小鼠热应激蛋白家族在愈伤组织中表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热应激蛋白(HSPs)是机体在应激条件下产生的一组特异性蛋白质,能使机体迅速适应环境的变化。热应激蛋白的功能主要是作为分子伴侣,促进胞内蛋白的正确折叠,防止其聚集,并辅助未正确折叠的蛋白进入其相应的降解途径。热应激蛋白在皮肤组织伤口愈合过程中的生物学作用主要是通过对炎症反应、伤口坏死组织清理、细胞增殖和迁移及胶原蛋白合成的调节来实现的,这种作用是不可或缺的。
     热应激蛋白异常表达会导致创伤难以愈合,不同的热应激蛋白在创伤愈合中发挥的作用不同,而关于其在创伤愈合中的研究又缺乏系统性的比较,因此,本研究以BALB/c小鼠作为实验动物模型,将经石蜡组织切片法筛选变化差异显著(P<0.01)的3天(3d)组作为研究对象,选取已公布的84个热应激蛋白家族基因,制备成实时荧光定量PCR微阵列(qPCR Array),差异表达结果表明:Hsp90aa1、Hspa1a、Dnaja3表达上调,差异显著(P<0.05);Bag3、Bag4表达下调,差异显著(P<0.05)。
     对差异表达的基因进行Gene Ontology(GO)分析表明:Hsp90aa1可能通过表达上调参与炎症反应,与HSPs其它家族因子相互作用,参与细胞调控和细胞内信号传递,并促成愈伤组织内成纤维细胞的迁移,加速伤口的愈合;Hspa1a表达上调抑制炎症反应发生,保证创伤愈合过程中新合成蛋白的正确构象;Dnaja3基因与细胞凋亡有关,且存在两种作用截然相反的不同变构体,上调意义有待进一步阐明;Bag3与Bag4基因在创伤组织愈合早期阶段的下调表达可能具有促进炎症细胞凋亡及促进创伤组织愈合的作用。信号通路检索表明:Hspa1a基因参与MAPK信号通路,Hsp90aa1参与NOD样受体信号通路,两通路可能与创伤调节有关。
     在蛋白表达水平上,对Hsp90aa1、Hspa1a进行蛋白印迹检测,结果表明其蛋白水平和mRNA水平的表达具有一致性。
     本研究表明,qPCRArray可作为高通量筛选小鼠热应激蛋白差异表达基因的一种方法,具有灵敏度高、重复性好等特点。本实验筛选到的主效基因为深入研究热应激蛋白家族因子在创伤中的作用机制提供了实验依据,其参与的生物学途径为临床上寻找促进创伤愈合的治疗方案提供了理论依据,而构建的qPCRArray也为后续系统性研究不同应激条件下热应激蛋白的差异表达开辟了新的途径。
Heat shock proteins (HSPs) are a group of specific proteins, which express inresponse to various biological stresses, to preserve cell survival under adverseenvironmental conditions. HSPs function primarily as molecular chaperones,facilitating the folding of other cellular proteins, preventing protein aggregation, ortargeting improperly folded proteins to specific pathways for degradation.Bymodulating inflammation, wound debris clearance, cell proliferation, migration andcollagensynthesis, HSPs are essential for normal wound healing of the skin.
     The abnormal expression of HSPs may contribute to wound healing deficiencies,and there are differences in the roles played in wound healing of different HSPs.Furthermore, there is a lack of systematic comparison research on HSPs in woundhealing. In this study, BALB/c mice were used as the experimental animal model.3days (3d) group after wound was screened as the research object for inflammation,which3day was the most intense and the difference of which was significant (P<0.01)compared with the other time points.84heat shock protein family genes were selectedto prepare real-time quantitative PCR microarray (qPCR array). The results ofdifferential expression showed that Hsp90aa1, Hspa1a, Dnaja3were up-regulated andsignificant differences (P<0.05), Bag3, Bag4were down-regulated and significantdifferences (P<0.05).
