地表糙度对坡面产汇流特征的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡面产汇流是流域产汇流的重要组成部分,也是水文学的重要研究课题之一。长期以来,由于研究手段和计算技术的限制,已有的研究成果主要集中在小流域产汇流机理、流量计算以及产汇流模型构建与参数率定等方面。而坡面汇流常被忽略或估算。鉴于此,本研究以黄土高原坡耕地普遍采用的等高耕作、人工掏挖和人工锄耕三种耕作措施为研究对象,并以直线坡面作为对照措施。在基于坡面汇流网络与流域尺度的河流网络之间存在一定相似性的基础之上。结合室内人工模拟降雨试验,以汇流密度和径流频度来度量坡面汇流网络的结构特征,对坡耕地的坡面产、汇流特征展开研究。探讨在地表糙度作用下,小尺度坡面产流、产沙和汇流网络特征的演变。有助于加深对坡面侵蚀过程的理解,并服务于未来坡面产汇流模型的构建。本研究得出的主要结论如下:
     1.比较分析不同耕作措施条件下四种插值方法的精度差异,结果表明:在不同耕作措施条件下构建地表微DEM时,等高耕作措施微地表适宜采用基于球面模型的析取克里格插值法;人工掏挖措施微地表适宜采用局部多项式插值法;人工锄耕措施微地表适宜采用规则样条函数的径向基函数插值方法;对于直线坡面,四种插值方法的精度差异不大。
     2.分析降雨过程中地表糙度演变,结果表明:随着降雨过程的进行,不同措施下地表糙度的变化总体呈先减小后增大的变化趋势。在其他条件相同的情况下,坡度越大,地表糙度变化幅度越大;雨强越大,地表糙度变化幅度越大。
     3.分析初始产流时间与地表糙度、坡度间的关系,结果表明:地表糙度对坡面初始产流时间的延缓作用与降雨强度和坡度有关。在其他条件一致的情况下,坡面地表糙度越大,对初始产流时间的延缓作用也越大,反之则这种延缓作用越小。同时,随着降雨强度和坡面坡度的增大地表糙度对坡面初始产流时间的延缓作用减弱。初始产流时间与地表糙度和坡度间关系:T60=0.544×R-0.090×S+2.520;T120=0.431×R-0.148×S+1.307。
     4.分析地表糙度对坡面产流、产沙特征的影响,结果表明:随着降雨过程的延续,不同耕作措施条件下坡面产流量总体呈现逐渐增加的趋势,并最终趋于稳定;产沙量总体呈先增大后减小的趋势,且最终也趋于稳定。增加地表糙度能够降低坡面产流量和产沙量。增大雨强,不同耕作措施下地表糙度对坡面产流量和产沙量的降低作用减弱。坡度对产流量和产沙量的影响因地表微地形不同而具有一定的差异。总体来说,在其他条件一致的情况下,地表坡面坡度越大,坡面产流量和产沙量越大。
     5.分析降雨过程中径流路径特征演变,结果表明:随着降雨的进行,径流路径开始有规律的调整方向向下坡方向发展。各级径流变得越来越具有组织性,有规律的交汇向主要径流路径。有糙度的人工掏挖和人工锄耕措条件下,坡面汇流网络明显比对照措施稀疏。随着坡度的增加,不同措施条件下,坡面汇流网络的密集程度不断增强,尤其是直线坡面。
     6.分析汇流密度、径流频度与地表糙度、坡度的关系,结果表明:相同降雨条件下,坡面汇流密度总体呈不断增加的趋势,而径流频度呈先增加后减少的趋势。在有糙度的坡面汇流密度和径流频度明显降低。在大雨强作用下汇流密度和径流频度增加的幅度明显减缓。随着坡度的增加,坡面汇流密度和径流频度都有不同程度的增加,尤其是对照措施直线坡面增加最为明显。其关系式为D=0.276×S-1.96×R+11.19与Cf=1.15×S-2.90×R+59.22。
Runoff generation and confluence on slope surface is an important form of runoff runoffyield and concentration in watershed, and is also one of main subjects of hydrology. Due tolimits of tools and computing technologies, the existing researches mainly focus on themechanism of runoff generation and confluence in small watershed, calculation of runoffyield and the build of runoff-conflux model as well as the calibration of parameters. Whilerunoff generation and confluence on slope surface is often ignored. In view of this, wecarried out an experiment about characteristics of runoff generation and confluence on slopesurface in sloping fields with three tillage practices including contour tillage, artificialdigging and artificial hoeing widely used on cultivated farmland of loess plateau, and thelinear slope was taken as the control measure. The study was conduct based on somesimilarities between the network of slope concentration and the river network on the basinscale with an indoor stimulated rainfall experiment, and structural characteristics of thenetwork of runoff generation and confluence on slope surface were measured according toconfluence density and runoff frequency. Characteristics of slope runoff and sediment on asmall scale and the evolvement confluence network properties were also explored underinfluence of surface roughness, which will be a help to enhance insights into slope erosionprocess and provide basis for the establishment of the runoff-conflux model. Results wereshowed as follows:
     1. The accuracy of four interpolation methods under different tillage measures wascompared. Results showed that, under different tillage measures, the disjunctive kriginginterpolation was appropriate for the micro-DEM establishing in the contour tillage treatment;the local polynomial interpolation was appropriate for the micro-DEM establishing in theartificial digging treatment; the radial basis function interpolation was appropriate for themicro-DEM establishing in the artificial hoeing treatment; while the accuracy of fourinterpolation methods on the linear slope was not differed significantly.
