脓毒症时肾上腺皮质功能变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肺内源性急性肺损伤大鼠肾上腺皮质功能观察的研究
     目的:
     1.观察ALI/ARDS模型大鼠肾上腺皮质功能的变化规律。
     2.评估ACTH刺激试验的价值。
     方法:
     1.建立ALI/ARDS动物模型:
     1.1健康雄性Wistar大鼠麻醉后,颈正中切口暴露气管,经气管滴入3ml/kg E.coli混悬液[(4.4-5.6)×1012CFU/L]。术毕缝合伤口,放开动物,自由饮食。
     1.2动物模型观察
     30只存活大鼠随机分为三组,分别于术后6h(n=10)、24h(n=10)、36h(n=10)3个时间点进行观察。每个时间点各有8只生理盐水(NS)大鼠作为实验对照。
     2.实验方法及指标监测
     模型组、对照组分别于术后上述3个时间点经气管切开插管机械通气,颈总动脉插管监测其血压、血气,并取血,符合PaO2/FiO2<300mmHg (39.9kpa)为ALI,PaO2/FiO2<200mmHg(26.6kpa)为ARDS的模型大鼠予以纳入。给予小剂量猪ACTH作刺激试验,采用ELISA法测定血浆中皮质酮、ACTH含量。
     结果:
     1动物模型观察:
     1.1大鼠在感染后3h出现咳嗽,6h后呼吸急促,8h开始有大鼠死亡;36h,死亡29只,病死率51.61%,NS组无死亡。
     1.2肾上腺皮质激素水平变化:
     ①模型组大鼠6h、24h时间点皮质酮较对照组明显升高(P<0.01,P<0.05),36小时则低于对照组(P<0.05)。模型组大鼠6小时皮质酮达峰值,分别高于24h(P<0.05)和36h(P<0.01)皮质酮水平。
     ②血浆ACTH水平在模型组大鼠各时间点均高于对照组(6h和36h,P均<0.01)24小时达峰值(P<0.01)
     ③模型组大鼠在ACTH刺激后皮质酮在各时间点上升的幅度均低于对照组(6h,P<0.05;24h,36h,P均<0.01),24h、36h刺激后增幅<6小时(P<0.05)
     ④模型组大鼠各时间点皮质酮△Tmax均值为70ng/ml,以此值为基线,造模术后6h有4只模型大鼠低于此值,数值为42.60 ng/ml,60.84 ng/ml,59.65 ng/ml,40.58ng/ml;造模术后24h有5只模型大鼠低于此值,依次数值为30.00 ng/ml,46.68ng/ml,29.93 ng/ml,31.65 ng/ml,30.00 ng/ml;36h时间点有6只模型大鼠低于此值,分别为45.76 ng/ml,35.48 ng/ml,28.85 ng/ml,30.05 ng/ml,57.01 ng/ml,26.09 ng/ml。
     结论:
     1.模型组大鼠发病初期血浆皮质酮水平达峰值。
     2.模型组大鼠病程后期肾上腺对ACTH反应程度显著降低。
     3.模型组大鼠早期即可存在AI,随着病情进展,存在AI的大鼠比例增加。
     4.小剂量ACTH刺激试验可评价ALI大鼠肾上腺皮质功能。
     第二部分脓毒症幼猪连续性静脉-静脉血液滤过中血清皮质醇与炎性介质水平的动态变化
     目的:
     通过观察脓毒症幼猪连续性静脉-静脉血液滤过(CVVH)中血清皮质醇(Cortisol)、巨噬细胞移动抑制因子(MIF)、白介素-6(IL-6)、白介素-10(IL-10)水平的动态变化,评价CVVH的疗效。
     方法:
     12只健康雄性幼年猪静脉内注入0.3ml/kg(5×109CFU/L)大肠杆菌,注菌后0.5h随机分成滤过组(n=6)和对照组(n=6)。滤过组注菌后0.5h开始进行CVVH。采用ELISA法检测两组注菌前Oh,治疗后2h、4h、6h、8h皮质醇和MIF、IL-6、IL-10的含量。
     结果:
     ①滤过组皮质醇水平治疗后2h、4h、6h明显低于对照组(P<0.05),8h高于对照组(P<0.05),滤过组各时间点变化不明显。对照组血清皮质醇升高,4h达到峰值后逐渐下降。
     ②滤过组MIF水平治疗后各时点明显低于对照组(2h、4h、8h P<0.05;6h P<0.01)。滤过组、对照组注菌后MIF水平均较0h升高,2h达到峰值后逐渐下降,但仍高于0h值。滤过组8h与Oh无差别。