     GO (Gene Ontology) analysis of differentially expressed genes showed thatHsp90aa1might participate in inflammatory reactions through up-regulatedexpression, interact with other HSPs family factors, and be involved in cell regulationand intracellular signaling, then promote migration of fibroblasts to accelerate woundhealing; Hspa1a up-regulation inhibits the inflammatory response to ensure the correct conformation of newly synthesized proteins in the wound healing process;Dnaja3, which has two isoforms with sharply contrasting functions, is related toapoptosis, and its up-regulating significance needs further interpretation; Thedown-regulation of Bag3and Bag4genes in the early stages of wound healing maypromote apoptosis of inflammatory cells and the healing of the wound tissue.Signaling pathway hypothesized that Hspa1a gene was involved in the MAPKsignaling pathway and Hsp90aa1gene was involved in NOD-like receptor signalingpathway, which might be related to adjustment of wound healing.
     Western blot analysis showed that the expression of Hsp90aa1and Hspa1a at theprotein level consisted with mRNA level.
     This study showed that the qPCR Array could be used to detect thehigh-throughput expression of mouse heat shock protein genes, with high sensitivityand good repeatability. The major gene of heat shock protein family factor in ourstudy can provide the experimental basis for in-depth study in trauma mechanism, andthe biological pathways that they are involved in can provide the theoretical basis forseeking treatment program to promote wound healing in clinical practice, and theqPCR Array built in this study will provide a new way to systematically study thedifferential expression of heat shock proteins in different stress conditions.
引文
[1] Mogk A., Bukau B. Molecular chaperones: structure of a protein disaggregase [J].Curr Biol,2004,20(14(2)): R78-80.
    [2] Lindquist S, Craig N. E.. The heat shock protein [J]. Annu Rev Genet,1988,22:671-677.
    [3]胡丹.急性创伤后早期热休克蛋白72表达临床意义的研究[D].青岛大学.2004.
    [4]赵珺.高温热应激环境对雄性小鼠生殖机能影响及其分子机理的研究[D].东北师范大学.2010.
    [5] Brinker A., Scheufler C., Von Der Mulbe F., Fleckenstein B., Herrmann C., JungG., Moarefi I., Hartl F. U.. Ligand discrimination by TPR domains. Relevance andselectivity of EEVD-recognition in Hsp70×Hop×Hsp90complexes [J]. Biol.Chem.,2002,277:19265-19275.
    [6] Carrello A., Allan R. K., Morgan S. L., Owen B. A., Mok D., Ward B. K.,Minchin R. F., Toft D. O., Ratajczak T.. Interaction of the Hsp90cochaperonecyclophilin40with Hsc70[J]. Cell Stress Chaperones,2004,9:167-181.
    [7] Michels A. A., Kanon B., Bensaude O., Kampinga H. H. Heat shock protein (Hsp)40mutants inhibit Hsp70in mammalian cells [J]. Biol. Chem.,1999,274:36757-36763.
    [8] Daugaard M., Kirkegaard-Sorensen T., Ostenfeld M. S., Aaboe M., Hoyer-HansenM., Orntoft T. F., Rohde M., Jaattela M.. Lens epithelium-derived growth factoris an Hsp70-2regulated guardian of lysosomal stability in human cancer [J].Cancer Res.,2007,67:2559-2567.
    [9] Ni M., Zhou H., Wey S., Baumeister P., Lee A. S.. Regulation of PERK signalingand leukemic cell survival by a novel cytosolic isoform of the UPR regulatorGRP78/BiP [J]. PLoS One,2009,4: e6868.
    [10] Ran Q., Wadhwa R., Kawai R., Kaul S. C., Sifers R. N., Bick R. J., Smith J. R.,Pereira-Smith O. M.. Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75[J]. Biochem. Biophys. Res. Commun.,2000,275:174-179.
    [11] Wadhwa R., Taira K., Kaul S. C.. An Hsp70family chaperone, mortalinmthsp70/PBP74/Grp75: what, when, and where [J]? Cell Stress Chaperones,2002,7:309-316.
    [12] R. Anne Stetler, Gan Yu, Zhang Wenting, Anthony K. Liou, Gao Yanqin, CaoGuodong, Chen Jun. Heat shock proteins: Cellular and molecular mechanisms inthe central nervous system [J]. Progress in Neurobiology,2010,92:184-211.
    [13] Pearl L. H., Prodromou C.. Structure and mechanism of the Hsp90molecularchaperone machinery [J]. Annu. Rev. Biochem,2006,75:271-294.
    [14] Sreedhar A. S., Kalmar E., Csermely P., Shen Y. F.. Hsp90isoforms: functions,expression and clinical importance [J]. FEBS Lett,2004,562:11-15.
    [15] Pratt W. B., Toft D. O.. Regulation of signaling protein function and traffickingby the hsp90/hsp70-based chaperone machinery [J]. Exp. Biol. Med.(Maywood),2003,228:111-133.