     2. The evolvement of surface roughness during rainfall was analyzed, which showed:the surface roughness was first decreased and then increased on the whole under differenttillage measures as the rainfall continued. When other conditions were same, the bigger ofslope gradient was, the greater of the variation of surface roughness was; the bigger ofrainfall intensity was, the greater of the variation of surface roughness was.
     3. The relationship between initial runoff production time and surface roughness as wellas slope gradient showed that, the delay of initial runoff production time on slope surfacecaused by surface roughness was related to the rainfall intensity and slope gradient. Whenother conditions were same, the bigger of surface roughness was, the greater of the delayedaction on the initial runoff production time was. Otherwise this action was smaller.Meanwhile, effects of surface roughness on the delay of initial runoff production timedecreased as the rainfall intensity and slope gradient increased. The relationship between theinitial runoff production time and surface roughness as well as slope gradient presented as theformulas showed: T60=0.544×R-0.090×S+2.520;T120=0.431×R-0.148×S+1.307.
     4. Effects of surface roughness on the slope runoff and sediment showed that, sloperunoff yields on the whole trended to increase and finally to be stable under different tillagemeasures with the rainfall going on; the sediment yields first increased and then decreased,but finally became stable. The increase of surface roughness could reduce slope runoff andsediment yields. Effects of surface roughness on the slope runoff and sediment yieldsdecreased with the rainfall intensity increasing. There were different effects of slope gradienton the runoff and sediment yields due to different micro-reliefs. On the whole, when otherconditions were same, the bigger of slope gradient was, the greater of slope runoff andsediment yields were.
     5. The evolvement of characteristics of runoff pathway during rainfall was analyzed,which showed, the runoff pathway changed and turned to downslope. Runoff at all levelsbecame systematical and the confluence regularly changed direction to the main runoffpathway. The network of slope confluence was few and scattered on the roughed slopes underthe artificial digging and hoeing treatments compared with the control treatment. Theintensive of slope confluence network increased under different tillage practices as the slopegradient increased, especially on the linear slope.
     6. The relationship between confluence density,runoff frequency and surface roughnessas well as slope gradient showed that,when the rainfall condition was same,the confluencedensity on slope surface on the whole tended to increase, while the runoff frequency firstincreased and then decreased. The confluence density and runoff frequency obviouslydecreased on the roughed slope. The increasing degree of confluence density and runofffrequency declined significantly in the case of big rainfall intensity. The confluence densityand runoff frequency on slope surface both increased as the slope gradient increased, andespecially the increase was the most significant on the linear slope. The relationship presentedas the formula showed: D=0.276×S-1.96×R+11.19与Cf=1.15×S-2.90×R+59.22。
引文
郑子成,吴发启,何淑勤.坡耕地地表糙度初探.西北林学院学报.2004,19(1):39-41.
