非小细胞肺癌CD4~+CD25~+FOXP3~+调节性T淋巴细胞上调的意义及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是当前世界上最常见的人类恶性肿瘤,其死亡率居癌症相关死因的首位。根据组织学特征及临床特点,肺癌可分为非小细胞肺癌(non-small cell lung cancer, NSCLC)和小细胞肺癌(small cell lung cancer, SCLC)两大类,其中前者约占80%。虽然临床上采用了手术、放疗、化疗等综合性治疗方案,但晚期肺癌患者的预后仍然很差,5年生存率往往不足15%;即使是诊断为早期肺癌的患者,仍有高达50%的几率在手术后复发,而传统化疗对复发患者的有效率不到25%。因此,探寻更为有效的肺癌治疗策略具有重要意义。CD4+CD25+调节性T淋巴细胞是特征性表达白细胞介素-2(interleukin-2, IL-2)受体α链(CD25)的独特CD4+T细胞亚群,具有低反应性和免疫抑制性,属于“职业抑制性T细胞”。CD4+CD25+调节性T淋巴细胞通过其T细胞受体(T cell receptor, TCR)激活发挥抑制活性,一旦激活后其抑制活性是非特异的,可通过细胞间直接接触、分泌抑制性细胞因子等方式抑制CD4+和CD8+等T淋巴细胞的活化、增殖和细胞因子释放。近期研究发现,叉头/翼状螺旋核转录因子FOXP3对调节性T细胞发生及抑制功能发挥极为重要,并被当做最特异的调节性T细胞标记而用于当前研究。已有研究表明,CD4+CD25+FOXP3+调节性T淋巴细胞能削弱抗肿瘤免疫促进肿瘤进展。本研究将探讨非小细胞肺癌中CD4+CD25+FOXP3+调节性T淋巴细胞的数量变化及其临床意义,并研究CD4+CD25+FOXP3+调节性T淋巴细胞局部上调的可能机制,为非小细胞肺癌免疫学治疗提供新的切入点。
     第一部分
     非小细胞肺癌CD4+CD25+FOXP3+调节性T淋巴细胞检测及其意义
     目的:了解非小细胞肺癌患者CD4+CD25+FOXP3+调节性T淋巴细胞的数量变化、免疫表型特征、功能特性及其与临床病理参数间的关系
     方法:同步采集25例非小细胞肺癌患者肿瘤组织、瘤旁组织和外周血,另采集15例健康对照组外周血。用四色流式细胞术检测CD4+CD25+FOXP3+调节性T细胞的百分比及CD45R0、CTLA4、GITR、CD39、CCR4的表达情况,并结合临床病理参数进行分析。分选肿瘤组织和外周血中CD4+CD25highT细胞和CD4+CD25-T细胞,体外培养并观察CD4+CD25highT细胞对CD4+CD25-T细胞增殖反应的影响。
     结果:肿瘤组织内CD4+CD25+FOXP3+调节性T细胞占CD4+T细胞的百分比(13.05%±7.16%)显著高于瘤旁组织(3.86%±2.35%)(P<0.001):患者外周血CD4+CD25+FOXP3+调节性T细胞占CD4+T细胞的百分比(3.43%±2.14%)高于健康人外周血(1.49%±0.80%)(P<0.05)。该细胞亚群高表达CD45R0、CTLA4、GITR、CD39、CCR4分子,并能强烈抑制CD4+CD25-T细胞的增殖反应。CD4+D25+FOXP3+调节性T细胞上调与临床分期、肿瘤大小、组织学类型有关,与年龄、性别、组织学分级、淋巴结转移无关。
     结论:非小细胞肺癌患者体内CD4+CD25+FOXP3+调节性T细胞上调,能削弱抗肿瘤免疫,促进肿瘤生长和演进。
     第二部分
     非小细胞肺癌患者肿瘤局部FOXP3+调节性T细胞上调与诱导转化机制的研究
     目的:了解非小细胞肺癌患者肿瘤局部CD4+CD25+FOXP3+调节性T淋巴细胞上调是否与诱导转化机制有关。
     方法:用四色流式细胞术检测11例健康对照外周血和17例非小细胞肺癌患者外周血、肿瘤组织、瘤旁组织中,CD4+CD25+T细胞TGFβ、CD4+CD25-T细胞GFRβⅡ的表达情况。用免疫组织化学方法检测肿瘤组织和瘤旁组织TGFβ的表达。分选肿瘤组织和外周血中CD4+CD25-T细胞,以不同浓度TGFβ重组蛋白体外培养并观察CD4+CD25-T细胞的转变。
     结果:肿瘤组织CD4+CD25+T细胞膜TGFβ分子表达率高于患者外周血和健康对照外周血(分别为69.50%±22.13%,45.63%±25.10%和22.20%±8.77%)。患者肿瘤组织和外周血CD4+CD25-T细胞TGFβRⅡ分子表达率高于健康对照外周血(分别为11.24%±4.33%,9.74%±4.56%,3.03%±1.65%)。TGFβ在肿瘤组织内表达高于瘤旁组织,主要由间质细胞产生。人重组TGFβ能在较高浓度组有效诱导CD4+CD25-T细胞转化为CD4+CD25+FOXP3+T细胞。
     结论:肿瘤局部上调的CD4+CD25+FOXP3+调节性T细胞,部分可能是由肿瘤组织来源的TGFβ与高表达TGFβRⅡ的CD4+CD25-T细胞结合,诱导CD4+CD25-T细胞表达FOXP3后转化而来。
     第三部分
     非小细胞肺癌患者肿瘤局部CD4+CD25+FOXP3+调节性T细胞上调与趋化机制的研究
     目的:了解非小细胞肺癌患者肿瘤局部CD4+CD25+FOXP3+调节性T淋巴细胞上调是否与趋化机制有关。
     方法:流式细胞术分别检测10例健康对照外周血和10例非小细胞肺癌患者外周血、肿瘤组织中,CD4+CD25highT细胞CCR4的表达情况;以及10例患者肿瘤组织中CCL22+CD14+细胞比例和CD4+CD25+FOXP3+T细胞比例。分选肿瘤组织和外周血中CD4+CD25highT细胞,以肿瘤组织培养上清或恶性胸腔积液进行体外趋化实验。
     结果:肿瘤组织CD4+CD25highT细胞CCR4表达率高于患者外周血和健康对照外周血(分别为69.50%±22.13%,45.63%±25.10%和22.20%±8.77%)。肿瘤组织CCL22+CD14+细胞比例与CD4+CD25+FOXP3+T细胞比例呈正相关关系。肿瘤培养上清和恶性胸腔积液对CD4+CD25highT细胞具有趋化活性,CCL22单克隆抗体可阻断这一趋化活性。
     结论:患者外周血CD4+CD25+FOXP3+T细胞可通过CCL22-CCR4轴趋化募集到肿瘤局部。
     第四部分
     FOXP3+细胞、CD8+细胞与非小细胞肺癌患者预后关系的研究
     目的:了解非小细胞肺癌患者肿瘤局部FOXP3+细胞、CD8+细胞是否影响预后。
     方法:运用免疫组织化学方法,标记FOXP3+和CD8+细胞并进行计数。结合患者临床病理参数以及随访情况,分析FOXP3+和CD8+细胞对预后的影响。
     结果:肿瘤组织FOXP3+细胞、CD8+细胞均高于瘤旁组织。间质内FOXP3+细胞数量与肿瘤分化程度、临床分期有关,但不影响患者累积生存率。间质内CD8+细胞与淋巴结状况、临床分期有关;高CD8+组患者较低CD8+组具有更好的预后。CD8+细胞/FOXP3+细胞比值与预后无关。
     结论:间质内CD8+细胞而非FOXP3+细胞是非小细胞肺癌患者正向预后指标。
Lung cancer is the most common malignant tumour and the leading cause of cancer death in the world. The major histologic subtypes of lung cancer are non-small cell lung cancer (non-small cell lung cancer, NSCLC,80%) and small cell lung cancer (small cell lung cancer, SCLC,20%). Despite medical advances, the overall 5-year survival rate is a dismal 15%. Even when diagnosed at an early stage, patients relapse at a rate as high as 50% after surgical resection. Conventional chemothery are only effective for 25% relapse ptients. These facts make clear the need for new therapeutic strategy that will allow better prognosis for this malignancy. CD4+CD25+regulatory T cells is a distinct population of CD4+T cells that constitutively express the interleukin-2 (IL-2) receptor (R)α-chain (CD25). These cells are both hyporesponsive and