     ③对照组注菌后MIF/皮质醇比值均较Oh升高(2h、4h、6h P<0.01;8h P<0.05),滤过组2h达到峰值后逐渐下降,4h即与0h无差别。滤过组MIF/皮质醇比值治疗后4h、6h、8h均低于对照组(4h P<0.01;6h、8h P<0.05)。
     ④滤过组IL-6水平治疗后各时间点低于对照组(2h、4h P<0.05;6h、8h P<0.01)。滤过组、对照组注菌后IL-6水平均较0h升高,4h达到峰值后逐渐下降,但仍高于0h值。
     ⑤滤过组IL-10水平注菌后各时间点均低于对照组(P<0.05)。滤过组、对照组注菌后IL-10水平均较0h升高,2h达到峰值逐渐下降。滤过组8h与0h无差别。
     ⑥滤过组IL-10/IL-6比值2h、4h低于对照组(P<0.05),8h高于对照组(P<0.05)。滤过组治疗后2h、4h、6h IL-10/IL-6比值均较Oh值低(P<0.01),8h IL-10/IL-6比值较前升高,接近0h值(P<0.05)。
     ⑦滤过组脓毒症幼猪CVVH后体温下降,呼吸频率降低,动脉血氧分压明显升高。心率明显降低,平均动脉压明显升高,心脏指数及心输出量均升高。
     ⑧对照组注菌后8小时内死亡2头,未予纳入,死亡率25%。滤过组8小时内无一头死亡,滤过顺利。
     结论:
     1.CVVH能有效缓解脓毒症幼猪的临床症状,降低死亡率。
     2.CVVH治疗明显降低了脓毒症幼猪血浆皮质醇、MIF、IL-6、IL-10水平。
     第三部分脓毒症患儿血清促肾上腺皮质激素、皮质醇变化及其与病情轻重及预后的关系
     目的:
     探讨脓毒症患儿发病早期促肾上腺糖皮质激素、皮质醇水平变化,及其与病情轻重和预后的关系。
     方法:
     测定65例符合脓毒症诊断的患儿入PICU24h内促肾上腺皮质激素(ACTH)、皮质醇水平,入PICU时进行小儿危重病例评分(PCIS)。20例健康体检儿童作为对照组。对轻症、严重脓毒症组和健康对照组,休克和非休克组,死亡与存活组间ACTH、皮质醇水平进行比较。
     结果:
     ①脓毒症患儿在入院时与健康对照组比较ACTH、Cor显著增高(P<0.01,P<0.05),随着评分降低,皮质醇、ACTH水平增高,ACTH:Cor比值明显增高。轻症脓毒症组皮质醇低于重症脓毒症组(P<0.01),ACTH水平低于重症脓毒症组(P<0.01),ACTH/Cor比值低于重症脓毒症组(P<0.05)(表3.2,3.3)。
     ②轻症组25例中有21例Cor<18μg/dl(84%),严重脓毒症组40例中有27例Cor<18μg/dl(67.5%)。两组比较无显著性差异(P>0.05)
     ③休克组患儿入院时ACTH明显高于非休克组(P<0.01),Cor与后者无明显差异(P>0.05)(表3.4)。休克组6例Cor<18μg/dl(75%),非休克组5例<18u g/dl(15.6%),有显著性差异(P<0.01)。
     ④死亡组入院时ACTH、Cor水平均明显高于存活组(P<0.05)。(表3.5)。存活组7例<18μg/dl(23.3%),死亡组4例(40%),两组之间无显著性差异(P>0.05)。
     ⑤以PCIS代表脓毒症病人的严重程度,所观察的65例病人入ICU时PCIS评分为79.60±14.24。死亡组PCIS评分明显低于存活组(60.00±13.69vs82.66±12.19,P<0.01),休克与非休克患儿差异显著(64.50±12.73vs82.03±13.31,P<0.01)。
     ⑥脓毒症患儿ACTH、Cor水平在入院时与PCIS呈负相关,ACTH(r=-0.452,P<0.01)、Cor(r=-0.604,P<0.01)。
     结论:
     1.脓毒症早期ACTH、Cor水平与脓毒症严重程度相关,与脓毒症预后有关。
     2.皮质醇18μg/dl对于轻症脓毒症评估AI无衡量价值,而对于评估重症脓毒症AI的更为恰当。
     3.休克病人Cor<18μg/dl应该应用激素。
Part I Adrenal Function Changes of Pulmonary Acute Lung Injury in Rats
     Objective:Study adrenal function changes of pulmonary ALI induced by Escherichia coli (O111B4) in rats. Evaluate low dose corticotrophin-stimulated test value.