    吴发启,赵晓光,刘秉正.缓坡耕地侵蚀环境及动力机制分析.西安:陕西科学技术出版社,2001.
    郑子成,吴发启,何淑勤.耕作措施对产流作用的研究.土壤,2004,36(3):327-330.
    吴发启,赵晓光,刘秉正等.地表糙度的量测方法及对地面径流和侵蚀的影响.西北林学院学报,1998,(2):15-19.
    王健,吴发启,孟秦倩.农业耕作措施蓄水保土机理分析.中国水土保持.2005(2):10-12.
    吴发启,郑子成,何淑勤.坡耕地地表糙度的研究进展.西北林学院学报,2002,17(3):38-43.
    吴发启,郑子成.坡耕地地表糙度的量测与计算.水土保持通报.2005,17(5):71-75.
    吴发启,赵西宁.坡耕地耕作管理对降雨入渗的影响.水土保持学报.2003,17(3):115-117.
    郑子成,何淑勤,吴发启.人为管理措施对产流产沙作用的研究.水土保持学报.2003,17(6):150-152.
    郑子成,何淑勤,吴发启等.地表糙度与水力糙率系数的关系.山地学报,2004,22(2):236-239.
    刘刚,赵荣.基于DEM的澜沧江流域水文信息提取方法的研究.地理信息世界,2007,56-59.
    刘新仁.数字水文系统建设--信息时代的水文技术变革.水文,2000,20(4):5-8.
    任立良,刘新仁.基于数字流域的水文过程模拟研究自然灾害学报,2001,9(4):45-52.
    王中根,刘昌明,左七亭.基于DEM的分布式水文模式构建方法.地理科学进展,2002,21(5):432-439.
    王丽霞,任志远等陕北延河流域基于GLP模型的流域水土资源综合配置.农业工程学报,2011,27(4):48-53.
    李翀,杨大文.基于栅格数字高程模型的河网提取及实现.中国水利水电科学研究院学报,2004,2(3):208-214.
    徐新良,庄大方,贾绍凤. GIS环境下基于DEM的中国流域自动提取方法.长江流域资源与环境,2004,13(4):343-348.
    汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程.科学出版社,2007,429-445.
    任立良,刘新仁.基于DEM的水文物理过程模型研究.地理研究,2000,19(4),369-376.
    叶爱中,夏军,王钢胜等.基于数字高程模型的河网提取及子流域生成.水利学报,2005,36(5):531-537.
    常文渊,戴新刚,陈洪武.地质统计学在气象要素场插值的实例研究.地球物理学报,2004,47(6):982-9.
    李新,程国栋,卢玲.青藏高原气温分布的空间插值方法研究.高原气象,2003,22(6):215-219.
    方书敏,钱正堂,李远平.甘肃省降水的空间内插方法比较.干旱区资源与环境,2005,19(3):47-50.
    常文渊,戴新刚,陈洪武.地质统计学在气象要素场插值的实例研究.地球物理学报,2004,47(6):982-990.
    方书敏,钱正堂,李远平.甘肃省降水的空间内插方法比较.干旱区资源与环境,2005,19(3):47-50.
    周志刚,陈丽红.RBF神经网络及其在数值计算中的应用.复杂系统与复杂性科学,2006,2(3):64-68.
    曾怀恩,黄声享.基于Kriging方法的空间数据插值研究.测绘工程,2007,16(5):5-13.
    孟庆香,刘国彬,杨勤科.基于GIS的黄土高原气象要素空间插值方法.水土保持研究,2010,17(1):10-14.
    李新,陈国栋,卢玲.空间内插方法比较.地球科学研究,2000,15(3):260-264.
    邓小波,罗宇翔,于飞,等.西南复杂山地农业气候要素空间插值方法比较.中国农业气象,2008,29(4):458-462.