suppressive. It was defined as "professional" regulatory/suppressor T cells. Following T cell receptor (TCR) engagement, CD4+CD25+ T cells can suppress the activation and proliferation of other CD4+ and CD8+ T cells in an antigen-nonspecific manner. CD4+CD25+ T cells mediate the suppression of effectors T cell function both in vitro and in vivo via several mechanisms requiring either cell-cell contact or the production of immunosuppressive cytokines. Recent studies have suggested that the transcription factor FOXP3 is critical for the development and function of regulatory T cells in mice and humans. Several studies have suggested that the CD4+CD25+FOXP3+ regulatory T cells may impaire the antitumour immunity and subsequently contribute to malignancy progression. Based on the theory above, our study will focus on the quantity and clinical significance of CD4+CD25+FOXP3+ regulatory T cells in non-small cell lung cancr, and investigate the potential mechanisms about which CD4+CD25+FOXP3+ regulatory T cells increased in tumour microenviroment. The purpose is to help to find a new strategy for the immune treatment of non-small cell lung cancr.
     PART I:DETECTION AND SIGNIFICANCE OF CD4+CD25+FOXP3+REGULATORY T CELL IN NON-SMALL CELL LUNG CANCER
     OBJECTIVES:To detect the proportion, phenotypic profile, function of CD4+CD25+FOXP3+ regulatory T lymphocyte in non-small cell lung cancer and to determine whether the proportion is associated with clinicopathological parameters.
     METHODS:The percentages of CD4+CD25+FOXP+T lymphocytes in tumour tissue, non-tumour tissue and peripheral blood from patients with non-small cell lung cancer, and peripheral blood from healthy control were determined by four-color flow cytometry. The expressions of CD45R0, CTLA4, GITR, CD39, CCR4 were also examined. Meanwhile, the relationship between clinicopathological parameters and the percentages of CD4+CD25+FOXP+T lymphocytes was determined. CD4+CD25high and CD4+CD25-T cells from tumour tissue and peripheral blood were isolated, and were cultured to investigate the effects of CD4+CD25high cells on proliferation response of CD4+CD25-T cells in vitro.
     RESULTS:There were increased percentages of CD4+CD25+FOXP3+T cells in tumour tissue (13.05%±7.16%) compared with non-tumour tissue (3.86%±2.35%) from patients with non-small lung cancer, in peripheral blood from patients (3.43%±2.14%) compared with peripheral blood from healthy control (1.49%±0.80%), and that these cells have constitutive high-level expression of CD45RO、CTLA4、GITR、CD39、CCR4. CD4+CD25high T cells mediate potent inhibition of proliferation response of CD4+CD25- T cells in vitro. The proportion of CD4+CD25+FOXP3+ T cells is related to TNM stage, tumour size, and histologic type.
     CONCLUSIONS:The proportion of CD4+CD25+FOXP3+ T cells was increased in patients with non-small cell lung cancer, which consequently resulted in the impairment of anti-tumour immunity and advancement of tumor progression.
     PARTⅡ:RESERCH OF INDUCED-CONVERSION MACHENISM AND UP-REGULATION OF CD4+CD25+FOXP3+ REGULATORY T LYMPHOCYTE IN PATIENTS WITH NON-SMALL CELL LUNG CANCER
     OBJECTIVES:To investigate whether the induced-conversion mechanism is concerned with the up-regulation of CD4+CD25+FOXP3+ T cells in tumour microinviroment.
     METHODS:Lymphocytes isolated from peripheral blood, tumor tissue and non-tumor tissue of lung cancer patiens(n=17) were analyzed for expression of TGFβon CD4+CD25+T lymphocytes and of TGF βRⅡon CD4+CD25-T lymphocytes by flow cytometry. Lymphocytes from health adults(n=11) were served as control.The expression of TGFβin tumor and nontumor tissue was determined by immunohistochem-istry. CD4+CD25-T cells isolated from tumour tissue and peripheral blood were cocultured with hrTGFβor monoclonal TGFβantibody to investigate whether hrTGFβcan convert CD4+CD25-T cells into CD4+CD25+FOXP3+T cells in vitro.