    [16] Wandinger S. K., Richter K., Buchner J.. The Hsp90chaperone machinery [J].Biol. Chem,2008,283:18473-18477.
    [17] Donnelly A., Blagg B. S.. Novobiocin and additional inhibitors of the Hsp90Cterminal nucleotide-binding pocket [J]. Curr. Med. Chem,2008,15:2702-2717.
    [18] Garnier C., Lafitte D., Jorgensen T. J., Jensen O. N., Briand C., Peyrot V..Phosphorylation and oligomerization states of native pig brain HSP90studied bymass spectrometry [J]. Eur. J. Biochem,2001,268:2402-2407.
    [19] Lees-Miller S. P., Anderson C. W.. The human double-stranded DNA-activatedprotein kinase phosphorylates the90-kDa heat-shock protein, hsp90alpha at twoNH2-terminal threonine residues [J]. Biol. Chem,1989,264:17275-17280.
    [20] Lees-Miller S. P., Anderson C. W.. Two human90-kDa heat shock proteins arephosphorylated in vivo at conserved serines that are phosphorylated in vitro bycasein kinase II [J]. Biol. Chem,1989,264:2431-2437.
    [21] Szyszka R., Kramer G., Hardesty B.. The phosphorylation state of thereticulocyte90-kDa heat shock protein affects its ability to increasephosphorylation of peptide initiation factor2alpha subunit by the heme-sensitivekinase [J]. Biochemistry,1989,28:1435-1438.
    [22] Manzerra P., Brown I. R.. The neuronal stress response: nuclear translocation ofheat shock proteins as an indicator of hyperthermic stress [J]. Exp. Cell Res,1996.229,35-47.
    [23] Silverstein A. M., Galigniana M. D., Chen M. S., Owens-Grillo J. K., ChinkersM., Pratt W. B.. Protein phosphatase5is a major component of glucocorticoidreceptor: hsp90complexes with properties of an FK506-binding immunophilin[J]. Biol. Chem,1997,272:16224-16230.
    [24] Wandinger S. K., Suhre M. H., Wegele H., Buchner J.. The phosphatase Ppt1is adedicated regulator of the molecular chaperone Hsp90[J]. EMBO J,2006,25:367-376.
    [25] Zhao Y. G., Gilmore R., Leone G., Coffey M. C., Weber B., Lee P. W.. Hsp90phosphorylation is linked to its chaperoning function. Assembly of the reoviruscell attachment protein [J]. Biol. Chem,2001,276:32822-32827.
    [26] Scroggins B. T., Robzyk K., Wang D., Marcu M. G., Tsutsumi S., Beebe K.,Cotter R. J., Felts S., Toft D., Karnitz L., Rosen N., Neckers L.. An acetylationsite in the middle domain of Hsp90regulates chaperone function [J]. Mol. Cell,2007,25:151-159.
    [27] Qiu X. B., Shao Y. M., Miao S., Wang L.. The diversity of the DnaJ/Hsp40family, the crucial partners for Hsp70chaperones [J]. Cell. Mol. Life Sci,2006,63:2560-2570.
    [28] Li J., Qian X., Sha B.. Heat shock protein40: structural studies and theirfunctional implications [J]. Protein Pept. Lett,2009,16:606-612.
    [29] Mitra A., Shevde L. A., Samant R. S.. Multi-faceted role of HSP40in cancer [J].Clin. Exp. Metastasis,2009,26:559-567.
    [30] Zhao X., Braun A. P., Braun J. E.. Biological roles of neural J proteins [J]. Cell.Mol. Life Sci,2008,65:2385-2396.
    [31] Cheetham M. E., Caplan A. J.. Structure function and evolution of DnaJ:conservation and adaptation of chaperone function [J]. Cell Stress Chaperones,1998,3:28-36.
    [32] Kampinga H. H., Hageman J., Vos M. J., Kubota H., Tanguay R. M., Bruford E.A., Cheetham M. E., Chen B., Hightower L. E.. Guidelines for the nomenclatureof the human heat shock proteins [J]. Cell Stress Chaperones,2009,14:105-111.
    [33] Lee D. W., Wu X., Eisenberg E., Greene L. E.. Recruitment dynamics of GAKand auxilin to clathrin-coated pits during endocytosis [J]. J. Cell Sci.,2006,119:3502-3512.
