72
    周葆初等.云南克山病地区儿童头发中某些微量元素的再研究.中国地方病学杂志, 1986, 5(2): 99
    Aaseth J, Smith-Kieland A, Thomassen Y. Selenium alcohol and liver diseases. Ann Clin Res.1986, 18: 43–47.
    Ammerman, C B. Miller, SM. Selenium in ruminant nutrition: A review. Journal of Dairy Science 1975, 58, 1561-1577.
    Barry Halliwell. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radical Research. 1999, 31 (4): 261-272.
    Becker KB, Schneider MJ, Davey JC, et al. The typeⅢ5-deiodinase in Rana catesbeiana tadpoles is encoded by a thyroid hormone responsive gene. Endocrinology, 1995, 136: 4424-4426.
    Beckett, G. J., Russell, A., Nicol, F., et al. Effiect of selenium deficiency on hepatic type I 5′—iodothyronine deiodinase activity and hepatic thyroid hormone level in rat, Biochem. J., 1992, 282: 483-486
    Behne, D., Hilmert, H., Scheid, S., et al. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochimica et Biophysics Acta. 1988, 966: 12-21
    Benzie, I. F. F.; Strain, J. J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth Enzymol. 1999, 299:15–27
    Blodgett D J. Vitamin E-selenium and immune response to selected antigens in swine [J]. Journal of Veterinary Medcine, 1984, 32 (10): 452-457.
    Bobcek B., Lahucky R., Mrazova J., et al. Effects of dietary organic selenium supplementation on selenium content, antioxidative status of muscles and meat quality of pigs. Czech J. Anim. Sci. 2004, 49, 411–417
    Bunk M. J., G. F. Combs, Jr. Effect of selenium on appetite in the selenium-deficient chick. J. Nutr. 1980. 110:743–749
    
    Cantor, A. H., M. L. Scott, T. Noguchi. Biological availability of selenium in feedstuffs and selenium compounds for prevention of exudative diathesis in chicks. J. Nutr. 1975a.105: 96–105.Cantor, A. H., M. L. Scott, T. Noguchi. Efficacy of selenium in selenium compounds and feedstuffs for prevention of pancreatic fibrosis in chicks. J. Nutr. 1975b.105:106–111.
    D. Anderson, T. W. Yu, P. Schmezer. The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1994, 307 (1): 261-271
    Davis, G K. Mertz, W. Copper. In: Mertz, W. (Ed.), Trace Element in Human and Animal Nutrition, vol.1, 5th edn. Academic Press, New York, pp. 1987. 301-364.
    de Blas, C.; Mateos, G. G., 1998: Feed formulation. In: C. de Blas, J. Wiseman (eds), The Nutrition of Rabbit. CABI Publishing, New York, NY, USA, pp. 241-253.
    Dobretsov G E, Borschevskaya T A, Peter V A, et al. The increase of phos pholipid bilayer after lipid peroxidation. FEBS Lett. 1977, 84:125.
    Dworkin B, Rosenthal WS, Jankowski RH., et al. Low blood selenium levels in alcoholics with and without advanced liver disease: correlation with clinical and nutritional status. Dig Dis Sci 1985, 30: 838–844.
    Edens F W, Carter T A, Sefton A E. Influence of dietary selenium on post-mortern drip loss from breast meal of broilers grown on different litters[J]. Poultry Science, 1996: 751.
    Flohe L. Glutathione peroxidase. Basic Life Sci 1988, 49: 663-8.
    Forgione MA, Cap A, Liao R, et al. Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure. Circulation. 2002, 106:1154-8.
    G. Vignola, L. Lambertini, G. Mazzone, M., et al. Effect of selenium source and level of supplementation on the performance and meat quality of lamb. Meat Science, 2009, 81:678-685.
    Gadyshev VN, Hatfield DL. [J].J Biomed Sci, 1999, 6(3):151-160.
    H Jianhua, A Ohtsuka. Selenium influences growth via thyroid hormone statusin broiler chickens. British Journal of Nutrition. 2007, 84: 727-732
    Hachiro Kamada.Haruhisa Ikumo.Effect of selenium on cultured bovine luteal cells.Animal Reproduction Science.1997, 46: 203-211
    Hafemen, D. G. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rats. J. Nutr. 1974, 104: 580-587.
    Hambidge, K.M., Casey, C.E., Krebs, N.F.,. Zinc. In: Mertz, W. (Ed.), Trace Elements in Human and Animal Nutrition, vol. 2, 5th edn. Academic Press, New York, pp1987. 1-138.
    Harrison J H. Hancok, D.D. Conrad, H.R., Vitamin E and selenium for reproduction of the dairy cow. Journal of Dairy Science. 1984.67 (l), 123-132.
    Hartley, W J. Selenium and ewe fertility. Proceedings of the New Zealand Society of Animal Production. 1963.23, 20-27.