     RESULTS:The expression of membrane TGF 0 on CD4+CD25+T lymphocytes from tumour tissue was significantly higher than peripheral blood. The expression of membrane TGFβRⅡon CD4+CD25-T lymphocytes from tumour tissue and peripheral blood was also significantly higher than peripheral blood from healthy donors. TGFβ, mainly produced by stromal cells, was prominent in tumour tissues. hrTGFβcan actually convert CD4+CD25-T cells into CD4+CD25+FOXP3+T cells at higher concertration in vitro.
     CONCLUSIONS:Up-regulation of CD4+CD25+FOXP3+T cells in tumour microenviroment may be partially due to TGFβinduced-conversion. Both TGFβ,produced by stromal cells, and higher expression of TGFβRⅡon CD4+CD25-T lymphocytes contribute to this process.
     PARTⅢ:RESERCH OF CHMOTATIC MACHENISM AND UP-REGULATION OF CD4+CD25+FOXP3+ REGULATORY T LYMPHOCYTE IN PATIENTS WITH NON-SMALL CELL LUNG CANCER
     OBJECTIVES:To investigate whether the chemotatic mechanism is concerned with the up-regulation of CD4+CD25+FOXP3+ T cells in tumour microinviroment.
     METHODS:Lymphocytes isolated from peripheral blood, tumor tissue of lung cancer patiens were analyzed by flow cytometry for expression of CCR4 on CD4+CD25highT lymphocytes. Lymphocytes from health adults were served as control. The proportion of CCL22+ CD14+cells and CD4+CD25+FOXP3+T cells in tumor tissue were also analyzed by flow cytometry. CD4+CD25highT cells isolated from peripheral blood, tumour supernatants and malignant pleural effusion were used for in vitro chemotatic experiments.
     RESULTS:The expression of CCR4 on CD4+CD25+T lymphocytes from tumour tissue was significantly higher than peripheral blood. The proportion of CCL22+CD14+cells was positively related to that of CD4+CD25+FOXP3+T cells in tumor tissue. CD4+CD25high T cells were attracted by tumour supernatants and malignant pleural effusion in vitro, and monoclonal antibody to CCL22 can block this chemotactic activity.
     CONCLUSIONS:CD4+CD25+FOXP3+T cells in peripheral blood can be selectively attracted into tumour microenviroment by CCL22-CCR4 axis.
     PART IV:RESERCH OF FOXP3+CELLS, CD8+CELLS AND THE PROGNOSIS OF PATIENTS WITH NON-SMALL CELL LUNG CANCER
     OBJECTIVES:To investigate whether the numbers of FOXP3+cells CD8+ cells in tumour tissue impact the prognosis of patients with non-small cell lung cancer.
     METHODS:Immunohistochemistry was used to evaluate the epithelial and stromal FOXP3+, CD8+ cells. Combined with clinicopathological parameters and follow up data, the clinical significances of FOXP3+ cells and CD8+ cells were determined.
     RESULTS:The numbers of FOXP3+ cells and CD8+ cells from tumour tissue were significantly higher than non-tumour tissue. Stromal FOXP3+ cells related to differentiation and TNM stage, but had no effect on survival. Stromal CD8+ cells related to nodal status and TNM stage. Increasing numbers of stromal CD8+ cells significantly correlated to an improved survival. The ratio of CD8+ cells to FOXP3+ cells had no effect on prognosis.
     CONCLUSIONS:Stromal CD8+ cells, not FOXP3+ cells were positive prognostic indicators for resected NSCLC patients.
引文
1. Farin Kamangar, Graca M Dores, William F Anderson. Patterns of Cancer Incidence, Mortality, and Prevalence Across Five Continents:Defining Priorities to Reduce Cancer Disparities in Different Geographic Regions of the World. J Clin Oncol.2006;24:2137-2150.
    2. O'Brien K, Cokkinides V, Jemal A, et al. Cancer statistics for Hispanics,2003. CA Cancer J Clin.2003:53:208-226.
    3. Bunn JR PA, Thatcher N. Systemic treatment for advanced (stage Ⅲ B/Ⅳ) non-small cell lung cancer:more treatment options;more things to consider. Conclusion. J Oncologist.2008,13:37-46.
    4. Strauss GM, Kwiatkowski DJ, Hsarpole DH, et al. Molecular and pathologic analysis of stage Ⅰ non-small cell lung carcinoma of the lung. J Clin Oncol. 1995;13:1265-1279.
    5. Harpole DH Jr, Herndon JE, Wolfe WG, et al. A prognostic model of recurrence and death in stage I non-small cell lung cancer utilizing presentation, histopathology, and oncoprotein expression. Cancer Res.1995;55:51-56.
    6. Detterbeck FC, Boffa DJ, Tanoue LT. The New Lung Cancer Staging System. Chest. 2009;136:260-271.
    7. Labarriere N, Pandolfino MC, Gervois N, et al. Therapeutic efficacy of melanoma-reactive TIL injected in stage III melanoma patients. Cancer Immunol Immunother.2002;51:532-538.
    8. Kuss I, Hathaway B, Ferris RL, et al. Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clin Cancer Res.2004;10:3755-3762.
    9. Fukunaga A, Miyamoto M, Cho Y, et al. CD8+ tumorinfiltrating lymphocytes together with CD4+ tumor infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas. 2004;28:26-31.
    10.Cho Y, Miyamoto M, Kato K, et al. CD4+ and CD8+T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 2003;63:1555-9.
    11. Allan CP, Turtle CJ, Mainwaring PN, et al. The immune response to breast cancer, and the case for DC immunotherapy. Cytotherapy.2004:6:154-163.
    12. Whiteside TL. Down-regulation of ζ-chain expression in Tcells:a biomarker of prognosis in cancer? Cancer Immunol Immunother.2004:53:865-878.
    13. Ogino T, Bandoh N, Hayashi T, et al. Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clin CancerRes.2003:9:4043-4051.
    14. Badoual C, Hans S, Rodriguez J, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006;12:465-472.
    15.Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995;155:1151-1164.
    16.Joneleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4(+)CD25(+)T cells with regulatory properties isolated from peripheral blood. J Exp Med.2001; 193:1285-1294.
    17. Clare Baecher-Allan, Julia A Brown, Gordon J Freeman, et al. CD4+CD25high Regulatory Cells in Human Peripheral Blood. J immuno.2001:23:1245-1253.