    [34] Chamberlain L. H., Burgoyne R. D.. The cysteine-string domain of the secretoryvesicle cysteine-string protein is required for membrane targeting [J]. Biochem.J.,1998,335(Pt2):205–209.
    [35] Greaves J., Chamberlain L. H.. Dual role of the cysteine-string domain inmembrane binding and palmitoylation-dependent sorting of the molecularchaperone cysteine-string protein [J]. Mol. Biol. Cell,2006,17:4748–4759.
    [36] Gundersen C. B., Mastrogiacomo A., Faull K., Umbach J. A. Extensivelipidation of a Torpedo cysteine string protein [J]. J. Biol. Chem.,1994,269:19197–19199.
    [37] Saito Y., Yamagishi N., Hatayama T.. Different localization of Hsp105familyproteins in mammalian cells [J]. Exp. Cell Res.,2007,313:3707-3717.
    [38] Yamagishi N., Fujii H., Saito Y., Hatayama T.. Hsp105beta upregulates hsp70gene expression through signal transducer and activator of transcription-3[J].FEBS J.,2009,276:5870-5880.
    [39] Dragovic Z., Broadley S. A., Shomura Y., Bracher A., Hartl F. U.. Molecularchaperones of the Hsp110family act as nucleotide exchange factors of Hsp70s[J]. EMBO J.,2006,25:2519-2528.
    [40] Yamagishi N., Ishihara K., Hatayama T.. Hsp105alpha suppresses Hsc70chaperone activity by inhibiting Hsc70ATPase activity [J]. J. Biol. Chem.,2004,279:41727-41733.
    [41] D’Silva P., Liu Q., Walter W., Craig E. A.. Regulated interactions of mtHsp70with Tim44at the translocon in the mitochondrial inner membrane [J]. Nat.Struct. Mol. Biol.,2004,11:1084-1091.
    [42] Dragovic Z., Broadley S. A., Shomura Y., Bracher A., Hartl, F. U.. Molecularchaperones of the Hsp110family act as nucleotide exchange factors of Hsp70s[J]. EMBO J.,2006,25:2519-2528.
    [43] Raviol H., Sadlish H., Rodriguez F., Mayer M. P., Bukau B.. Chaperone networkin the yeast cytosol: Hsp110is revealed as an Hsp70nucleotide exchange factor[J]. EMBO J.,2006,25:2510–2518.
    [44] Andreasson C., Fiaux J., Rampelt H., Druffel-Augustin S., Bukau B.. Insightsinto the structural dynamics of the Hsp110–Hsp70interaction reveal themechanism for nucleotide exchange activity [J]. Proc. Natl. Acad. Sci. U.S.A.,2008,105:16519-16524.
    [45] Andreasson C., Fiaux J., Rampelt H., Mayer M.P., Bukau B.. Hsp110is anucleotide-activated exchange factor for Hsp70[J]. J. Biol. Chem.,2008,283:8877-8884.
    [46] Quraishe S., Asuni A., Boelens W. C., O’Connor V., Wyttenbach A.. Expressionof the small heat shock protein family in the mouse CNS: differential anatomicaland biochemical compartmentalization [J]. Neuroscience,2008,53:483-491.
    [47] Wilhelmus M. M., Otte-Holler I., Wesseling P., de Waal R. M., Boelens W. C.,Verbeek M. M.. Specific association of small heat shock proteins with thepathological hallmarks of Alzheimer’s disease brains [J]. Neuropathol. Appl.Neurobiol,2006,32:119-130.
    [48] Gaestel M., Gotthardt R., Muller T.. Structure and organisation of a murine geneencoding small heat-shock protein Hsp25[J]. Gene,1993,128:279-283.
    [49] Chen S., Brown I. R.. Neuronal expression of constitutive heat shock proteins:implications for neurodegenerative diseases [J]. Cell Stress Chaperones,2007,12:51-58.
    [50] Pareyson D., Marchesi C.. Diagnosis, natural history, and management ofCharcot–Marie–Tooth disease [J]. Lancet Neurol,2009,8:654-667.
    [51] Plumier J. C., Hopkins D. A., Robertson H. A., Currie R. W.. Constitutiveexpression of the27-kDa heat shock protein (Hsp27) in sensory and motorneurons of the rat nervous system [J]. J. Comp. Neurol,1997,384:409-428.
