神经营养素3对神经细胞调亡的保护作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经细胞凋亡与骨科创伤、肿瘤以及多种疾病的发生与治疗密切相关。探索神经细胞凋亡的保护作用机制,可能为上述疾病提供新的治疗方案。
     神经营养因子3(Neurotrophin-3, NT-3)属于神经生长因子家族,广泛存在于中枢神经系统及周围组织。NT-3的缺乏与多种神经功能障碍相关,它对于感觉神经元、交感神经元的存活与功能有重要作用,近年来备受关注。有研究发现,NT-3对谷氨酸盐介导的未成熟少突胶质细胞凋亡只有瞬时的抑制作用,其机制尚不明了。另外,NT-3可能是通过激活PI-3 kinase/Akt信号通路对培养的皮层神经元发挥一定程度的抗凋亡作用,进一步作用机制尚在研究之中。关于NT-3对于少突胶质细胞和皮层神经元以外的其他细胞调亡过程是否有类似作用尚罕见报道。因此,探讨NT-3对神经细胞凋亡的保护作用机制,对于建立安全、有效的新型治疗策略,可能具有特殊意义。
     本文首先设计引物,从大鼠脑组织用RT-PCR方法扩增NT-3基因,得到长度为777bp的片断,酶切鉴定正确,测序结果与GenBank中大鼠NT-3序列完全一致。成功构建原核表达载体pRSET-A-NT-3,导入大肠杆菌BL21中,经IPTG诱导表达,SDS-PAGE电泳鉴定得到一条约34kDa的新生蛋白带,用镍柱纯化融合蛋白。与免疫佐剂联用免疫家兔制备特异性抗体,获得了1:64000的高效价特异性抗大鼠NT-3血清。为研究NT-3对神经细胞凋亡的保护作用机制提供了基础。
     进一步建立6羟基多巴胺(6-OHDA)诱导PC12细胞凋亡模型,探讨NT-3对PC12细胞凋亡的作用。通过这种公认的体外神经元凋亡模型,利用MTT、TUNEL染色检测细胞存活率和凋亡率,Hoechst标记观察染色质凝聚,并测定caspase-3活性和caspase-3与PARP裂解情况。研究发现先加入NT-3孵育后细胞存活率回升、凋亡率明显降低。Annexin V-FITC/PI染色流式细胞分析验证了6-OHDA对PC12细胞产生的效应主要是诱导凋亡而不是导致细胞坏死;同时也验证了NT-3的抗凋亡作用。荧光光度测定显示NT-3使caspase-3活性显著降低。蛋白质印迹分析表明caspase-3与PARP裂解减少,Akt磷酸化增加。Hoechst染色观察到NT-3明显抑制染色质凝聚,而anti-TrkA可减弱这种抑制作用,提示NT-3对染色质凝聚的抑制作用可能与TrkA受体有关。磷脂酰肌醇3激酶(PI3-kinase)抑制剂LY294002则增加染色质凝聚,加入NT-3未能逆转该作用。这些结果提示,NT-3能够抑制6-OHDA诱导的PC12细胞凋亡,这种作用是通过PI3-kinase/Akt信号途径实现的。
     本文还观察了脊髓内注射NT-3重组腺病毒对坐骨神经损伤后脊髓前角运动神经元的作用。制备大鼠坐骨神经夹伤模型,治疗组大鼠在立体定位仪上于脊髓腹角给予神经营养素3重组腺病毒(Adeno-NT-3),而对照组则给予生理盐水。术后通过CTB逆标观察脊髓相应节段运动神经元再生的数目,通过尼氏染色计数并计算运动神经元的存活百分率。发现给予Adeno-NT-3组与对照组相比,相应节段运动神经元再生数目和存活百分率明显增加,而且再生神经元增加的比例高于存活神经元。表明Adeno-NT-3对坐骨神经损伤后的脊髓前角运动神经元具有保护作用。提示NT-3在创伤诱发的神经损害中同样具有神经保护作用,其机制仍有待进一步探究。
     综上所述,本文成功克隆了大鼠脑组织中NT-3基因,并在原核细胞中成功表达、纯化NT-3蛋白。进一步运用多种研究方法发现NT-3能够抑制6-OHDA诱导的PC12细胞凋亡,这种作用是通过PI3-kinase/Akt信号途径实现的。另外,在动物实验中观察到NT-3对坐骨神经损伤后脊髓前角运动神经元具有保护作用,提示NT-3在创伤诱发的神经损害中同样具有神经保护作用。因此,本文可望为将NT-3应用于神经系统肿瘤、创伤和疾病的基因治疗提供实验依据。
Neurocyte apoptosis correlates closely with nosogenesis and therapeutics of orthopedics diseases such as trauma, tumour etc. It is important to explore the mechanism of action about neuronal apoptosis protection to provide information for the therapy of these diseases.