    18.Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med.2000;192:295-302.
    19. Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med.2000;192:303-310.
    20.McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4(+)CD25(+) immunoregulatory T cells:gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity.2002;16:311-323.
    21.Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol.2002;3:135-142.
    22.Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science.2003;299:1057-1061.
    23.Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol.2003:4:330-336.
    24.Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet.2001;27:20-21.
    25. Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet.2001;27:68-73.
    26. Laura Strauss, Christoph Bergmann, Miroslaw JS, et al. Expression of ICOS on human melanoma-infiltrating CD4+CD25highFOXP3+T regulatory cells: implication and impact on tumor-mediated immune suppression. J Immunol.2008; 102:2967-2980.
    27. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patientswith early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res.2001;61:4766-4772.
    28. Woo EY, Yeh H, Chu CS, et al. Cutting edge:regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol.2002;168:4272-4276.
    29.Hiromichi Kawaida, Koji Kono, Akihiro Takahashi, et al. Distribution of CD4(+)CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer. J Sur Res.2005;124:151-157.
    30. Sasada T, Kimura M, Yoshida Y, et al. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies:possible involvement of regulatory T cells in disease progression. Cancer.2003;98:1089-1099.
    31.Xiu HY, Satoshi Yamagiwa, Takafumi Ichida, et al. Increase of CD4+CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol.2006:45:254-262.
    32.Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol.2002;169:2756-2761.
    33. Ashley M. Miller, Kajsa Lundberg, Volkano zenci, et al. CD4+CD25high T Cells Are Enriched in the Tumor and Peripheral Blood of Prostate Cancer Patients. J Immunol.2006,177:7398-7405.
    34. Yang ZZ, Novak AJ, Stenson MJ, Witzig TE,et al. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+T-cells in B-cell non-Hodgkin lymphoma. Blood.2006;107:3639-3646.
    35.Kono K, Kawaida H, Takahashi A, et al. CD4(+)CD25(high) regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother.2006;55:1064-1071.
    36. Helmut Jonuleit, Edgar Schmitt, Michael Stassen, et al. Identification and Functional Characterization of Human CD4+CD25+T Cells with Regulatory Properties Isolated from Peripheral Blood. J Exp Med.2001; 193:1285-1294.
    37. Clare Baecher-Allan, Julia A. Brown, Gordon J. Freeman, et al. CD4+CD25high Regulatory Cells in Human Peripheral Blood.2001; 23:1245-1253.
    38.Jia Zhou, Tong Ding, Weidong Pan, et al. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int. J. Cancer.2009;125:1640-1648.
    39. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med.2004;10:942-949.
    40.Silvia Deaglio, Karen M. Dwyer, Wenda Gao,et al.Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression.J Exp Med.2007; 204:1257-1265.
    41.Koen Venken, Marielle Thewissen, Niels Hellings et al. A CFSE based assay for measuring CD4+CD25+ regulatory T cell mediated suppression of auto-antigen specific and polyclonal T cell responses. Journal of Immunological Methods.2007; 322:1-11.
    42.Lim HW, Hillsamer P, Banham AH, Kim CH. Cutting edge:direct suppression of B cells by CD4+CD25+ regulatory T cells. J Immunol.2005;175:4180-4183.
    43.Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H. Human CD4+CD25+ regulatory T cells suppress NKT cell functions. Cancer Res.2003; 63:4516-4520.
    44.Chen W. Dendritic cells and CD4+CD25+T regulatory cells:crosstalk between two professionals in immunity versus tolerance. Front Biosci.2006; 11:1360-1370.
    45. Romagnani C, Della Chiesa M, Kohler S, et al. Activation of human NK cells by plasmacytoid dendritic cells and its modulation by CD4+T helper cells and CD4+CD25hi T regulatory cells.Eur J Immunol.2005;35:2452-2458.
    46. Trzonkowski P, Szmit E, Mysliwska J, ey al. CD4+CD25+T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin Immunol.2004;112:258-267.
    47. Murakami M, Sakamoto A, Bender J, et al. CD25+CD4+T cells contribute to the control of memory CD8+T cells. Proc Natl Acad Sci U S A.2002; 99:8832-8837.
    48. Jens Dannull,Zhen Su, Dacid Rizzierl, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest.2005;115:3623-3633.
    49. Smita Nair, David Boczkowski, Martin Fassnacht, et al. Vaccination against the Forkhead Family Transcription Factor Foxp3 Enhances Tumor Immunity. Cancer Res.2007; 67:371-380.
    1. Zou WeiPing. Regulatory T cells, tumour immunity and immunotherapy. Nat Review.2006;6:295-307.
    2. Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med.2003; 198:1875-1886.
    3. Fantini MC, Becker C, Monteleone G, et al. Cutting edge:TGF-beta induces a regulatory phenotype in CD4+ CD25+ T cells through Foxp3 induction and down-regulation of Smad7. J Immunol.2004;172:5149-5153.
    4. Detterbeck FC, Boffa DJ, Tanoue LT.The New Lung Cancer Staging System. Chest.2009;136:260-271.
    5. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995;155:1151-1164.
    6. Joneleit, H., Schmitt, E., Stassen, M., et al. Identification and functional characterization of human CD4(+)CD25(+)T cells with regulatory properties isolated from peripheral blood. J Exp Med.2001; 193:1285-1294.
    7. Clare Baecher-Allan, Julia A Brown, Gordon J Freeman et al. CD4+CD25high Regulatory Cells in Human Peripheral Blood. J Immuno.2001;23:1245-1253.
    8. Ethan M. Shevach. Certified Professionals:CD4+CD25+ Suppressor T Cells. J Exp Med.2001;193:41-45.
    9. Wanjun Chen, Joanne E. Konkel. TGF-β and'Adaptive'Foxp3+ regulatory T cells. J Mol Cel Bio.2009;2:30-36.
    10. Kazuhiko Nakamura, Atsushi Kitani, Warren Strober. Cell Contact-dependent Immunosuppression by CD4+CD25+ Regulatory T Cells Is Mediated by Cell Surface-bound Transforming Growth Factor β. J Exp Med.2001:194:629-644.
    11. Esther Unitt, Simon M. R, Aileen Marshall, et al. Compromised lymphocytes infiltrate hepatocellular carcinoma:the role of regulatory cells. Hepatology.2005;41:722-730.