    [52] Wilhelmus M. M., Boelens W. C., Otte-Holler I., Kamps B., Kusters B.,Maat-Schieman M. L., de Waal R. M., Verbeek M. M.. Small heat shock proteinHspB8: its distribution in Alzheimer’s disease brains and its inhibition ofamyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity [J].Acta Neuropathol,2006,111:139-149.
    [53] Iwaki T., Wisniewski T., Iwaki A., Corbin E., Tomokane N., Tateishi J., GoldmanJ. E.. Accumulation of alpha B-crystallin in central nervous system glia andneurons in pathologic conditions [J]. Am. J. Pathol,1992,140:345-356.
    [54] Kato H., Liu Y., Kogure K., Kato K.. Induction of27-kDa heat shock proteinfollowing cerebral ischemia in a rat model of ischemic tolerance [J]. Brain Res.,1994,634:235-244.
    [55] An J. J., Lee Y. P., Kim S. Y., Lee S. H., Lee M. J., Jeong M. S., Kim D. W.,Jang S. H., Yoo K. Y., Won M. H., Kang T. C., Kwon O. S., Cho S. W., Lee K.S., Park J., Eum W. S., Choi S. Y.. Transduced human PEP-1-heat shock protein27efficiently protects against brain ischemic insult [J]. FEBS J.,2008,275:1296-1308.
    [56] Stetler R. A., Cao G., Gao Y., Zhang F., Wang S., Weng Z., Vosler P., Zhang L.,Signore A., Graham S. H., Chen J.. Hsp27protects against ischemic brain injuryvia attenuation of a novel stress-response cascade upstream of mitochondrial celldeath signaling [J]. J. Neurosci.,2008,28:13038-13055.
    [57] van der Weerd L., Tariq Akbar M., Aron Badin R., Valentim L. M., Thomas D. L.,Wells D. J., Latchman D. S., Gadian D. G., Lythgoe M. F., de Belleroche J. S..Overexpression of heat shock protein27reduces cortical damage after cerebralischemia [J]. J. Cereb. Blood Flow Metab.,2009,30:849-856.
    [58] Lindner R. A., Carver J. A., Ehrnsperger M., Buchner J., Esposito G., Behlke J.,Lutsch G., Kotlyarov A., Gaestel M.. Mouse Hsp25, a small shock protein. Therole of its C-terminal extension in oligomerization and chaperone action [J]. Eur.J. Biochem.,2000,267:1923-1932.
    [59] Smulders R. H., van Geel I. G., Gerards W. L., Bloemendal H., de Jong W. W..Reduced chaperone-like activity of alpha A(ins)-crystallin, an alternative splicingproduct containing a large insert peptide [J]. J. Biol. Chem.,1995,270:13916-13924.
    [60] Stetler R. A., Gao Y., Signore A. P., Cao G., Chen J.. HSP27: mechanisms ofcellular protection against neuronal injury [J]. Curr. Mol. Med.,2009,9:863-872.
    [61] Cairns J., Qin S., Philp R., Tan Y. H., Guy G. R.. Dephosphorylation of the smallheat shock protein Hsp27in vivo by protein phosphatase2A [J]. J. Biol. Chem.,1994,269:9176-9183.
    [62] Truettner J. S., Hu K., Liu C. L., Dietrich W. D., Hu B.. Subcellular stressresponse and induction of molecular chaperones and folding proteins aftertransient global ischemia in rats [J]. Brain Res.,2009,1249:9-18.
    [63] Hansen J. J., Bross P., Westergaard M., Nielsen M. N., Eiberg H., Borglum A. D.,Mogensen J., Kristiansen K., Bolund L., Gregersen N.. Genomic structure of thehuman mitochondrial chaperonin genes: HSP60and HSP10are localized head tohead on chromosome2separated by a bidirectional promoter [J]. Hum. Genet.,2003,112:71-77.
    [64] Ryan M. T., Herd S. M., Sberna G., Samuel M. M., Hoogenraad N. J., Hoj P. B..The genes encoding mammalian chaperonin60and chaperonin10are linkedhead-to-head and share a bidirectional promoter [J]. Gene,1997,196:9-17.
    [65] Kim S. W., Lee J. K.. NO-induced downregulation of HSP10and HSP60expression in the postischemic brain [J]. J. Neurosci. Res.,2007,85:1252–1259.