     Methods:ALI model was induced by intratracheal E.coli injection[3ml/kg,O111B4, (4.4-5.6)×1012CFU/L)]. ALI models were then randomly divided into three time series, and every time series had 10 rats. In the control group, saline was administered intratracheally, and every time series had 8 rats. Six hours and twentity-four hours and thirty-six hours later, mechanical ventilation was applied. The post-surgery time course of the plasma corticotropin, corticosterone levels were studies on individual times. Corticosterone after 100ug porcine corticotropin was also measured.
     Results:After E.coli injection for 3hrs, rats began coughing. At 6hrs, rats tachypnea occurred. And 8hrs later, the rats began to die. At 36hrs,29 rats died. The mortality was 51.61%. In the control group, rats did not die. Plasma corticosterone levels were higher than controls at 6hrs and 24hrs (p<0.01, p<0.05), and plasma corticosterone levels at 36hrs were lower than controls (p<0.05). Concentration in plasma corticosterone at 6 hours reached the highest and was higher than 24hrs after the onset of sepsis. The results indicate that a higher concentration in plasma corticotropin at 6hrs and 36hrs after the onset of sepsis than those in sham-operated animals (p<0.01).At 24hrs concentration of plasma corticotrophin reached the highest (p<0.01). Moreover, the plasma corticosterone of responses to corticotropin of ALI rats was all lower than control group. (6h, p<0.05; 24h,36h, p<0.01). And the increases of 6hrs were higher than those of 24h and 36h.
     Conclusions:These findings suggest that the plasma corticosterone reached the highest at early stage during ALI rat. At later stage, the respond to corticotrophin decreased. Adrenal insufficiency may occur at early stage of ALI rats, and with the disease developed, the percentage of adrenal insufficiency rats in ALI group increased. Low dose corticotrophin-stimulated test could evaluate adrenal function changes of pulmonary ALI induced by Escherichia coli (O111B4) in rats.
     Part II The Dynamic Observations on the Changes of Serum Cortisol, MIF, IL-6 and IL-10 Levels in sepsis pigs on Continuous Veno-venous Hemofiltration (CWH)
     Objective:To explore the dynamic changes of serum levels of COR, MIF, IL-6 and IL-10 Levels in sepsis immature pigs on CVVH. And to evaluate the effect of CVVH.
     Methods:Sepsis pig was induced by E.coli femoral vein injection [3ml/kg,O111B4, (4.4-5.6)×1012CFU/L)] into twelve healthy male immature pigs. Twelve immature pigs were randomly allocated either to an untreated control group or to the treatment group. The latter underwent Continuous Veno-venous Hemofiltration, which started 0.5 hour later after E.coli femoral vein injection. The post-CVVH time course of the plasma COR, MIF, IL-6 and IL-10 levels were studies at 2hrs,4hrs,6hrs and 8hrs.