     Neurotrophin-3(NT-3) belongs to nerve growth factor family, and exists extensively in central nervous system and periphery tissue. NT-3 is an important regulator of neuronal survival, development, function, and neuronal differentiation, and has become the focus of intense interest because of its association with various neurological disorders. NT-3 was previously found to transiently protect immature oligodendrocytes from glutamate-mediated apoptosis, NT-3 has also exhibited anti-apoptotic effects on cultured cortical neurons, while the mechanism in them is not elucidated completely. Reports excluding oligodendrocytes and cortical neurons are rare. Therefore, It is significant to explore the mechanism of action about neuronal apoptosis protection to establish new strategies of gene therapy for these diseases.
     Firstly, We amplified target gene by RT-PCR and cloned it into the pMD-18T vector, then analyzed its sequence and compared it with the sequence in GenBank. We got a 777 bp gene segment by RT-PCR. The DNA sequence was identical to rat NT-3 gene sequence in GenBank. It suggested that the target gene was correctly inserted into the vector. We subcloned it into pRSET-A vector and introduced it into Escherichia coli BL21. The expression was induced by IPTG, and identified by SDS-PAGE. The fusion protein was purified by niccolum purify kit. A new protein band of about 34 kDa appeared on SDS-PAGE after induction of IPTG. We immuned rabbits with immunological adjuvant for specificity antibody preparation. A specific high titer antibody of 1:64000 was gained by immuning rabbits with immunological adjuvant. All this make it possible to do further investigation.
     Secondly, we treated PC12 cells with 6-hydroxydopamine (6-OHDA) which is a widely used neurotoxic agent that can be used to selectively damage dopaminergic neurons in vivo and in vitro. This treatment resulted in activation of caspases-3 and subsequent apoptosis, as detected by TUNEL staining. In addition, Akt phosphorylation was decreased. Pretreatment with NT-3 reduced the percentage of apoptotic cells and caspase-3 activity induced by 6-OHDA and suppressed the cleavage of caspase-3 and PARP with a significant decrease in cell viability. Moreover, Akt phosphorylation was enhanced and 6-OHDA-induced chromatin condensation was suppressed by NT-3. Such NT-3-evoked supression in chromatin condensation was reversed by anti-TrkA antibody receptor blockade. Further study revealed that LY294002, an inhibitor of PI3-kinase (a molecule upstream of Akt), enhanced 6-OHDA-induced apoptosis. These data indicate that NT-3 prevents 6-OHDA-induced apoptosis in PC12 cells via activation of PI3-kinase/Akt pathway.
     Finally, we also observed the protective effect of recombinant adenovirus-mediated NT-3 gene(Adeno-NT3) on the survival and regeneration of motoneurons after sciatic nerve crush. In the experimental group, Adeno-NT3 was injected directly into the spinal cord parenchyma, while in the control group, isotonic Na chloride was injected instead. Nissl staining and CTB retrograde were carried out to label the survival and regeneration motoneurons respectively, and the numbers of the motoneurons of survival and regeneration were counted as well. We found that numbers of motoneurons of both survival and regeneration were significantly higher in the experimental group than that of the control group, and the ones of regeneration were more than the ones of survival in experimental group. So we made a conclusion that Adeno-NT3 can promote the survival and regeneration ability of motoneuron after sciatic nerve crush, the mechanism in it still needs further investigation.