    [66] Gupta R. S., Ramachandra N. B., Bowes T., Singh B.. Unusual cellulardisposition of the mitochondrial molecular chaperones Hsp60, Hsp70and Hsp10[J]. Novartis Found. Symp.,2008,291:59-68; discussion69-73,137-140.
    [67] Pfister G., Stroh C. M., Perschinka H., Kind M., Knoflach M., Hinterdorfer P.,Wick G.. Detection of HSP60on the membrane surface of stressed humanendothelial cells by atomic force and confocal microscopy [J]. J. Cell Sci.,2005,118:1587-1594.
    [68] Soltys B. J., Gupta R. S.. Immunoelectron microscopic localization of the60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells [J]. Exp. CellRes.,1996,222:16-27.
    [69] Soltys B. J., Gupta R. S.. Cell surface localization of the60kDa heat shockchaperonin protein (hsp60) in mammalian cells [J]. Cell Biol. Int.,1997,21:315-320.
    [70] Stefano L., Racchetti G., Bianco F., Passini N., Gupta R. S., Bordignon P. P.,Meldolesi J.. The surface-exposed chaperone, Hsp60, is an agonist of themicroglial TREM2receptor [J]. J. Neurochem.,2009,110:284-294.
    [71] Ranford J. C., Coates A. R., Henderson B.. Chaperonins are cell-signallingproteins: the unfolding biology of molecular chaperones [J]. Expert Rev. Mol.Med.,2000,2:1-17.
    [72] Sigler P. B., Xu Z., Rye H. S., Burston S. G., Fenton W. A., Horwich A. L..Structure and function in GroEL-mediated protein folding. Annu [J]. Rev.Biochem.,1998,67:581-608.
    [73] Weissman J. S., Hohl C. M., Kovalenko O., Kashi Y., Chen S., Braig K., Saibil H.R., Fenton W. A., Horwich A. L.. Mechanism of GroEL action: productiverelease of polypeptide from a sequestered position under GroES [J]. Cell,1995,83:577-587.
    [74] Alberti S., Esser C., Hohfeld J.. BAG-1—a nucleotide exchange factor of Hsc70with multiple cellular functions [J]. Cell Stress Chaperones,2003,8:225-231.
    [75] Carra S., Seguin S. J., Landry J.. HspB8and Bag3: a new chaperone complextargeting misfolded proteins to macroautophagy [J]. Autophagy,2008,4:237-239.
    [76] Gamerdinger M., Hajieva P., Kaya A. M., Wolfrum U., Hartl F. U., Behl C..Protein quality control during aging involves recruitment of the macroautophagypathway by BAG3[J]. EMBO J.,2009,28:889-901.
    [77] Martins A. S., Ordonez J. L., García-Sánchez A., etal. Apivotal role for heatshock protein90in Ewing sarcoma resistance to anti-insulin-like growth factor1receptor treatment: in vitro and in vivo study [J]. Cancer Res,2008,68(15):6260-6270.
    [78] Chatterjee M., Jain S., Stühmer T., et al. STAT3and MAPK signaling maintainoverexpression of heat shock proteins90alpha and beta in multiple myelomacells, which critically contribute to tumor-cell survival [J]. Blood,2007,109(2):720-728.
    [79]李东至,林其德.热休克蛋白与生殖[J].国外医学:计划生育分册,2001,20(3):130.
    [80] McMurtry A. L., Cho K., Young L. J., Nelson C. F., Greenhalgh D. G..Expression of HSP70in healing wounds of diabetic and nondiabetic mice [J]. JSurg Res,1999,86:36-41.
    [81] Tessari P., Puricelli L., Iori E., Arrigoni G., Vedovato M., James P., Coracina A.,Millioni R.. Altered chaperone and protein turnover regulators expression incultured skin fibroblasts from type1diabetes mellitus with nephropathy [J]. JProteome Res,2007,6:976-986.
    [82] Bitar M. S., Farook T., John B., Francis I. M.. Heat-shock protein72/73andimpaired wound healing in diabetic and hypercortisolemic states [J]. Surgery,1999,125:594-601.
    [83] Mustafa Atalay, Niku Oksala, Jani Lappalainen, David E. Laaksonen, ChandanK.Sen, and Sashwati Roy. Heat shock proteins in diabetes and wound healing [J].Curr Protein Pept Sci.2009,10(1):85-95.