     Results:In the CVVH group, levels of COR were lower than those in the control group at 2hrs,4hrs, and 6hrs after the beginning of CVVH. At 8hrs, the levels were higher than the control group (P<0.05). The COR level of CVVH, group changed slightly. In the control group, levels of COR increased after E.coli injection and reached the highest at 4hrs, and then gradually dropped. In the CVVH and control group, levels of MIF at 2hrs, 4hrs, and 6hrs were higher than Ohrs. MIF of CVVH group was lower than those in the control group (P< 0.01, P< 0.05). In the CVVH group, levels of MIF increased and reached the highest at 2hrs. But the highest was lower than that of the control group. Levels of MIF in the control group afte E.coli injection increased, and reached the highest at 2hrs. The ratio of MIF to COR dropped obviously after CVVH. The ratios of MIF to COR of CVVH group at 4hrs,6hrs, and 8hrs were lower than those of the control group. Levels of IL-6 in the control group and the CVVH group after E.coli injection were significantly higher than Ohrs. And the levels of IL-6 of CVVH group were lower than those of control group (P<0.05, P<0.01).. In the CVVH group, levels of IL-6 reached the highest at 4hrs and then dropped evidently.In the control group, levels of IL-6 increased after E.coli injection and reached the highest at 4hrs, and then remain high levels.Levels of IL-10 in the CVVH group at 2hrs,4hrs, and 6hrs after E.coli injection were significantly higher than Ohrs. And the level reached the highest at 2hrs, and then dropped progressively. And the levels at 6hrs and 8hrs were lower than the control group(P<0.05). Levels of IL-10 of control group after E.coli injection were significantly higher than Ohrs. The ratio of IL-10 to IL-6 dropped obviously after CVVH. And the ratio increased at 8hrs. The ratios of IL-10 to IL-6 of CVVH group at 2hrs and 4hrs were lower than control group, and 8hrs were higher than the latter.
     Conclusions:The CVVH could reduce the serum contents of COR, MIF, IL-6, and IL-10 in sepsis pigs. The CVVH could reduce the mortality of immature pigs with sepsis.
     PartⅢThe Observations on the Changes of Serum Corticotropin and Cortisol Levels in Children with sepsis
     Objective:This observational study investigated the changes of serum corticotropin and cortisol levels in children with sepsis, and also investigated the relationship of the levels of corticotropin and cortisol to the prognosis and disease severity of sepsis.
     Methods:The levels of serum corticotropin and cortisol were measured in 65 children with sepsis within the first 24h of admission into the PICU. The severity of pediatric critical illness score (PCIS) was determined after the admission.20 healthy children were control group. The levels of serum corticotropin and cortisol were compared between mild group and severe group, septic shock group and non septic shock group, and also between death group and survival group.
     Results:Levels of corticotropin and cortisol of the children with sepsis were higher than those of control group after admmission into the PICU (P<0.01, P<0.05). With the PCIS decreased, the levels of corticotrophin, cortisol and the ratio of corticotropin to cortisol increased. The levels of corticotropin, cortisol and the ratio of corticotropin to cortisol of mild group were lower than those of the severe group (P<0.01, P<0.05). There were 21 chlidren whose cortisol levels were lower than 18μg/dl in the mild group. And the percentage was 84%. In the severe group, cortisol levels of 27 cases were also lower than 18μg/dl. The two groups were not evidently different. The level of corticotropin of septic shock group was higher than that of the non septic shock group (P<0.01). But cortisol level was not different from the latter. There were 6 chlidren whose cortisol were lower than 18μg/dl in the shock group. And the percentage was 75%. In the non shock group, cortisol levels of 5 cases were lower than 18μg/dl. The two groups were evidently different (P<0.01). The levels of corticotrophin and cortisol of death group were evidently higher than those of survival group. There were 7 chlidren whose cortisol levels were lower than 18μg/dl in the survival group. And the percentage was 23.3%. In the death group, cortisol levels of 4 cases were lower than 18μg/dl. The two groups were not evidently different (P>0.05). Sixty-five patients with sepsis were included in this study, and the PCIS was 79.60±14.24. PCIS of death group was lower than that of the survival group(60.00±13.69vs82.66±12.19, P<0.01).And the PCIS of septic shock group was evidently different from the non shock group(64.50±12.73vs82.03±13.31, P<0.01).Corticotropin and cortisol were significantly inversely correlated with PCIS after admmission into the PICU.