     To sum up, in this study we amplified target gene by RT-PCR and inserted it correctly into the pMD-18T vector and pRSET-A vector, and introduced it into Escherichia coli BL21. A new protein band of about 34 kDa appeared on SDS-PAGE after induction of IPTG. We used several methods to investigate the effect of NT-3 on 6-OHDA-induced apoptosis in PC12 cells . We found that NT-3 prevents apoptosis via activation of PI3-kinase/Akt pathway. We also observed the animal experiment and made a conclusion that Adeno-NT-3 can promote the survival and regeneration ability of motoneuron after sciatic nerve crush. Therefore, this study may bring a new strategy of gene therapy for orthopedics diseases such as trauma, tumour and other diseases.
引文
1 Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26(4):239-57.
    2 Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001;2(8):589-98.
    3 Golstein P, Aubry L, Levraud JP. Cell-death alternative model organisms: why and which?. Nat Rev Mol Cell Biol 2003;4(10):798-807.
    4 Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2005;12 Suppl 2:1463-7.
    5 Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 2004;23(16):2746-56.
    6 Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000;1(2):120-9.
    7 李志全, 胡蕴玉, 朱庆生, 朱锦宇, 刘方. 脊髓内注射 NT3 重组腺病毒对前角神经元的保护作用. 中华手外科杂志 2006;(04).257-59
    8 Li ZQ, Zhu QS, Zhu JY, Hao W, Xu YM, Wang CJ, et al. [Construction and identification of recombinant adenovirus vector containing Tet-on adjustable NT3 and BDNF genes]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2004;20(3):344-7.
    9 Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 2004;16(6):663-9.
    10 Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116(2):205-19.
    11 Hengartner MO. The biochemistry of apoptosis. Nature 2000;407(6805):770-6.
    12 Wang H, Yu SW, Koh DW, Lew J, Coombs C, Bowers W, et al. Apoptosis-inducingfactor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 2004;24(48):10963-73.
    13 Fombonne J, Padron L, Enjalbert A, Krantic S, Torriglia A. A novel paraptosis pathway involving LEI/L-DNaseII for EGF-induced cell death in somato-lactotrope pituitary cells. Apoptosis 2006;11(3):367-75.
    14 Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene 2004;23(16):2861-74.
    15 Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102(1):43-53.
    16 Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001;412(6842):95-9.
    17 Youdim MB, Weinstock M. Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cell Mol Neurobiol 2001;21(6):555-73.
    18 Ackermann EJ, Taylor JK, Narayana R, Bennett CF. The role of antiapoptotic Bcl-2 family members in endothelial apoptosis elucidated with antisense oligonucleotides. J Biol Chem 1999;274(16):11245-52.
    19 Miayake H, Tolcher A, Gleave ME. Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides. J Natl Cancer Inst 2000;92(1):34-41.
    20 Morris MJ, Tong WP, Cordon-Cardo C, Drobnjak M, Kelly WK, Slovin SF, et al. Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2002;8(3):679-83.
    21 Badros AZ, Goloubeva O, Rapoport AP, Ratterree B, Gahres N, Meisenberg B, et al.Phase II study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J Clin Oncol 2005;23(18):4089-99.
    22 Zangemeister-Wittke U, Leech SH, Olie RA, Simoes-Wust AP, Gautschi O, Luedke GH, et al. A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin Cancer Res 2000;6(6):2547-55.
    23 Yamanaka K, Rocchi P, Miyake H, Fazli L, Vessella B, Zangemeister-Wittke U, et al. A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Mol Cancer Ther 2005;4(11):1689-98.
    24 Lickliter JD, Wood NJ, Johnson L, McHugh G, Tan J, Wood F, et al. HA14-1 selectively induces apoptosis in Bcl-2-overexpressing leukemia/lymphoma cells, and enhances cytarabine-induced cell death. Leukemia 2003;17(11):2074-80.
    25 Tolcher AW. Regulators of apoptosis as anticancer targets. Hematol Oncol Clin North Am 2002;16(5):1255-67.
    26 Ferreira CG, Epping M, Kruyt FA, Giaccone G. Apoptosis: target of cancer therapy. Clin Cancer Res 2002;8(7):2024-34.
    27 El-Zawahry A, McKillop J, Voelkel-Johnson C. Doxorubicin increases the effectiveness of Apo2L/TRAIL for tumor growth inhibition of prostate cancer xenografts. BMC Cancer 2005;5:2.