    12. Laura Strauss, Christoph Bergmann, Miroslaw Szczepanski, et al.A unique subset of CD4+CD25highFoxp3+T cells secreting interleukin-10 and transforming growth factor-β1 mediates suppression in the tumor microenviroment. Clin Cancer. Res.2007;13:4345-4354.
    13. Barbara Valzasina, Silvia Piconese, Cristiana Guiducci, et al. Tumor-Induced Expansion of Regulatory T Cells by Conversion of CD4+CD25- Lymphocytes Is Thymus and Proliferation Independent. Cancer Res.2006; 66:4488-4495.
    14. Helmut Jonuleit, Edgar Schmitt, Hacer Kakirman, et al. Infectious Tolerance: Human CD25+ Regulatory T Cells Convey Suppressor Activity to Conventional CD4+T Helper Cells. J Exp Med.2002;196:255-260.
    15. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature.2006:441:235-238.
    16. Luo X, Tarbell KV, Yang H, et al. Dendritic cells with TGF-betal differentiate naive CD4+CD25+T cells into islet-protective Foxp3+ regulatory T cells. Proc. Natl Acad Sci.2007;104:2821-2826.
    17. Zheng SG, Wang J, Wang P, et al. IL-2 is essential for TGF-beta to convert naive CD4+CD25+ cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol.2007; 178:2018-2027.
    18. Amarnath S, Dong L, Li J, et al. Endogenous TGF-beta activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and
    HIV-1-infected human CD4+CD25-T cells.Retrovirology.2007; 4:57.
    19. Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3-T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood. 2007; 110:2983-2990.
    20. Yingling JM, B lanchard KL, S awyer JS. Development of TGF-β signaling inhibitors for cancer therapy.Nat Rev Drug Discov 2004;3:1011-1022.
    21. Biswas S, C riswellTL, Wang SE, et al. Inhibition of transforming growth factor-β signaling in human cancer:targeting a tumor suppressor network as a therapeutic strategy. Clin Cancer Res 2006;12:4142-4146.
    22. Wahl SM, Wen J, Moutsopoulos N. TGF-β:a mobile purveyor of immune privilege. Immunol Rev 2006;213:213-227.
    23. Victoria C. Liu, Larry Y. Wong, Thomas Jang, et al. Tumor evasion of the immune system by converting CD4+CD25-T Cells into CD4+CD25+T Regulatory Cells: role of tumor-derived TGF-β.J Immunol.2007; 121:2883-2892.
    24. Lorenzo Cosmi, Francesco Liotta, Elena Lazzeri, et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood.2003;102:4107-4114.
    25. Kiniwa Y, Miyara Y, Wang HY, et al.CD8+Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res.2007;13:6947-6958.
    26. N Chaput, S Louafi,A Bardier, et al. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut.2009;58:520-529.
    27. McCormick, C., Freshney, R. I. Activity of growth factors in the IL-6 group in the differentiation of human lung adenocarcinoma. Br J Cancer.2000;82: 881-890.
    28. McCormick C., Freshney R I, Speirs V. Activity of interferon, interleukin 6 and insulin in the regulation of differentiation in A549 alveolar carcinoma cells. Br J Cancer.1995; 71:232-239.
    29. Walia B, Wang L, Merlin D, et al. TGF-β downregulates IL-6 signaling in intestinal epithelial cells:critical role of SMAD-2. FASEB J.2003; 17: 2130-2132.
    30. Zhang X L, Topley N, Ito T, et al. Interleukin-6 regulation of transforming growth factor (TGF)-β receptor compartmentalization and turnover enhances TGF-β1 signaling. J Biol Chem.2005; 280:12239-12245.
    31. Hsiao YW, Liao KW, Hung SW, et al. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-β1 and restores the lymphokine-activated killing activity. J. Immunol.2004; 172:1508-1514.
    32. Ohta K, Yamagami S, Taylor A W, et al. IL-6 antagonizes TGF-β and abolishes immune privilege in eyes with endotoxin-induced uveitis. Invest Ophthalmol Vis Sci.2000:41:2591-2599.
    33. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGF β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity.2006:24:179-189.
    34. Shih-Jen Liu, Jy-Ping Tsai, Chia-Rui Shen,et al. Induction of a distinct CD8+Tnc17 subset by transforming growth factor-β and interleukin-6. J Leu Bio.2007;82:354-360.
    1. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med.2004;10:942-949.
    2. Detterbeck FC, Boffa DJ, Tanoue LT. The New Lung Cancer Staging System. Chest. 2009;136:260-271.
    3. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patientswith early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res.2001;61:4766-4772.
    4. Hiromichi Kawaida, Koji Kono, Akihiro Takahashi, et al. Distribution of CD4(+)CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer. J Sur Res.2005:124:151-157.
    5. Xiu Hua Yang, Satoshi Yamagiwa, Takafumi Ichida, et al. Increase of CD4+CD25 + regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol.2006:45:254-262.
    6. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol.2002;169:2756-2761.
    7. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995;155:1151-1164.
    8. Joneleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4(+)CD25(+)T cells with regulatory properties isolated from peripheral blood. J Exp Med.2001; 193:1285-1294.
    9. Clare Baecher-Allan, Julia A. Brown, Gordon J. Freeman et al. CD4+CD25high Regulatory Cells in Human Peripheral Blood. J immuno.2001;23:1245-1253.
    10. Ethan M. Shevach. Certified Professionals:CD4+CD25+ Suppressor T Cells. J Exp Med.2001; 193:41-45.
    11. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science.2003;299:1057-1061.
    12. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of T cells. Nat Immunol.2003;4:330-336.
    13. Zhi-zhang Yang, Anne JN, Mary JS, et al. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+T cells in B-cell non-Hodgkin lymphoma. Blood.2006;107:3639-3646.
    14. Yoshiki Mizukami, Koji Kono, Yoshihiko Kawaguchi,et al.CCL22 and CCL17 chemokines within tumor microenvionment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer.2008; 122: 2286-2293.
    15. Ashley M Miller, Kajsa Lundberg, Volkano zenci, et al. CD4+CD25high T Cells Are Enriched in the Tumor and Peripheral Blood of Prostate Cancer Patients. J Immunol.2006,177:7398-7405.
    16. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol.2000; 18:217-242.