    杨昕,汤国安,刘学军等.数字地形分析的理论方法与应用.地理学报,2009,64(9):1058-1070.
    吴发启,郑子成坡耕地地表糙度的量测与计算.水土保持通报。2005.25(5)71-74.
    王健,吴发启,孟秦倩.农业耕地措施蓄水保土效益试验研究.水土保持通报.2004,24(5):39-41.
    赵龙山,梁心蓝,吴发启等.黄土坡耕地耕作方式对产流产沙的影响研究.人民黄河.2010.32(8):88-91.
    赵龙山,宋向阳,吴发启等.黄土坡耕地耕作方式不同时微地形分布特征及水土保持效应.中国水土保持科学.2011,9(2):64-70.
    郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀影响因素的研究.土壤学报.1989,26(2):109-116.
    吴发启,赵晓光,刘秉正等.黄土高原沟壑区流域土壤侵蚀系统分析.西北林学院学报.1995,10(增刊):1-7.
    刘秉正,吴发启.土壤侵蚀.西安:陕西人民出版社,1997.
    芮孝芳.产汇流理论.北京:水利电力出版社,1995.
    芮孝芳蒋成煜张金存.流域水文模型的发展.水文,2006,26(3):22-28.
    刘青泉,李家春,陈力等.坡面流及土壤侵蚀动力学(Ⅰ)——坡面流.力学进展.2004,34(3):360-372.
    岳文泽,徐建华,徐丽华.基于地统计方法的气候要素空间插值研究.高原气象,2005,24(6):974-940.
    方正三.黄河中游黄土高原梯田的调查研究.北京:科学出版社,1958.
    蒋定生,黄国俊.黄土高原土壤入渗速率的研究.土壤学报.1986,23(4):299-304.
    蒋定生.黄土高原水土流失与治理模式.北京:中国水利水电出版社,1997.
    蒋定生,范兴科,黄国俊.黄土高原坡耕地水土保持措施效益评价试验研究.水土保持学报.1990,(2):1-10.
    江忠善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究.中国水土保持,1983,(3):32-36.
    周国逸,潘淮俦.林地土壤的降雨入渗规律.水土保持学报.1990,4(2):15-19.
    王玉宽,王占礼,周佩华.黄土高原坡地降雨产流过程的实验分析.水土保持学报.1991,5(2):25-31.
    高鹏,穆兴民,刘普灵等.降雨强度对黄土区不同土地利用类型入渗影响的实验研究.水土保持通报.2006,26(3):1-5.
    赵西宁,吴发启,王万中.黄土高原沟壑区坡耕地土壤入渗规律研究.干旱区资源与环境.2004,18(4):109-112.
    卫喜国,严昌荣,魏永霞等.坡度和降雨强度对坡耕地入渗的影响.灌溉排水学报.2009,28(4):114-115.
    田积莹,黄义端.增强土壤渗透,减少水土流失.水土保持通报.1988,8(2):46-52.
    汪正华.陕西黄土区土壤水分入渗速率的研究.土壤学报.1982,(2):1-5.
    蒋定生,黄国俊,谢永生.黄土高原土壤入渗能力野外测试.水土保持通报.1984,4(4):7-9.
    袁剑舫,周月华.水分运动与土壤质地的关系.土壤学报.1964,12(2):143-153.
    蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟.北京:科学出版社,1998.
    吴发启,范文波.土壤结皮对降雨入渗和产流产沙的影响.中国水土保持科学.2005,3(2):97-101.
    郑亚清,周佩华.土壤容重和降雨强度与土壤侵蚀和入渗关系的定量研究.西北水土保持研究所集刊.1998,(7):53-56.
    杨艳生.地表径流与土壤渗透拟合方程.水土保持通报.1992,12(6):40-44.
    贾志军,王贵平,李俊义等.土壤含水率对坡耕地产流影响的研究.山西水土保持科技.1990,22(4):25-27.
    陈洪松,邵明安,王克林.土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响.农业工程学报.2006,22(1):44-46.