    28 Pukac L, Kanakaraj P, Humphreys R, Alderson R, Bloom M, Sung C, et al. HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 2005;92(8):1430-41.
    29 Zeng Y, Wu XX, Fiscella M, Shimada O, Humphreys R, Albert V, et al. Monoclonal antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 2(TRAIL-R2) induces apoptosis in primary renal cell carcinoma cells in vitro and inhibits tumor growth in vivo. Int J Oncol 2006;28(2):421-30.
    30 MacCorkle RA, Freeman KW, Spencer DM. Synthetic activation of caspases: artificial death switches. Proc Natl Acad Sci U S A 1998;95(7):3655-60.
    31 Danen-Van Oorschot AA, van der Eb AJ, Noteborn MH. BCL-2 stimulates Apoptin-induced apoptosis. Adv Exp Med Biol 1999;457:245-9.
    32 Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003;22(53):8581-9.
    33 Fukuda S, Pelus LM. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther 2006;5(5):1087-98.
    34 Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 1998;58(23):5315-20.
    35 Olie RA, Simoes-Wust AP, Baumann B, Leech SH, Fabbro D, Stahel RA, et al. A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res 2000;60(11):2805-9.
    36 Mesri M, Wall NR, Li J, Kim RW, Altieri DC. Cancer gene therapy using a survivin mutant adenovirus. J Clin Invest 2001;108(7):981-90.
    37 Choi KS, Lee TH, Jung MH. Ribozyme-mediated cleavage of the human survivin mRNA and inhibition of antiapoptotic function of survivin in MCF-7 cells. Cancer Gene Ther 2003;10(2):87-95.
    38 Carvalho A, Carmena M, Sambade C, Earnshaw WC, Wheatley SP. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 2003;116(Pt 14):2987-98.
    39 Kappler M, Bache M, Bartel F, Kotzsch M, Panian M, Wurl P, et al. Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of humansarcoma cell lines independently of p53. Cancer Gene Ther 2004;11(3):186-93.
    40 Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science 1999;286(5449):2507-10.
    41 Zheng LD, Xiong ZF, Zhu JW, Wang ZH. Effects of Smac gene over-expression on the radiotherapeutic sensitivities of cervical cancer cell line HeLa. Chin Med J (Engl) 2005;118(3):226-30.
    42 Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000;2(8):469-75.
    43 Brondani Da Rocha A, Regner A, Grivicich I, Pretto Schunemann D, Diel C, Kovaleski G, et al. Radioresistance is associated to increased Hsp70 content in human glioblastoma cell lines. Int J Oncol 2004;25(3):777-85.
    44 Vanaja DK, Grossmann ME, Celis E, Young CY. Tumor prevention and antitumor immunity with heat shock protein 70 induced by 15-deoxy-delta12,14-prostaglandin J2 in transgenic adenocarcinoma of mouse prostate cells. Cancer Res 2000;60(17):4714-8.
    45 Lossi L, Merighi A. In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog Neurobiol 2003;69(5):287-312.
    46 Kajta M. Apoptosis in the central nervous system: Mechanisms and protective strategies. Pol J Pharmacol 2004;56(6):689-700.
    47 Fu HJ, Hu QS, Lin ZN, Ren TL, Song H, Cai CK, et al. Aluminum-induced apoptosis in cultured cortical neurons and its effect on SAPK/JNK signal transduction pathway. Brain Res 2003;980(1):11-23.
    48 Kajta M, Beyer C. Cellular strategies of estrogen-mediated neuroprotection during brain development. Endocrine 2003;21(1):3-9.
    49 Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci 1991;14:453-501.
    50 Wright KM, Linhoff MW, Potts PR, Deshmukh M. Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. J Cell Biol 2004;167(2):303-13.
    51 Perrelet D, Ferri A, MacKenzie AE, Smith GM, Korneluk RG, Liston P, et al. IAP family proteins delay motoneuron cell death in vivo. Eur J Neurosci 2000;12(6):2059-67.