    17. Laura Strauss, Christoph Bergmann,Miroslaw JS,et al. Expression of ICOS on human melanoma-infiltrating CD4+CD25highFOXP3+T regulatory cells: implication and impact on tumor-mediated immune suppression. J Immunol. 2008;102:2967-2980.
    18. Marc Beyer, Matthias Kochanek, Thomas Giese, et al. In vivo peripheral expansion of naive CD4+CD25highFoxP3+ regulatory T cells in patients with multiple myeloma.Blood.2006;107:3940-3949.
    19. C Schaefer, GG Kim, A Albers, et al. Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. British J Cancer.2005;92:913-920.
    20. D'Ambrosio D, Albanesi C, Lang R, et al. Quantitative differences in chemokine receptor engagement generate diversity in integrindependent lymphocyte adhesion. J Immunol.2002; 169:2303-2312.
    21.Vulcano M, Albanesi C, Stoppacciaro A, et al. Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. Eur J Immunol. 2001; 31:812-822.
    22.Ishida T, Ishii T, Inagaki A, et al. Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res.2006;66:5716-5722.
    23.Sallusto F, Palermo B, Lenig D et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol.1999; 29:1617-1625.
    24. Godiska R, Chantry D, Raport CJ, et al. Human macrophagederived chemokine (MDC), a novel chemoattractant for monocytes, monocyte derived dendritic cells and natural killer cells. J Experimental Med.1997; 185:1595-1604.
    25. Hashimoto S, Suzuki T, Dong HY, et al. Serial analysis of gene expression in human monocyte-derived dendritic cells. Blood.1999;94:845-852.
    26. Inngjerdingen M, Damaj, Maghazachi B. Human NK cells express CC chemokine receptors 4 and 8 and respond to thymus and activation-regulated chemokine, macrophage-derived chemokine, and Ⅰ-309. J Immunol 2000; 164:4048-4054.
    27. Sekiya T, Miyamasu M, Imanishi M, et al. Inducible expression of a Th2-type CC chemokine thymus-and activation regulated chemokine by human bronchial epithelial cells. J Immunol.2000; 165:2205-2213.
    28.Hirata H, Arima M, Cheng G. Production of TARC and MDC by naive T cells in asthmatic patients. Journal of Clinical Immunology.2003;23:34-45.
    29. Horikawa T, Nakayama T, Hikita I, et al. IFN-g-inducible expression of thymus and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in epidermal keratinocytes and their roles in atopic dermatitis. Int Immunol.2002; 14:767-773.
    30. Nakanishi T, Imaizumi K, Hasegawa Y, et al. Expression of macrophage-derived chemokine (MDC)/CCL22 in human lung cancer. Cancer Immunol Immunother. 2006;55:1320-1329
    31. Michael Gobert, Isabelle Treilleux, Nathalie Bendriss-Vermare, et al. Regulatory T Cells Recruited through CCL22/CCR4 Are Selectively Activated in Lymphoid Infiltrates Surrounding Primary Breast Tumors and Lead to an Adverse Clinical Outcome. Cancer Res.2009; 69:2000-2009.
    32. Qin XJ, Shi HZ, Deng JM, et al. CCL22 recruits CD4-positive CD25-positive regulatory T cells into malignant pleural effusion. Clin Cancer Res.2009; 15: 2231-2237.
    33. Mariani M, Lang R, Binda E, et al. Dominance of CCL22 over CCL17 in induction of chemokine receptor CCR4 desensitization and internalization on human Th2 cells. Eur J Immunol.2004;34:231-240
    1. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patientswith early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res.2001;61:4766-4772.
    2. Woo EY, Yeh H, Chu CS, et al. Cutting edge:regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol.2002;168:4272-4276.
    3. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med.2004;10:942-949.
    4. Hiromichi Kawaida, Koji Kono, Akihiro Takahashi, et al. Distribution of CD4(+)CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer. J Sur Res.2005;124:151-157.
    5. Xiu Hua Yang, Satoshi Yamagiwa, Takafumi Ichida, et al. Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol.2006;45:254-262.
    6. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol.2002;169:2756-2761.
    7. Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, et al. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+T-cells in B-cell non-Hodgkin lymphoma. Blood.2006;107:3639-3646.
    8. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science.2003;299:1057-1061.
    9. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol.2003;4:330-336.
    10. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet.2001;27:20-21.
    11. Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/ winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet.2001;27:68-73.
    12. Detterbeck FC, Boffa DJ, Tanoue LT. The New Lung Cancer Staging System. Chest. 2009;136:260-271.
    13. Clemente CG, Mihm MC Jr, Bufalino R, et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer.1996; 77:1303-1310.
    14. Jass JR. Lymohocytic infiltration and survival in rectal cancer. J Clin Pathol.1986; 39:585-589.
    15. Naito Y, Saito K, Shiiba K, et al. CD8+T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998; 58:3491-3494.
    16. Schumacher K, Haensch W, Roefzaad C, et al. Prognostic significance of activated CD8(+)T cell infiltrations within esophageal carcinomas. Cancer Res.2001; 61:3932-3936.
    17. Nakano 0, Sato M, Naito Y, et al. Proliferative activity of intratumoral CD8(+)T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res.2001; 61:5132-5136.
    18. Kuss I, Hathaway B, Ferris RL, et al. Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clin Cancer Res.2004;10:3755-3762.
    19. Fukunaga A, Miyamoto M, ChoY, et al. CD8+ tumor infiltrating lymphocytes together with CD4+ tumor infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas. 2004;28:26-31.
    20. ChoY, Miyamoto M, Kato K, et al. CD4+ and CD8+T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 2003;63:1555-9.
    21. Ogino T, Bandoh N, HayashiT, et al. Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clin CancerRes.2003:9:4043-4051.
    22. Badoual C, Hans S, Rodriguez J, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006;12:465-472.
    23. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995:155:1151-1164.
    24. Hiraoka N, Onozato K, Kosuge T,et al. Prevalence of FOXP3+ regulatory T cellsin creases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res.2006:12:5423-34.
    25. Kobayashi N, Hiraoka N, Yamagami W, et al. FOXP3+regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 2007;13:902-11.
    26. Andrea Merlo, Patrizia Casalini, Maria Luisa Carcangiu, et al. FOXP3 Expression and Overall Survival in Breast Cancer. J Clin Oncol. 2009;27:1746-1752.