     Conclusions:These findings suggest that the plasma corticotropin and cortisol at early stage of sepsis may be correlated with severity of sepsis, and may be also correlated with prognosis. Cortisol level 18μg/dl can not be used for evaluating mild sepsis. But it can be used for evaluating severe sepsis. When cortisol level is lower than 18μg/dl, the patient should be given steroid.
引文
1 Phillip D, Mitchell M,Jean C,et al. Surviving Sepsis Campaign:International guidelines for management of severe sepsis and septic shock:2008[J].Intensive Care Med,2008,34(1):17-60.
    2 Diamantino R, Juan C and Jose R,et al. Research Adrenal function testing in patients with septic shock [J].Critical Care,2006,10(5):149-159.
    3 喻文亮,陆铸今,王莹,等.小儿急性呼吸窘迫综合征前瞻性多中心临床流行病学研究[J].中华急诊医学杂志,2005,14(6):448-453.
    4 任少华,胡华成.急性呼吸窘迫综合征患者防御反应和糖皮质激素治疗的研究[J].中国危重病急救医学,2001,13(2):121-123.
    5 A nnane D, Cavaillon J M. Co rtico steroids in sep sis:from bench to bedside[J]? Shock,2003,20(3):197-207.
    6 Jenn W, Szu H, Shih K,et al.Adrenal insufficiency in prolonged critical illness[J].Critical Care,2008,12(3):65-72.
    7 Erika F, Rebecca M, Kristi W,et al.ACTH and cortisol response to critical illness in term and late preterm newborns [J].J Perinatol,2008,28(12):797-802.
    8 Michael L, Uli B, Ingeborg M,et al.Serum concentrations of cortisol, interleukin 6, leptin and adiponectin predict stress induced insulin resistance in acute inflammatory reactions[J]. Critical Care,2008,12(6):157-165.
    9 Rothwell PM, Lawler PG. Prediction of outcome in intensive care patients using endocrine parameters[J]. Crit Care Med,1995,23(1):78-83.
    10 Sam S, Corbridge TC, Mokhlesi B, et al. Cortisol levels and mortality in severe sepsis[J].Clin Endocrinol (Oxf),2004,60(l):29-35.
    11 Legakis I, Saramantis A, Voros D, et al. Dissociation of ACTH, beta-endorphin and cortisol in graded sepsis[J].Horm Metab Res,1998,30(9):570-574.
    12 宋国维.糖皮质激素在感染性休克中的作用[J].中国实用儿科杂志,2007,22(8):571-573.
    13 Michael, Uli C, Ingeborg M,et al.Serum concentrations of cortisol, interleukin 6, leptin and adiponectin predict stress induced insulin resistance in acute inflammatory reactions [J]. Critical Care,2008,12(6):157-165.
    14 Kusum M, Margaret L. Identification of adrenal insufficiency in pediatric critical illness[J].Pediatr Crit Care Med,2007,8(3):276-278.
    15 Jerry J.A history of adjunctive glucocorticoid treatment for pediatric sepsis:Moving beyond steroid pulp fiction toward evidence-based medicine[J]. Pediatr Crit Care Med,2007,8(6):530-539
    16 Carlos H, Pedro C, Ricardo G, et al. Adrenal response in children with septic shock[J].Intensive Care Med,2007,33(5):1609-1613.
    17 Monica L,Biren P,Michael A,et al. Adrenal insufficiency in the critically ill neonate and child[J].Current Opinion in Pediatrics,2006,18(2):448-453.
    18 Ligtenberg JJ, Zijlstra JG. The relative adrenal insufficiency syndrome revisited: which patients will benefit from low-dose steroids [J]? Curr Opin Crit Care, 2004,10(6):456-460.
    19 Keh D, Boehnke T,Weber, et al. Immunologic and hemodynamic effects of "low-dose"hydrocortisone in septic shock:a randomized, double-blind, placebo-controlled, crossover study [J].Am J Respir Crit Care Med,2003, 167(4):512-520.
    20 Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients[J]. N Engl J Med,2003,348(8):727-734.
    21 陶晓根,承韶辉,王锦权等.糖皮质激素抵抗与脓毒血症[J].中国危重病急救医学,2001,13(5):307-309.