    52 Holcik M, Thompson CS, Yaraghi Z, Lefebvre CA, MacKenzie AE, Korneluk RG. The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury. Proc Natl Acad Sci U S A 2000;97(5):2286-90.
    53 Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 2003;111(6):785-93.
    54 Feddersen RM, Ehlenfeldt R, Yunis WS, Clark HB, Orr HT. Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron 1992;9(5):955-66.
    55 Frade JM. Unscheduled re-entry into the cell cycle induced by NGF precedes cell death in nascent retinal neurones. J Cell Sci 2000;113 ( Pt 7):1139-48.
    56 Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, et al. Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 1999;13(15):2225-34.
    57 Timsit S, Rivera S, Ouaghi P, Guischard F, Tremblay E, Ben-Ari Y, et al. Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: a modulator of in vivo programmed cell death?. Eur J Neurosci 1999;11(1):263-78.
    58 Kuan CY, Schloemer AJ, Lu A, Burns KA, Weng WL, Williams MT, et al. Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci 2004;24(47):10763-72.
    59 Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997;88(4):435-7.
    60 Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997;275(5300):661-5.
    61 Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 1997;11(6):701-13.
    62 Kapeller R, Cantley LC. Phosphatidylinositol 3-kinase. Bioessays 1994;16(8):565-76.
    63 Carpenter CL, Cantley LC. Phosphoinositide kinases. Curr Opin Cell Biol 1996;8(2):153-8.
    64 Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991;254(5029):274-7.
    65 Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995;378(6559):785-9.
    66 Nakagawa T, Yasuda T, Hoshikawa H, Shimizu M, Kakinuma T, Chen M, et al. LOX-1 expressed in cultured rat chondrocytes mediates oxidized LDL-induced cell death-possible role of dephosphorylation of Akt. Biochem Biophys Res Commun 2002;299(1):91-7.
    67 Aigner T, Hemmel M, Neureiter D, Gebhard PM, Zeiler G, Kirchner T, et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum 2001;44(6):1304-12.
    68 Ali-Khan SE, Hales BF. Caspase-3 mediates retinoid-induced apoptosis in theorganogenesis-stage mouse limb. Birth Defects Res A Clin Mol Teratol 2003;67(10):848-60.
    69 Sharif M, Whitehouse A, Sharman P, Perry M, Adams M. Increased apoptosis in human osteoarthritic cartilage corresponds to reduced cell density and expression of caspase-3. Arthritis Rheum 2004;50(2):507-15.
    70 Weinstein RS, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab 2000;85(8):2907-12.
    71 Weinstein RS, Manolagas SC. Apoptosis and osteoporosis. Am J Med 2000;108(2):153-64.
    72 Hwang IK, Yoo KY, Park SK, An SJ, Lee JY, Choi SY, et al. Expression and changes of endogenous insulin-like growth factor-1 in neurons and glia in the gerbil hippocampus and dentate gyrus after ischemic insult. Neurochem Int 2004;45(1):149-56.
    73 Zhu Y, Culmsee C, Klumpp S, Krieglstein J. Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways. Neuroscience 2004;123(4):897-906.
    74 Saito A, Narasimhan P, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH. Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J Neurosci 2004;24(7):1584-93.
    75 Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R. Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 2003;278(16):14162-7.
    76 Ray SK, Hogan EL, Banik NL. Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev 2003;42(2):169-85.
    77 Feng Y, Fratkin JD, LeBlanc MH. Inhibiting caspase-8 after injury reduces hypoxic-ischemic brain injury in the newborn rat. Eur J Pharmacol 2003;481(2-3):169-73.
    78 Feng Y, Fratkin JD, LeBlanc MH. Inhibiting caspase-9 after injury reduces hypoxic ischemic neuronal injury in the cortex in the newborn rat. Neurosci Lett 2003;344(3):201-4.
    79 Kilic E, Kilic U, Yulug B, Hermann DM, Reiter RJ. Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. J Pineal Res 2004;36(3):171-6.
    80 Yang L, Sugama S, Mischak RP, Kiaei M, Bizat N, Brouillet E, et al. A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol Dis 2004;17(2):250-9.