    蒋定生,黄国俊.地面坡度对降雨入渗影响的模拟试验.水土保持通报.1984,4(4):10-13.
    陈浩,蔡强国.坡度影响地面产流产沙过程的试验研究.晋西黄土高原土壤侵蚀规律实验研究论文集.北京:水利电力出版社,1990.
    王文龙,唐克丽,郑粉莉.植被破坏对降雨入渗影响的研究.西北水土保持研究所集刊.1993,(17):52-59.
    吴发启,赵西宁,崔卫芳.坡耕地耕作管理措施对降雨入渗的影响.水土保持学报.2003,17(3):115-117.
    郭建华,吴发启,粱心蓝等.坡耕地地表糙度对降水分配的实验研究.水土保持研究.2008,15(3):11-14.
    赵龙山,梁心蓝,吴发启等.微DEM条件下黄土高原人工掏挖地填洼量特征研究.节水灌溉,2010,(7):4-8.
    Burwell,R.E. and Larson,W.E. Infiltration as influenced by tillage-induced random roughnessand pore space. Soil Sci. Soc. Am. Proc.,1969.33:449-452.
    Ingrid Takken, Gerard Govers, Victor Jettenetl. Effects of tillage on runoff and erosion pattens. Soiland Tillage.2001,65:55-60.
    Wilson BN,Storm DE.1993. Fractal analysis of surface drainage networks for small upland areas.Trans ASA E,36:1319-1326.
    Go′mez, J.A.,Darboux, F., Nearing, M.A.,2003.Development and evolution of rill networksunder simulated rainfall.WaterResources Research39(6),1148. doi:10.1029/2002WR001437.
    Helming, K. Frielinghaus,(1999): Skalenaspekte der Bodenerosion. In: Steinhardt, U. Volk,M.(Eds.) Regionalisierung in der Landschafts kologie. Stuttgart. pp.221-232.
    O’Callaghan J F,Mark D M. The extraction of drainage networks from digital elevation data.Graphics and Image Processing,1984,28:323-344.
    O’Callaghan J F,Mark D M. The extraction of drainage networks from digital elevation data.Graphics and Image Processing,1984,28:323-344.
    Husar R B.Falke S. R Uncertainty in the spatial interpolation of PM10monitoring data in SouthernCalifornia[EB/OL]. http://capita.wustl.edu/CAPITA/CapitaReports/CaInterp/CaINTERP. HTML,1997-03-03/1999-10-25.
    Fan Jianqing, IrèneGijbels. Local polynomial modelling and its applications. Chapman&Hall/CRC,2003:159-216..
    Chen W. Tanaka M. New Insights into Boundary-only andDomain-type RBF Methods Int. J NonlinearSci&NumerSimulation,2000,1(3):145-151.
    JianqingFan,Irène Gijbels.Local polynomial modelling and its applications. Chapman&Hall/CRC.2003.159-216.
    Ellison W. D. Studies of raindrop erosion. Aric. Eng.1944,25:131-136.
    Ellison W. D. Soil erosion study-Part Ⅰ. Aric. Eng.1947,28:145-146.
    Ellison W. D. Soil erosion study-Part Ⅱ. Soil detachement hazard by raindrop splash.Aric. Eng.1947,28:197-201.
    Ellison W. D. Soil erosion study-Part Ⅴ. Soil transport in the splash process.Aric. Eng.1947,28:349-351,353.
    Ellison W. D. Soil erosion study-Part Ⅳ. Soil detachement by surface flow.Aric. Eng.1947,28:402-405,408.
    Green W. H. and Ampt G. A. Studiers on soil physics, flow of air and water through J. Agri. Sci.1911,76(4):1-24.
    Mein R. G., Lanson C. L. Modeling infiltration during a steady rain. Water Resour Res.1973,9(2):384-394.
    Smith R. E., Parlange J. Y. A Paramter-efficient Hydrologic Infiltration Model. Water Resour Res.1978,14(3):533-538.
    Horton R. E. An approach toward a physical interperetation of infiltration-capacity. Soil Sci. Soc. AmProc.1940,5:399-417.