    [84] Srivastava P.. Interaction of heat shock proteins with peptides and antigenpresenting cells: chaperoning of the innate and adaptive immune responses [J].Annu Rev Immunol,2002,20:395-425.
    [85] Calderwood S. K., Mambula S. S., Gray P. J. Jr. Extracellular heat shock proteinsin cell signaling and immunity [J]. Ann N Y Acad Sci,2007,1113:28-39.
    [86] Javid B, MacAry P. A., Lehner P. J.. Structure and function: heat shock proteinsand adaptive immunity [J]. J Immunol,2007,179:2035-2040.
    [87] Chen Y., Voegeli T. S., Liu P. P., Noble E. G., Currie R. W.. Heat shock paradoxand a new role of heat shock proteins and their receptors as anti-inflammationtargets [J]. Inflamm Allergy Drug Targets,2007,6:91-100.
    [88] Whitesell L., Lindquist S. L.. Heat shock paradox and a new role of heat shockproteins and their receptors as anti-inflammation targets [J]. Nat Rev Cancer,2005,5:761-772.
    [89] Rigano R., Profumo E., Buttari B., Tagliani A., Petrone L., D’Amati G., IppolitiF., Capoano R., Fumagalli L., Salvati B., Businaro R.. Heat shock proteins andautoimmunity in patients with carotid atherosclerosis [J]. Ann N. Y. Acad. Sci.,2007,1107:1-10.
    [90] Li W., Li Y., Guan S., Fan J., Cheng C. F., Bright A. M., Chinn C., Chen M.,Woodley D. T.. Extracellular heat shock protein-90alpha: linking hypoxia to skincell motility and wound healing [J]. Embo J,2007,26:1221-1233.
    [91] Sen C. K., Khanna S., Babior B. M., Hunt T. K., Ellison E. C., Roy S..Oxidant-induced vascular endothelial growth factor expression in humankeratinocytes and cutaneous wound healing [J]. J Biol Chem,2002,277:33284-33290.
    [92] Nylandsted J., Gyrd-Hansen M., Danielewicz A., Fehrenbacher N., Lademann U.,Hoyer-Hansen M., Weber E., Multhoff G., Rohde M., Jaattela M.. Heat shockprotein70promotes cell survival by inhibiting lysosomal membranepermeabilization [J]. J Exp Med,2004,200:425-435.
    [93] Nollen E. A., Morimoto R. I.. Chaperoning signaling pathways: molecularchaperones as stress-sensing 'heat shock' proteins [J]. J Cell Sci,2002,115:2809-2816.
    [94] Simon M. M., Reikerstorfer A., Schwarz A., Krone C., Luger T. A., Jaattela M.,Schwarz T.. Heat shock protein70overexpression affects the response toultraviolet light in murine fibroblasts. Evidence for increased cell viability andsuppression of cytokine release [J]. J Clin Invest,1995,95:926-933.
    [95] Rapoport I., Boll W., Yu A., Bocking T., Kirchhausen T.. A motif in the clathrinheavy chain required for the Hsc70/auxilin uncoating reaction [J]. Mol Biol Cell,2008,19(1):405-413.
    [96] Jaattela M., Wissing D.. Heat-shock proteins protect cells from monocytecytotoxicity: possible mechanism of self-protection [J]. J Exp Med,1993,177:231-236.
    [97] Shukla A., Dubey M. P., Srivastava R., Srivastava B. S.. Differential expressionof proteins during healing of cutaneous wounds in experimental normal andchronic models [J]. Biochem Biophys Res Commun,1998,244:434-439.
    [98] Klosterhalfen B., Klinge U., Tietze L., Henze U., Muys L., Mittermayer C.,Bhardwaj R. S.. Expression of heat shock protein70(HSP70) at the interface ofpolymer-implants in vivo [J]. J Mater Sci Mater Med,2000,11:175-181.
    [99] Oberringer M., Baum H. P., Jung V., Welter C., Frank J., Kuhlmann M.,Mutschler W., Hanselmann R. G.. Differential expression of heat shock protein70in well healing and chronic human wound tissue [J]. Biochem Biophys ResCommun,1995,214:1009-1014.
    [100] Kovalchin J. T., Wang R., Wagh M. S., Azoulay J., Sanders M., ChandawarkarR. Y.. In vivo delivery of heat shock protein70accelerates wound healing byup-regulating macrophage-mediated phagocytosis [J]. Wound Repair Regen,2006,14:129-137.