    Hassan, S., J. Hakkarainen, P. Lindberg, et al. Comparative effect of dietary sodium selenite on whole blood and plasma selenium and glutathione peroxidase in the chick. Nutr. Rep. Int. 1988.38:865–871.
    Hubert N., Walczak R., Carbon P., et al. A peotein binds the selenocysteine insertion element in the 3’-UTR of mammalian selenoprotein mRNAs. Nucleic Acids Research. 1996, 24(3):464-469
    J. Gordon Bell, Colin B. Cowey. Digestibility and bioavailability of dietary selenium from fishmeal, selenite, selenomethionine and selenocystine in Atlantic salmon (Salmo salar). Aquaculture.1989,81(1): 61-68
    Jean-Francois Bilodeau, Suvro Chatterjee , Marc-AndréSirard., et al. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Molecular Reproduction and Development. 2000, 55 (3): 282-288
    Johansson E., Jacobbson S. O., Luthman J., et al. The biological response of selenium in individual erythrocytes and GSH-Px in lambs fed sodium selenite or selenium yeast. Zentralbl Veterinarmed A. 1990, 37(6): 463-70
    John D. Bogden, Haingsub R. Chung, Francis W. Kemp., et al. Effect of selenium and molybdenum on methylbenzylnitrosamine-inducedesophageal lesions and tissue trace metals in the rat. The Journal of Nutrition. 1986, 2432-2442
    JR Arthur, F Nicol, GJ Beckett. Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases. American Journal of Clinical Nutrition. 57: 236S-239S
    K Moksnes, G Norheim. Selenium deposition in tissues and eggs of laying hens given surplus of selenium as selenomethionine. Acta veterinaria Scandinavica. 1982; 23(3): 79-368
    Kanakaraj P., Singh M. Influence of hyper-cholesterolemia on morphological and rheological characteristics of erythrocytes. Atherosclerosis. 1989, 76:209.
    Knut Moksnes. The efficacy of hay from selenized soil as a source of selenium in ruminant nutrition. Acta Agriculturae Sandinavica. 1988, 36(3): 332-338
    Korpela H., Kampulainen J., Luoma PV., et al. Decreased serum selenium in alcoholics as related liver structure and function. Am J Clin Nutr 1985, 42: 147–151.
    Lei XG, Dann HM, Ross DA, et al. Dietary selenium supplementation isrequired to support full expression of three selenium-dependent glutaione peroxidases in various tissues of weanling pigs. J. Nutri., 1998, 128: 130-135.
    Levander OA., Burk RF. Selenium. In: Shils ME, Olson JA, Shike M, editors. Modern Nutrition in Health and Disease 8th edition. Philadelphia: Lea and Febiger, 1994, p. 242–251.
    Loguercio C., De Girolamo V., Federico A., et al. Trace elements and chronic liver diseases. J Trace Elem Med Biol. 1997, 11: 158–161.
    Macit, M., Aksakal, V., Emsen, E., et al. Effects of vitamin E supplementation on fattening performance, non-carcass components and retail cut percentages, and meat quality traits of Awassi lambs. Meat Sci. 2003 64, 1–6.
    Mahan D C., Kim Y Y., Effect of inorganic or organic selenium at two dietary levels on reproductive performance and tissue selenium concentrations infirst-parity gilts and their progeny [J]. Journal of Animal Science, 1996(74): 2711-2718.
    Marion M., BrADFIord. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976, 72: 248-254.
    McConnell. Kenneth P. Gloria J. Cho. Transmucosal movement of selenium. Am J Physiol. 1965. 208: 1191-1195
    McCord, J. M. Superoxide, superoxide dismutase and oxygen toxicity. Rev. Biochem. Toxicol. 1979, 1:109-124
    Moore J A. Selenium concentrations in plasma of patients with arteriographically defined coronary atherosclerosis. Clin Chem. 1984, 30:1171.
    Navarro-Alarco′n M, Lo′pez-Mart′?nez MC. Essentiality of selenium in the human body: relationship with different diseases. Sci Total Environ 2000, 249: 347–371.
    Newman DL., Twinn KW. The influence of plasma cholesterol on whole blood and plasma viscosity. Biorheology, 1973, 10:527.
    NRC. Nutrient Requirements of Rabbits (2~(th) Ed) [S]. Washington D.C.: National Academy Press, 1977.
    Oser, B. L. Hawk’s Physiological Chemistry. Tata McGraw-Hill Publ. Co., New Delhi, India. 1976
    Oyanagui, Y. 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Analytical Biochemistry. 142: 290-296. P.A. Contreras, R. Matamoros, R. Monroy. et al. Effect of a Selenium-deficient diet on blood values of T3 and T4 in cows. Comparative Clinical Pathology. 2002, 11: 65-70
    P.F. Surai. Selenium in poultry nutrition 2. Reproduction, egg and meat quality and practical applications. World's Poultry Science Journal. 2002, 58:431-450
    Preter F S. Organic selenium: benefits to animal and humans, a biochemist’s view[C]. Proceedings of Alltech’s 16~(th) symposium. Nottingham: Nottingham Universitg Press, 2000: 205.