    22 Carlson DE, Chiu WC, Scalea TM.Cecal ligation and puncture in rats interrupts the circadian rhythms of corticosterone and adrenocortical responsiveness to adrenocorticotrophic hormone[J].Crit Care Med,2006,34(4):1178-1184.
    23 Koo DJ, Jackman D, Chaudry IH, et al. Adrenal insufficiency during the late stage of polymicrobial sepsis[J].Crit Care Med,2001,29(3):618-622.
    24 Rivers E, N guyen B, Havstad S, et al.Early goal directed therapy in the treatment of severe sep sis and septic shock[J]. N Engl J Med,2001,345(19):1368-1377.
    1 Pavare J, Grope I, Gardovska D. Prevalence of systemic inflammatory response syndrome (SIRS) in hospitalized children:a point prevalence study[J]. BMC Pediatr, 2009,9(25):1-6.
    2 Soni SS, Nagarik AP, Adikey GK, et al. Using continuous renal replacement therapy to manage patients of shock and acute renal failure[J]. J Emerg Trauma Shock,2009,2(1):19-22.
    3 Maria J, Jesus L, Javier U, et al. Complications of continuous renal replacement therapy in critically ill children:a prospective observational evaluation study [J].Critical Care,2009,13(6):1-11.
    4 Kumar AT, Sudhir U, Punith K, et al. Cytokine profile in elderly patients with sepsis[J]. Indian J Crit Care Med,2009,13(2):74-78.
    5 Wheeler DS, Zingarelli B, Wheeler WJ, et al. Novel pharmacologic approaches to the management of sepsis:targeting the host inflammatory response[J]. Recent Pat Inflamm Allergy Drug Discov,2009,3(2):96-112.
    6 Miyauchi T, Tsuruta R, Fujita M,et al. Serum macrophage migration inhibitory factor reflects adrenal function in the hypothalamo-pituitary-adrenal axis of septic patients:an observational study[J].BMC Infect Dis,2009,21(9):209.
    7 W. Joost, Thierry C, Liesbeth M, et al. Expression and Function of Macrophage Migration Inhibitory Factor (MIF) in Melioidosis[J]. PLoS Negl Trop Dis,2010, 4(2):6051-6058.
    8 Lutz E, Malte B, Wolfgang H, et al. A MIF haplotype is associated with the outcome of patients with severe sepsis:a case control study[J].Journal of Translational Medicine,2009,7(1):1-8.
    9 Albertus B, Lambertus G, Clemens H, et al. Macrophage migration inhibitory factor and Hypothalamo-Pituitary-Adrenal function during critical illness[J]. J Clin Endocrinol Metab,2001,86(6):2811-2816.
    10 Anne K, WW Y. Renal replacement therapy in critically ill patients[J]. Hong Kong Med J,2009,15(2):122-129.
    11 Joannidis M, Oudemans V,Straaten HM,et al.Clinical review:Patency of the circuit in continuous renal replacement therapy [J].Crit Care,2007,11(4):218.
    12 Kornecki A,Tauman R,Lubetzky R,et al.Continuous renal replacement therapy for non-renal indications:experience in children[J].Isr Med Assoc J,2002,4(5):345-348.
    13 尹辉明,蒋玉兰,唐春霞,等.早期高容量血液滤过持续时间对重症急性胰腺炎急性肺损伤影响研究[J].国际呼吸学杂志,2009,29(22):1349-1352.
    14 Smoyer WE, McAdams C, Kaplan BS, et al. Determinants of survival in pediatric continuous hemofiltration[J].J Am Soc Nephrol,1995,6(5):1401-1409.
    15 DiCarlo JV, Dudley TE, Sherbotie JR, et al. Continuous arteriovenous hemofiltration/dialysis improves pulmonary gas exchange in children with multiple organ system failure[J].Crit Care Med,1990,18(8):822-826.
    16 Ronco C, Bagshaw SM, Gibney RT, et al. Outcome comparisons of intermittent and continuous therapies in acute kidney injury:what do they mean[J]? Int J Artif Organs,2008,31(3):213-220.
    17陆国平,陆铸今,张灵恩等.脓毒症患儿的持续血液净化治疗22例分析[J].中华儿科杂志,2006,44(8):573-577.