    [101] Anckar J., Sistonen L.. Heat shock factor1as a coordinator of stress anddevelopmental pathways [J]. Adv Exp Med Biol,2007,594:78-88.
    [102] Vigh L., Horvath I., Maresca B., Harwood J. L.. Can the stress protein responsebe controlled by 'membrane-lipid therapy'[J]? Trends Biochem Sci,2007,32:357-363.
    [103] Gupta S., Knowlton A. A.. HSP60, Bax, apoptosis and the heart [J]. J Cell MolMed,2005,9:51-58.
    [104] Wang Z. L., Inokuchi T., Ikeda H., Baba T. T., Uehara M., Kamasaki N., SanoK., Nemoto T. K., Taguchi T.. Collagen-binding heat shock protein HSP47expression during healing of fetal skin wounds [J]. Int J Oral Maxillofac Surg,2002,31:179-184.
    [105] Srisook K., Kim C., Cha Y. N.. Molecular mechanisms involved in enhancingHO-1expression: de-repression by heme and activation by Nrf2, the "one-two"punch [J]. Antioxid Redox Signal,2005,7:1674-1687.
    [106] Hirano S., Rees R. S., Gilmont R. R.. MAP kinase pathways involving hsp27regulate fibroblast-mediated wound contraction [J]. J Surg Res,2002,102:77-84.
    [107] Hirano S., Shelden E. A., Gilmont R. R.. HSP27regulates fibroblast adhesion,motility, and matrix contraction [J]. Cell Stress Chaperones,2004,9:29-37.
    [108] Shemetov A. A., Seit-Nebi A. S., Gusev N. B.. Structure, properties, andfunctions of the human small heat-shock protein HSP22(HspB8, H11, E2IG1):a critical review [J]. J Neurosci Res,2008,86:264-269.
    [109]杨柳.热应激对鼠精液品质的影响及其与HSP70相关性分析[D].吉林大学,2009.
    [110]李庆林,肖能坎,张琳.小鼠创伤愈合新生皮肤组织切片的制备[J].中外医疗,2008,27(10):45-46.
    [111]王佐林,张萍,陈万涛,张志愿. HSP47和TGF甲在大鼠皮肤疲痕形成中的作用[J].口腔领面外科杂志,2004,14(4):293-298.
    [112]金啸,王佐林.热休克蛋白47在糖尿病大鼠皮肤创口愈合过程中的表达[J].口腔颌面外科杂志,2007,17(1):11-16.
    [113]张巍,官大威,赵锐,张建军.小鼠皮肤切创后calpain1和calpain2的表达[J].法医学杂志,2007,23(2):81-83.
    [114]屈纪富,史春梦,江德鹏,郑怀恩,郝利,文亮,程天民.热休克蛋白70在创伤愈合中作用[J].创伤外科杂志,2006,8(6):549-552.
    [115]江德鹏,向静,文亮,粟永萍,屈纪富,冉新泽.通过基因芯片筛选创伤修复差异表达基因[J].中国急救医学,2006,26(4):271-273.
    [116]徐存拴,周爽,李三强.麻醉对小鼠热休克反应的影响[J].解剖学报,2003,34(2):159-161.
    [117] Deng Maoxian, Chen Wei-Li, Atsushi Takatori, et a1. A role for the MEK kinase1in Epithelial Wound Healing [J]. Mol Biol Cell,2006,17(8):3446-3455.
    [118] Kenneth J. L., Thomas D. S.. Analysis of relative gene expression data Usingreal-time quantitative PCR and the2-ΔΔCtmethod [J]. Methods,2001,25(4):402-408.
    [119] Kabbage M., Diekinan M. B.. The BAG Proteins: a ubiquitous family ofchaperone regulators [J]. Cell Mol Life sci,2008,65(9):1390-1402.
    [120]李颖,刘红雨,王竞,等. BAG家族基因表达与肺腺癌易感性的相关性研究[J].中国肺癌杂志,2010,13(9):942-946.
    [121] Mc Collum A. K., Casagrande G., Kohn E. C.. Caught in the middle: the role ofBag3in diseases [J]. Biochem J,2009,425(1):1-3.
    [122] Ngan F. H., Sagen Z. V., Sunny L.. Apoptosis in skin wound healing [J].Wounds,2003,15:182-194.
    [123]王乐怡. Toll样受体与NOD样受体在炎症中作用的研究进展[J].现代免疫学,2010,30(5):436-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700