    Renate Schnabel, MD., Edith Lubos, MD., Claudia M., et al. Selenium supplementation improves antioxidant capacity in vitro and in vivo in patients with coronary artery disease: The selenium therapy in coronary Artery disease Patients (SETCAP) Study. American Heart Journal. 2008, 156(6):1201e1-1201e11
    RL Payne, LL Southern. Comparison of inorganic and organic selenium sources for broilers. Poultry Science.2005, 84(6): 898-902
    Rotruck W, Gregus Z, Perjesi P, Gyurasics A. Enhancement of selenium excretion in bile by sulfobromophthalein:elucidation of the mechanism [J]. Biochemical Pharmacology, 1998, 56: 1391-1402
    Satoh K. Serum lipid cerebrovascular disordes determination by a new colometric method. Clin Chem Acta.1978, 90: 37-43
    Schwarz K., Foltz C M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society, 1957, 79, 3292–3293.
    Seko Y., Saito Y., Kitahara J., et al. Active oxygen generation by the reaction of selenite with reduced glutathione in vitro[M]. In: Wendel A ed. Selenium in Biology and Medicine, Berlin: Springer Verlag, 1989: 70-73
    Shen Q, Chu FF, Newburger PE. Sequences in the 39-untranslated region of the human cellular gluthathione peroxidase gene are neceeary and sufficient for selenocysteine incorporation at the UGA codon. Biol. Chem., 1993, 268: 11463-11469.
    Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 1999, 27: 916-21.
    Sies, H. Oxidative stress: from basic research to clinical application. Am. J. Med. 1991, 91:31-38.
    Sigma Chemical Co. Quantitative, enzymatic determination of total cholesterol concentration in serum or plasma at 500 nm. Procedure No. 352. St. Louis, MO. 1995
    Skivanova E., Marounek M., Desmet S., et al. Influence of dietary seleniumand vitamin E on quality of veal. Meat Science, 2007, 76: 495-500
    Smith, K L., Harrison, J H., Hancock, D.D.,et al. Effect of vitamin E and selenium supplementation on incidence of clinical mastitis and duration of clinical symptoms. Journal of Dairy Science. 1984, 67, 1293-1300.
    Sngiuchi H., Uji Y.,Okabe H., et al. Direct measurement of high density lipoprotein cholesterol in serum with polyethylene glycol-modified enzymes and sulfatedα-cyclodextrin [J]. Clin Chem, 1995, 44 (5)∶7 17
    Spallholz JE. On the nature of selenium toxicity and carcinostatic activity [J]. Free Radical Biol Med, 1994, 17: 45-64
    Sunde, R. A., W. G. Hoekstra. Incorporation of selenium from selenite into selenocysteine into glutathione peroxidase in the isoloated perfused rat liver. Biochem. Biophys. Res. Commun. 1980, 93:1181–1188.
    Surai P.F.: Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. Worlds Poulty. Sci. J. 2002a.58, 333–347.
    Torrent. Selenium yeast and pork quality[J]. Proceedings of Alleehsth Annual Symposium. 1996: 161.
    Ts. Odjakova. Influence of Selenium and Iodine Supplementation on the Daily Milk, Fat and Protein Production During the Grazing Period of Sheep. Bul. J. Agric. Sci. 1999, 5: 901-905
    Vignola G, Lambertini L, Mazzone G, Giammarco M, Tassinari M, Martelli G, Bertin G. Effects of selenium source and level of supplementation on the performance and meat quality of lambs[J]. Meat Science, 2009, 81: 678-685.
    Weiss N., Zhang YY, Heydrick S., et al. Overexpression of cellular glutathione peroxidase rescues homocyst(e) ine-induced endothelial dysfunction. Proc Natl Acad Sci USA 2001. 98: 12503-8.
    Wolter B. Influence of dietary selenium source on growth performance and carcass and meat quality characteristics in pigs [J]. Canadian Journal of Animal Science, 1999, 79(1):119-121.
    Wu Q, Huang K X. Trace Element Reseach. Biol. 2004, 98(1): 73-84 Xin G L, Deborah A R, Karl R R. Comparison of age-related differences inexpression of phospholipid hydroperoxide glutatheione peroxidase mRNA and activity in various tissues of pigs. Comp Biochem Physiol. 1997, 117(1):109-114
    XiuAn Zhan, Min Wang., et al. Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Animal Feed Science and Technology. 2007, 132: 201-211
    Yang Guang Qi. Reasearch on selenium-related problems in human health in China. Selenium in Biology and Medicine. Third International Symposium. AVI. 1987, 9-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700