    18刘琮,刘晓红,何颜霞等.连续性血液净化治疗在儿童感染性休克中的应用研究[J].中国中西医结合急救杂志,2006,13(3):168-171.
    19 甘小庄,宋国维.连续肾脏替代治疗在儿科危重症的应用[J].中国医刊,2005,40(2):20-23.
    1 Watson RS,Carcillo JA. Scope and epidemiology of pediatric sepsis[J]. Pediatric Crit Care Med,2005,6(suppl):83-85.
    2 Angus D C, W ax R S. Epidemiology of sepsis:unupdate[J]. Crit Care Med,2001, 29(7 suppl):109-116.
    3 樊寻梅,武志远.国际儿科脓毒症定义会议介绍[J].中华儿科杂志,2005,43(8):618-620.
    4 任晓旭,宋国维.第3代小儿死亡危险评分和小儿危重病例评分的应用[J].实用儿科临床杂志,2006,21(6):382-384.
    5 Loisa P, Parviainen I, Tenhunen J, et al. Loisa Effect of mode of hydrocortisone administration on glycemic control in patients with septic shock:a prospective randomized trial[J].Crit Care,2007,1(1):21-26.
    6 Jacobi J. Corticosteroid replacement in critically ill patients [J]. Crit Care Clin,2006, 22 (2):245-253.
    7 Beishuizen A,ThijsL G,VermesI.Patterns of corticosteroid binding globulin andfreecortisolindex during septic shock and multitrauma[J]. Intensive Care Med,2001,27(10):1584-1591.
    8 Loisa P, Rinne T, Kaukinen S. Adrenocortical function and multiple organ failure in severe sepsis[J]. Acta Anaesthesiol Scand,2002,46(2):145-151.
    9 Wrede CE. Endocrine regulation in critically ill patients[J].Dtsch Med Wochenschr, 2010,135(14):712-715.
    10 Sprung CL, Goodman S, Weiss YG, et al. Steroid therapy of septic shock[J].Crit Care Clin,2009,25(4):825-34.
    11 R. Phillip D, Mitchell M, Jean M, et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock:2008 [J].Intensive Care Med,2009,34(2):1-44.
    12 Matsumura M, Kak ish ita H, Suzuk i M, et al. Dexamethasone supp resses iNOS gene exp ression by inh ibiting NFJB in vascular smoo th muscle cells[J]. Life Sci, 2001,69(9):1067-1077.
    13 Rothwell PM, Lawler PG. Prediction of outcome in intensive care patients using endocrine parameters[J]. Crit Care Med,1995,23(1):78-83.
    14 Fleseriu M, Loriaux DL. "Relative" adrenal insufficiency in critical illness [J]. Endocr Pract,2009,15(6):632-640.
    15 Legakis I, Saramantis A, Voros D, et al. Dissociation of ACTH, beta-endorphin and cortisol in grade sepsis[J]. Horm Metab Res,1998,30(9):570-574.
    16 Casartelli CH, Carcia PC,Branco RQet al. Adrenal response in children with septic shock[J]. Intensive Care Med,2007,33(9):1609-1613.
    17 Sarthi M, Lodha R, Vivekandhan S, et al.Adrenal status in children with septic shock using low-dose stimulation test[J]. Pediatr Crit Care Med,2007,8(1):23-28.
    18 Watterberg KL,Shaffer ML,Garland JS, et al. Effect of dose on response to adrenocorticotropin in exetremely low birth weight infants[J]. J Clin Endocrinol Metab,2005,90(12):6380-6385.
    19 Fernandez E,Schrader R, Watterberg K.Prevalence of low cortisol values in term and near-term infants with vasopressor-resistant hypotension [J]. J Petinatol,2005, 25(2):114-118.
    20 Pizarro CF, Troster EJ, Damiani D, et al. Absolute and relative adrenal insufficiency in children with septic shock[J]. Crit Care Med,2005,33 (4): 855-859.
    21 Aneja R, Carcillo JA. What is the rationale for hydrocortisone treatment in children with infection2related adrenal insufficiency and sep tic shock [J]? Arch Dis Child,2007,92 (2):165-169.