    27. Carreras J, Lopez-Guillermo A, Fox BC, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survivalin follicular lymphoma. Blood.2006;108:2957-2964.
    28. Badoual C, HansS, Rodriguez J, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res.2006;12:465-472.
    29. T Yoshioka, M Miyamoto, Y Cho, et al. Infiltrating regulatory T cell numbers is not a factor to predict patient's survival in oesophageal squamous cell carcinoma. J Briti Med.2008; 98:1258-1263.
    30. Grabenbauer GG, Lahmer G, Distel L, et al. Tumor-infiltrating cytotoxic T cellsbut not regulatory T cellspredict outcome in anal squamouscell carcinoma. Clin Cancer Res.2006; 12:33 55-60.
    31. Mojgan Ahmadzadeh, Aloisio Felipe-Silva, Bianca Heemskerk, et al. FOXP3 expression accurately defines the population of intratumoral regulatory T cells that selectively accumulate in metastatic melanoma lesions. Blood. 2008;112:4953-4960.
    32. Ghiringhelli F, Puig PE, Roux S, et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med.2005; 202:919-929.
    33. Dumitriu IE, Dunbar DR, Howie SE, et al. Human dendritic cells produce TGF-β1 under the influence of Lung Carcinoma Cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T Cells. J Immuno.2009; 182:2795-2807.
    34. Trzonkowski P, Szmit E, Mysliwska J, et al. CD4+CD25+T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin Immunol.2004;112:258-267.
    35. Chen W. Dendritic cells and CD4+CD25+T regulatory cells:crosstalk between two professionals in immunity versus tolerance. Front Biosci.2006; 11:1360-1370.
    36. Petersen RP, Campa MJ, Sperlazza J, et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer.2006;107:2866-2872.
    37. Y Mizukami, K Kono, Y Kawaguchi, et al. Localisation pattern of Foxp3+regulatory T cells is associated with clinical behaviour in gastric cancer. J Bri Cancer.2008; 98:148-153.
    38. Cho Y, Miyamoto M, Kato K, et al. CD4+and CD8+T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res.2003; 63:1555-1559.
    39. Nakakubo Y, Miyamoto M, Cho Y, et al. Clinical significance of immune cell infiltration within gallbladder cancer. Br J Cancer.2003;89:1736-1742.
    40. Oshikiri T, Miyamoto M, Shichinohe T, et al. Prognostic value of intratumoral CD8+T lymphocyte in extrahepatic bile duct carcinoma as essential immune response. J Surg Oncol.2003;84:224-228.
    41. Fukunaga A, Miyamoto M, Cho Y, et al. CD8+ tumorinfiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas.2004; 28:e26-31
    42. K Hiraoka, M Miyamoto, Y Cho, et al. Concurrent infiltration by CD8+T cells and CD4+T cells is a favourable prognostic factor in non-small-cell lung carcinoma. J Briti Cancer.2006; 94:275-280.
    43. Tormanen-Napankangas U, Soini Y, Paakko P. High number of tumour-infiltrating lymphocytes is associated with apoptosis in non-small cell lung carcinoma. APMIS.2001;109:525-532.
    44. Trojan A, UrosevicM, Dummer R, et al. Immune activation status of CD8+ Tcells infiltrating non-small cell lung cancer. Lung Cancer.2004;44:143-147.
    45. Kikuchi E, Yamazaki K, TorigoeT, et al. HLA class I antigen expression is associated with a favorable prognosis in earlys tage non-small cell lung cancer. Cancer Sci.2007;98:1424-1430.
    46. Eiichi Sato, Sara H. Olson, Jiyoung Ahn, et al. Intraepithelial CD8+tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. PNAS.2005; 18538-18543.
    47. Weiping Zou. Immunosuppressive networks in the the tumour environment and their therapeutic relevance. Nat rev.2005;5:263-274.
    48. Weave CT, Harington LE, Mangan PR, et al.Th17:an effector CD4 T cell lineage with regulatory T cell tile. Immunity.2006; 24:677-688.
    49. N Chaput, S Louafi, A Bardier, et al. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut.2009;58:520-529.
    50. Curiel TJ.Tregs and rethinking cancer immunotherapy. J Clin Inv.2007; 117:1167-1174.
    1. Gershon RK, Kondo K. Infectious immunological tolerance. Immunology. 1971;21:903-914.
    2. Berendt MJ, North RJ. T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med. 1980;151:69-80.
    3. Chakraborty NG, Twardzik DR, Sivanandham M, Ergin MT, Hellstrom KE, Mukherji B. Autologous melanoma-induced activation of regulatory T cells that suppress cytotoxic response. J Immunol.1990; 145:2359-2364.
    4. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995;155:1151-1164.
    5. Joneleit, H., Schmitt, E., Stassen, M., et al. Identification and functional characterization of human CD4(+)CD25(+)T cells with regulatory properties isolated from peripheral blood. J Exp Med.2001; 193:1285-1294.
    6. Clare Baecher-Allan, Julia A. Brown, Gordon J. Freeman et al. CD4+CD25high Regulatory Cells in Human Peripheral Blood. J immuno.2001;23:1245-1253.
    7. Ethan M. Shevach. Certified Professionals:CD4+CD25+ Suppressor T Cells. J Exp Med.2001; 193:41-45.
    8. Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. 2001; 2:301-306.
    9. Pacholczyk R, Kraj P, Ignatowicz L. Peptide specificity of thymic selection of CD4+CD25+T cells. J Immunol.2002;168:613-620.
    10. Bensinger SJ, Bandeira A, Jordan MS, et al. Major histocompatibility complex class Ⅱ-positive cortical epithelium mediates the selection of CD4(+)25(+) immunoregulatory T cells. J Exp Med.2001;194(4):427-438.
    11.Shevach EM. Regulatory T cells in autoimmmunity. Annu Rev Immunol. 2000;18:423-449.
    12.Wing K, Ekmark A, Karlsson H, et al. Characterization of human CD25+CD4+ T cells in thymus, cord and adult blood. Immunology.2002:106:190-199.
    13.Wanjun Chen, Joanne E.Konkel. TGF-β and'Adaptive'Foxp3+ regulatory T cells. J Mol Cel Bio.2009;2:30-36.