    81 Chong ZZ, Lin SH, Kang JQ, Maiese K. Erythropoietin prevents early and late neuronal demise through modulation of Akt1 and induction of caspase 1, 3, and 8. J Neurosci Res 2003;71(5):659-69.
    82 Benjamins JA, Nedelkoska L, George EB. Protection of mature oligodendrocytes by inhibitors of caspases and calpains. Neurochem Res 2003;28(1):143-52.
    83 Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 2003;38(6):899-914.
    84 Schroeter H, Boyd CS, Ahmed R, Spencer JP, Duncan RF, Rice-Evans C, et al. c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: new target proteins for JNK signalling in mitochondrion-dependent apoptosis. Biochem J 2003;372(Pt 2):359-69.
    85 Klettner A, Herdegen T. FK506 and its analogs - therapeutic potential for neurological disorders. Curr Drug Targets CNS Neurol Disord 2003;2(3):153-62.
    86 Duan WZ, Zhang JT. Stimulation of central cholinergic neurons by (-)clausenamide in vitro. Zhongguo Yao Li Xue Bao 1998;19(4):332-6.
    87 Kajta M, Lason W, Kupiec T. Effects of estrone on N-methyl-D-aspartic acid- and staurosporine-induced changes in caspase-3-like protease activity and lactate dehydrogenase-release: time- and tissue-dependent effects in neuronal primary cultures. Neuroscience 2004;123(2):515-26.
    88 Kilic E, Kilic U, Soliz J, Bassetti CL, Gassmann M, Hermann DM. Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways. FASEB J 2005;19(14):2026-8.
    89 Kawano T, Fukunaga K, Takeuchi Y, Morioka M, Yano S, Hamada J, et al. Neuroprotective effect of sodium orthovanadate on delayed neuronal death after transient forebrain ischemia in gerbil hippocampus. J Cereb Blood Flow Metab 2001;21(11):1268-80.
    90 Fukunaga K. [Signal transduction and development of drug for brain ischemic insult]. Nippon Yakurigaku Zasshi 2003;122 Suppl:22P-24P.
    91 Ma J, Zhang GY. Lithium reduced N-methyl-D-aspartate receptor subunit 2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 in rat hippocampus following cerebral ischemia. Neurosci Lett 2003;348(3):185-9.
    92 Pappolla MA, Chyan YJ, Poeggeler B, Frangione B, Wilson G, Ghiso J, et al. An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer's disease. J Neural Transm 2000;107(2):203-31.
    93 Miranda S, Opazo C, Larrondo LF, Munoz FJ, Ruiz F, Leighton F, et al. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer's disease. Prog Neurobiol 2000;62(6):633-48.
    94 Aloe L. Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology. Trends Cell Biol 2004;14(7):395-9.
    95 Aloe L. Rita Levi-Montalcini and the discovery of nerve growth factor: past and present studies. Arch Ital Biol 2003;141(2-3):65-83.
    96 Diener PS, Bregman BS. Neurotrophic factors prevent the death of CNS neurons after spinal cord lesions in newborn rats. Neuroreport 1994;5(15):1913-7.
    97 Maisonpierre PC, Le Beau MM, Espinosa R 3rd, Ip NY, Belluscio L, de la Monte SM, et al. Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics 1991;10(3):558-68.
    98 Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci 1996;19:289-317.
    99 Yan H, Wood PM. NT-3 weakly stimulates proliferation of adult rat O1(-)O4(+) oligodendrocyte-lineage cells and increases oligodendrocyte myelination in vitro. J Neurosci Res 2000;62(3):329-35.
    100 Ernfors P, Ibanez CF, Ebendal T, Olson L, Persson H. Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proc Natl Acad Sci U S A 1990;87(14):5454-8.
    101 Hohn A, Leibrock J, Bailey K, Barde YA. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 1990;344(6264):339-41.
    102 Friedman WJ, Ibanez CF, Hallbook F, Persson H, Cain LD, Dreyfus CF, et al. Differential actions of neurotrophins in the locus coeruleus and basal forebrain. Exp Neurol 1993;119(1):72-8.
    103 Farinas I, Jones KR, Backus C, Wang XY, Reichardt LF. Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 1994;369(6482):658-61.