    Philip J. R. The theory of infiltration about sorptivity and algebraic equation. Soil Sci.1957,84(4):257-264.
    Rostiakov A. N. On the dynamics of the coeffient of water percolation in soils and on the necessity ofstudying it from dynamic point of view for purposes of amelioration. Soil Sci.1932,97(1):17-21.
    Bodman G B., Colman E A. Moisture and energy condition during downward entry of water into soil.Soil Sci. Soc. AM.J.,1944,8(2):166-182.
    Rubin J. Theroy of rainfall uptake by soil initially driver than their field capacity and its applications.Water Resour Res.1996,2(4):739-749.
    Aken A. O. Horton infiltration equation revisited. J. Irring and Drain.1991,118(5):828-830.
    Aken A. O. and Yen B. C. Effect of rainfall intensity on infiltration and surface runoff rates. Hyd. Div.ASCE.1984,107(HY4):324-331.
    Smith R. E. The infiltration envelope, results from a theoretical infiltrometer. Journal of hydrology.1972,17(1-2):1-22.
    Busscher W. J. Simulation of infiltration from a continuous and intermittent sub-surface source. SoilSci.1979,128(1):49-55.
    Helalia A. M. The relation between soil infiltration and effective porosity in differentsoils.Agricultural water management.1993,24(1):39-47.
    Mannering J. V. The relationship of some physical and chemical properties of soils to surface sealing.Purdue University,1967.
    Eigle J. D., Moore I. D. Effect of rainfall energy on infiltration into a bare soil. JRANS of ASAE.1983,26(6):189-199.
    Baunhards R. L. Modeling infiltration into sealing soil. Water Resource Res.1990,26(1):2497-2505.
    Grissinger E. H. Resistance of selected clay systems to erosion by water. Water Resource Res.1966,(2):131-138.
    Luk S. H. Effect of antecedent soil moisture content on rain wash erosion. Catena.1985,12(2-3):129-139.
    Philip J. R. The theory of infiltration:5. The influence of the initial moisture content. Soil Sci.1985,84:329-339.
    Bodman G. B., Colman E. A. Mositure and energy condition during down-ward entry of water intosoil. Soil Sci. Soc. Am. Proc.1944,8(2):166-182.
    Burwell R. E., Larson W. E. Infiltration as influenced by tillage-induced random roughness and porespace. Soil Sci. Am. Proc.1969,33(3):449-452.
    Romkens M. J., Wang J. Y. The effect of tillage on surface roughness. Am. Soc. Agric. Eng.1984,84:2026-2042.
    Magunda M. K., Larson W. F., Linden D. R. et al. Changes in microrelief and their effects oninfiltration and erosion during simulated rainfall. Soil Technology.1997,10(1):57-67.
    Rai R. K.,AlkaUpadhyay,Singh V. P. Effect of variable roughness on runoff. Journal of Hydrology.2009,382(2010):115-127.
    Kamphorst E. C., Jetten V., Guerif J. et al. Predicting depressional storage from soil surfaceroughness. Soil Sci. Soc. Am J.1999,64(5):1749-1758.
    Onstad C. A. Depressional storage on tilled soil surfaces.Transactions American Society ofAgricultural Engineers.1984b,27(3):729-732.
    Huang C., White I. and Thwaite E. G. et al. Depressional storage for Markor-Gaussian surfaces.Water Resources Research.1990a,26(9):2235-2242.
    Martz L. W., Garbrecht J. Automated extraction of drainage network and watershed data from digitalelevation models. Water ResourBull(AWRA).1993,29(6):901-908.
    Linden D. R. Van Doren D. M, Allmaras R. A model of the effect of tillage induced soil surfaceroughness on erosion. ISTRO,11th IntConf: Tillage and Traffic in Crop Production.1988,1:373-378.
    Jenson S. K., Domingue J. O. Extracting topographic structure from digital elevation data forgeographic information system analysis. Photogrammetric Engineering and Remote Sensing.1988,54(11):1593-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700