    [1]Watson RS, Carcillo JA. Scope and epidemiology of pediatric sepsis[J]. Pediatric Crit Care Med,2005,6(3suppl):83-85.
    [2]Angus D C, Wax R S. Epidemiology of sepsis:unupdate[J]. Crit CareMed,2001, 29(7 Suppl):109-116.
    [3]Zimmerman JJ. A history of adjunctive glucocorticoid treatment for pediatric sepsis: moving beyond steroid pulp fiction toward evidence-based medicine[J]. Pediatr Crit Care Med,2007,8(6):530-539.
    [4]den Brinker M, Joosten KF, Liem O, et al. Adrenal insufficiency in meningococcal sepsis:bioavailable cortisol levels and impact of interlerkin-6 levels and intubation with etomidate on adrenal function and mortality[J].J Clin Endocrinol Metab, 2005,90(9):5110-5117.
    [5]PizarroCF,Troster EJ, Damiani D,et al. Absolute and relative adrenal insufficiency in children with septic shock[J].Crit Care Med,2005,33(4):855-859.
    [6]Dellinger RP,Levy MM, Carlet JM, et al. Surviving Sepsis Campaign:international guidelines for management of severe sepsis and septic shock:2008[J].Crit Care Med, 2008,36(1):296-327.
    [7]Casartelli CH, Carcia PC,Branco RG,et al. Adrenal response in children with septic shock[J].Intensive Care Med,2007,33(9):1609-1613.
    [8]Sarthi M, Lodha R,Vivekandhan S,et al..Adrenal status in children with septic shock using low-dose stimulation test[J]. Pediatr Crit Care Med,2007,8(1):23-28.
    [9]Watterberg KL,Shaffer ML,Garland JS, et al. Effect of dose on response to adreno-corticotropin in exetremely low birth weight infants[J]. J Clin Endocrinol Metab, 2005,90(12):6380-6385.
    [10]Fernandez E,Schrader R, Watterberg K.Prevalence of low cortisol values in term and near-term infants with vasopressor-resistant hypotension[J].J Petinatol,2005,25(2): 114-118.
    [11]Soliman AT, Taman KH, Rizk MM, et al. Circulating adrenocorticotropic homone(ACTH) and cortisol concentrations in normal, appropriate for gestational age newborms versus those with sepsis and respiratory distress:Cortisol response to low dose and standard dose ACTH tests[J]. Metablism,2004,53(2):209-214.
    [12]Kozyra EF,Wax RS,Burry LD.Can 1 microg of cosyntropin be used to evaluate adrenal insufficiency in critically ill patients [J]? Ann Pharmacother,2005,39(4): 691-698.
    [13]Dorin RI, Qualls CR, Crapo LM. Diagnosis of adrenal insufficiency[J]. Ann Intern Med,2003,139(3):194-204.
    [14]Agus M. One step forward:an advance in understanding of adrenal insufficiency in the pediatric critically ill[J]. Crit Care Med,2005,33(4):911-912.
    [15]Annane D, Sebille V, Charpentier C, et al. Effect of treatment w ith low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock[J]. JAMA,2002,288(7):862-871.
    [16]Annane D, Bellissant E, Bollaert PE, et al. Corticosteroids for severe sepsis and septic shock:a systematic review and meta-analysis[J]. BMJ,2004,329(7464):480.
    [17]Markovitz BP, Goodman DM, Watson RS, et al. A retrospective cohort study of prognostic factors associated with outcome in pediatric severe sepsis:what is the role of steroids [J]? Pediatr Crit Care Med,2005,6(3):270-274.
    [18]Ng PC,Lee CH,Bnur FL,et al. A double-blind,randomized,controlled study of a "stress dose" of hydrocortisone for rescue treatment of refractory hypotension in preterm infants[J].Pediatrics,2006,117(2):367-375.
    [19]Fernandez E, Schrader R, Watterberg K. Prevalence of low cortisol values in term and near-term infants with vasopressor-resistant hypotension [J]. J Perinatol,2005, 25(2):14-118.
    [20]LangerM, ModiBP, Agus M. Adrenal insufficiency in the critically ill neonate and child[J].Curr Opin Pediatr,2006,18(4):448-453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700