    104 Novikova LN, Novikov LN, Kellerth JO. Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophinadministration. Eur J Neurosci 2000;12(2):776-80.
    105 Yao R, Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 1995;267(5206):2003-6.
    106 Davies AM. Neurotrophins: the yin and yang of nerve growth factor. Curr Biol 1997;7(1):R38-40.
    107 Ulrich E, Duwel A, Kauffmann-Zeh A, Gilbert C, Lyon D, Rudkin B, et al. Specific TrkA survival signals interfere with different apoptotic pathways. Oncogene 1998;16(7):825-32.
    108 Liepinsh E, Ilag LL, Otting G, Ibanez CF. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J 1997;16(16):4999-5005.
    109 Frade JM, Rodriguez-Tebar A, Barde YA. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 1996;383(6596):166-8.
    110 Majdan M, Lachance C, Gloster A, Aloyz R, Zeindler C, Bamji S, et al. Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis. J Neurosci 1997;17(18):6988-98.
    111 Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 1996;383(6602):716-9.
    112 Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J Neurosci 1998;18(9):3273-81.
    113 Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R, Kohn J, et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol 1998;140(4):911-23.
    114 Aloyz RS, Bamji SX, Pozniak CD, Toma JG, Atwal J, Kaplan DR, et al. p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophinreceptors. J Cell Biol 1998;143(6):1691-703.
    115 Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997;88(3):347-54.
    116 Gysin R, Wergedal JE, Sheng MH, Kasukawa Y, Miyakoshi N, Chen ST, et al. Ex vivo gene therapy with stromal cells transduced with a retroviral vector containing the BMP4 gene completely heals critical size calvarial defect in rats. Gene Ther 2002;9(15):991-9.
    117 Zhao J, Pettigrew GJ, Thomas J, Vandenberg JI, Delriviere L, Bolton EM, et al. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol 2002;97(5):348-58.
    118 Sandig V, Youil R, Bett AJ, Franlin LL, Oshima M, Maione D, et al. Optimization of the helper-dependent adenovirus system for production and potency in vivo. Proc Natl Acad Sci U S A 2000;97(3):1002-7.
    119 Stevens JL, Cantin GT, Wang G, Shevchenko A, Shevchenko A, Berk AJ. Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 2002;296(5568):755-8.
    120 Kee C, Sohn S, Hwang JM. Stromelysin gene transfer into cultured human trabecular cells and rat trabecular meshwork in vivo. Invest Ophthalmol Vis Sci 2001;42(12):2856-60.
    121 Ishii H, Yoshida M, Hajjar KA, Yasukochi Y, Numano F. Construction of recombinant adenoviral vector of annexin II. Ann N Y Acad Sci 2000;902:311-4.
    122 Xu ZL, Mizuguchi H, Ishii-Watabe A, Uchida E, Mayumi T, Hayakawa T. Strength evaluation of transcriptional regulatory elements for transgene expression by adenovirus vector. J Control Release 2002;81(1-2):155-63.
    123 Zhou HS, Zhao T, Rao XM, Beaudet AL. Production of helper-dependent adenovirus vector relies on helper virus structure and complementing. J Gene Med 2002;4(5):498-509.
    124 Davis AR, Wivel NA, Palladino JL, Tao L, Wilson JM. Construction of adenoviral vectors. Mol Biotechnol 2001;18(1):63-70.
    125 Adam E, Nasz I. [Adenovirus vectors and their clinical application in gene therapy]. Orv Hetil 2001;142(38):2061-70.
    126 Benihoud K, Yeh P, Perricaudet M. Adenovirus vectors for gene delivery. Curr Opin Biotechnol 1999;10(5):440-7.
    127 Sellers KW, Katovich MJ, Gelband CH, Raizada MK. Gene therapy to control hypertension: current studies and future perspectives. Am J Med Sci 2001;322(1):1-6.
    128 Hu H, Serra D, Amalfitano A. Persistence of an [E1-, polymerase-] adenovirus vector despite transduction of a neoantigen into immune-competent mice. Hum Gene Ther 1999;10(3):355-64.