    14. Danke NA, Koelle DM, Yee C, et al. Autoreactive T cells in healthy individuals. J Immunol 2004:172:5967-5972.
    15. Suri-Payer E, Amar AZ, Thornton AM, et al. CD4+CD25+T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol 1998; 160:1212-1218.
    16. Itoh M, Takahashi T, Sakaguchi N, et al. Thymus and autoimmunity:production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999:162:5317-5326.
    17. Kuniyasu Y, Takahashi T, Itoh M, et al. Naturally anergic and suppressive CD25+CD4+T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation. Int Immunol 2000:12:1145-1155.
    18.Misra N, Bayry J, Lacroix-Desmazes S, et al. Cutting edge:human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol.2004;172:4676-4680.
    19. Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996;184:387-396.
    20. Shevach EM. CD4+CD25+ suppressor T cells:more questions than answers. Nat Rev Immunol.2002;2:389-400.
    21. Gallimore A, Sakaguchi S. Regulation of tumour immunity by CD25+ T cells. Immunology.2002;107:5-9.
    22. Joneleit, H., Schmitt, E., Stassen, M., et al. Identification and functional characterization of human CD4(+)CD25(+)T cells with regulatory properties isolated from peripheral blood. J Exp Med.2001; 193:1285-1294.
    23. Clare Baecher-Allan, Julia A. Brown, Gordon J. Freeman et al. CD4+CD25high Regulatory Cells in Human Peripheral Blood. J immuno.2001;23:1245-1253.
    24. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med.2000;192:295-302.
    25. Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med.2000;192:303-310.
    26. McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4(+)CD25(+) immunoregulatory T cells:gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity.2002;16:311-323.
    27. Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol.2002;3:135-142.
    28. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science.2003;299:1057-1061.
    29. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol.2003;4:330-336.
    30. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet.2001;27:20-21.
    31. Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet.2001;27:68-73.
    32. Weihong Liu, Amy L Putnam, Zhou Xu-yu, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med.2006:203:1701-1711.
    33. Silvia Deaglio, Karen M. Dwyer, Wenda Gao, et al.Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression.J Exp Med.2007:204:1257-1265.
    34. Laura Strauss, Christoph Bergmann, Miroslaw JS, et al. Expression of ICOS on human melanoma-infiltrating CD4+CD25highFOXP3+T regulatory cells: implication and impact on tumor-mediated immune suppression. J Immunol.2008;102:2967-2980.
    35. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med.2001;193:1285-1294.
    36.Ng WF, Duggan PJ, Ponchel F, et al. Human CD4(+)CD25(+) cells:a naturally occurring population of regulatory T cells. Blood.2001;98:2736-2744.
    37.Huber S, Schramm C, Lehr HA, et al. Cutting edge:TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+T cells. J Immunol.2004;173:6526-653
    38. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med.2001:194:629-644.
    39. Hara M, Kingsley CI, Niimi M, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol.2001; 166:3789-3796.
    40. Wang HY, Lee DA, Peng G, et al. Tumor-specific human CD4+ regulatory T cells and their ligands:implications for immunotherapy. Immunity. 2004;20:107-118.
    41. Nishikawa H, Jager E, Ritter G, Old LJ, Gnjatic S. CD4+CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients. Blood.2005:106:1008-1011.
    42. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res.2001;61:4766-4772.
    43. Woo EY, Yeh H, Chu CS, et al. Cutting edge:Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002:168:4272-4276.
    44. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol.2002:169:2756-2761.
    45. Javia LR, Rosenberg SA. CD4+CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J Immunother. 2003;26:85-93.
    46. Gray CP, Arosio P, Hersey P. Association of increased levels of heavy-chain ferritin with increased CD4+CD25+ regulatory T-cell levels in patients with melanoma. Clin Cancer Res.2003;9:2551-2559.
    47. Gray CP, Arosio P, Hersey P. Heavy chain ferritin activates regulatory T cells by induction of changes in dendritic cells. Blood.2002;99:3326-3334.
    48. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies:possible involvement of regulatory T cells in disease progression. Cancer. 2003;98:1089-1099.
    49. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res.2003:9:4404-4408.
    50. Kono K, Kawaida H, Takahashi A, et al. CD4(+)CD25(high) regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother.2005:1-8.
    51. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med.2004;10:942-949.
    52. Hirooka N, Onozato K, Kosuge T, et al. Prevalence of FOXP3+ regulatory T cells increases during the progresion of pancreatic ductal adenocarcinoma and its premaignant lesions.Clin Can Res.2006; 12:5423-5434.
    53. Kobayashi N, Hraoka N, Yamagani W, et al.FOXP3+regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Can Res.2007;13:902-911.
    54. DeLong P, Carroll RG, Henry AC, et al. Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol Ther.2005:4:342-346.
    55. Wolf D, Rumpold H, Koppelstatter C, et al. Telomere length of in vivo expanded CD4(+)CD25(+) regulatory T-cells is preserved in cancer patients. Cancer Immunol Immunother.2005:1-11.
    56.. Marshall NA, Christie LE, Munro LR, et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood. 2004:103:1755-1762.
    57. Alvaro T, Lejeune M, Salvado MT, et al. Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res.2005;11:1467-1473.
    58. Beyer M, Kochanek M, Darabi K, et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood. 2005;106:2018-2025.
    59. Motta M, Rassenti L, Shelvin BJ, et al. Increased expression of CD152 (CTLA-4) by normal T lymphocytes in untreated patients with B-cell chronic lymphocytic leukemia. Leukemia.2005;19:1788-1793.
    61. Fattorossi A, Battaglia A, Ferrandina G, et al. Neoadjuvant therapy changes the lymphocyte composition of tumor-draining lymph nodes in cervical carcinoma. Cancer.2004;100:1418-1428.
    61. Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol.2004;4:665-674.
    62. Zhang H, Chua KS, Guimond M, et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat Med.2005; 11: 1238-1243.
    63. Ahmadzadeh M, Rosenberg SA. IL-2 Administration Increases CD4+CD25hiFoxp3+ Regulatory T Cells in Cancer Patients. Blood.2006;107:2409-2414.
    64. Chakraborty NG, Chattopadhyay S, Mehrotra S, et al. Regulatory T-cell response and tumor vaccine-induced cytotoxic T lymphocytes in human melanoma. Hum Immunol.2004;65:794-802.
    65. Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest.2005;115:3623-3633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700