    129 Sahenk Z, Nagaraja HN, McCracken BS, King WM, Freimer ML, Cedarbaum JM, et al. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. Neurology 2005;65(5):681-9.
    130 Blits B, Oudega M, Boer GJ, Bartlett Bunge M, Verhaagen J. Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function. Neuroscience 2003;118(1):271-81.
    131 Moran LB, Graeber MB. The facial nerve axotomy model. Brain Res Brain Res Rev 2004;44(2-3):154-78.
    132 Suenaga M, Ohmae H, Tsuji S, Itoh T, Nishimura O. Renaturation of recombinant human neurotrophin-3 from inclusion bodies using a suppressor agent of aggregation. Biotechnol Appl Biochem 1998;28 ( Pt 2):119-24.
    133 Stefanis L, Burke RE, Greene LA. Apoptosis in neurodegenerative disorders. Curr Opin Neurol 1997;10(4):299-305.
    134 Gorman AM, Szegezdi E, Quigney DJ, Samali A. Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells.Biochem Biophys Res Commun 2005;327(3):801-10.
    135 Du Y, Dodel RC, Bales KR, Jemmerson R, Hamilton-Byrd E, Paul SM. Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons. J Neurochem 1997;69(4):1382-8.
    136 Koh JY, Gwag BJ, Lobner D, Choi DW. Potentiated necrosis of cultured cortical neurons by neurotrophins. Science 1995;268(5210):573-5.
    137 Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease. Clin Sci (Lond) 2006;110(2):167-73.
    138 Ness JK, Wood TL. Insulin-like growth factor I, but not neurotrophin-3, sustains Akt activation and provides long-term protection of immature oligodendrocytes from glutamate-mediated apoptosis. Mol Cell Neurosci 2002;20(3):476-88.
    139 Liot G, Gabriel C, Cacquevel M, Ali C, MacKenzie ET, Buisson A, et al. Neurotrophin-3-induced PI-3 kinase/Akt signaling rescues cortical neurons from apoptosis. Exp Neurol 2004;187(1):38-46.
    140 Barnabe-Heider F, Miller FD. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci 2003;23(12):5149-60.
    141 Cheng B, Yang X, Hou Z, Lin X, Meng H, Li Z, et al. D-beta-hydroxybutyrate inhibits the apoptosis of PC12 cells induced by 6-OHDA in relation to up-regulating the ratio of Bcl-2/Bax mRNA. Auton Neurosci 2007;134(1-2):38-44.
    142 Fujita H, Utsumi T, Muranaka S, Ogino T, Yano H, Akiyama J, et al. Involvement of Ras/extracellular signal-regulated kinase, but not Akt pathway in risedronate-induced apoptosis of U937 cells and its suppression by cytochalasin B. Biochem Pharmacol 2005;69(12):1773-84.
    143 Ha KS, Kim KM, Kwon YG, Bai SK, Nam WD, Yoo YM, et al. Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3kinase/Akt activation. FASEB J 2003;17(9):1036-47.
    144 Skaper SD, Floreani M, Negro A, Facci L, Giusti P. Neurotrophins rescue cerebellar granule neurons from oxidative stress-mediated apoptotic death: selective involvement of phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathway. J Neurochem 1998;70(5):1859-68.
    145 Fujita H, Ogino T, Kobuchi H, Fujiwara T, Yano H, Akiyama J, et al. Cell-permeable cAMP analog suppresses 6-hydroxydopamine-induced apoptosis in PC12 cells through the activation of the Akt pathway. Brain Res 2006;1113(1):10-23.
    146 Taylor MD, Holdeman AS, Weltmer SG, Ryals JM, Wright DE. Modulation of muscle spindle innervation by neurotrophin-3 following nerve injury. Exp Neurol 2005;191(1):211-22.
    147 Hendriks WT, Ruitenberg MJ, Blits B, Boer GJ, Verhaagen J. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res 2004;146:451-76.
    148 Uchida K, Baba H, Maezawa Y, Furukawa S, Furusawa N, Imura S. Histological investigation of spinal cord lesions in the spinal hyperostotic mouse (twy/twy): morphological changes in anterior horn cells and immunoreactivity to neurotropic factors. J Neurol 1998;245(12):781-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700