壳聚糖有机酸盐的制备及其抑菌性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖又名甲壳胺,是甲壳素脱乙酰的产物,是一种阳离子多糖。近年的实验证明,壳聚糖具有广谱的抗菌性能,因此已在实际生产当中得到了应用。但是壳聚糖在碱性以及中性条件下水溶性差,这在一定程度上影响了它的应用。为了改进壳聚糖的水溶性,多种壳聚糖衍生物被合成出来,但是这些合成产物中,要么对反应条件的要求过高,要么产物被加入了新的基团,而新的基团反而影响了壳聚糖的抑菌性或者影响了产物的安全性。
     在本论文中,我们将1700kDa的壳聚糖进行酸降解,得到分子量为82kDa,脱乙酰度为88.7%的小分子量壳聚糖。通过将壳聚糖与有机酸盐在有机溶剂中的反应制备得到了四种固态壳聚糖有机酸盐:壳聚糖甲酸盐、壳聚糖乙酸盐、壳聚糖丙酸盐和壳聚糖乳酸盐。四种壳聚糖有机酸盐的电位滴定曲线对比壳聚糖的电位滴定曲线可以发现,突越位点只有一个。FTIR检测表明,在有机溶剂中,小分子量壳聚糖与四种有机酸(甲酸、乙酸、丙酸、乳酸)以离子键结合,在壳聚糖的氨基上形成了–NH3+.RCOO-结构,从而形成四种壳聚糖有机酸盐(CF、CA、CP、CL)。同时水溶性和稳定性实验证明,四种有机酸盐具有良好的水溶性且在一定时间内具有稳定性。相对于其它壳聚糖衍生物的制备方法,此种制备方法简单,成本较低。
     抑菌实验研究了四种壳聚糖有机酸盐(CF、CA、CP、CL)对细菌( Escherichia.coli、Staphylococcus.aureus )和真菌( Candida. guilliermondii)生长的抑制作用。从之前的实验中发现,当壳聚糖有机酸盐加入到培养基中以后,会导致培养基的吸光度发生变化,因而对使用普通的浊度法进行抑菌效果检测增加了难度。为了解决这一问题,首先将MTT法与浊度法的检测效果进行了比较,证明在本实验中,MTT法能够很好的代替浊度法,而且检测结果不受培养基浊度变化的干扰。壳聚糖有机酸盐对三种微生物的最小抑制浓度因有机酸盐种类及菌种的不同而表现出一定的差异,但是随壳聚糖有机酸盐浓度的增加,四种盐对三种微生物的作用情况具有相同的变化趋势。以CA对E.coli为例:在某一较低浓度(0.05% w/v)附近,有机酸盐对菌种作用不明显;当浓度继续升高到某一点(0.08% w/v),有机酸盐对微生物的生长具有轻度的促进作用;之后随壳聚糖有机酸盐浓度的增加其抑制作用逐渐增强直到达到最小抑制浓度MIC(0.13% w/v)。电镜照片显示CA作用下的三种微生物的细胞壁和细胞膜均发生了一定的改变,由此可以推测壳聚糖有机酸盐很可能是通过对细胞表面的作用抑制了微生物的生长。同时我们还对壳聚糖有机酸盐对微生物生长抑制作用的影响因素进行了探讨,随微生物种类不同,有机酸盐会表现出不同的抑菌效果;有机酸盐中所含有机酸的量较少,故而有机酸的种类对不同有机酸盐的抑菌效果影响不大;接种的菌种浓度对有机酸的最小抑制浓度会产生影响。
     在本论文中,我们还对固态壳聚糖有机酸盐作为一种新型食品防腐剂的可行性进行了探讨。将CA与高级天然防腐剂柚子提取物进行了对比:据报道,柚子提取物作为一种优良的天然防腐剂,其抗菌能力是其它防腐剂的10-100倍。实验证明,一方面,CA浓度达到0.1%(w/v)时能够达到柚子提取物所具有的抗菌效果;另一方面,壳聚糖有机酸盐的价格低于柚子提取物。所以壳聚糖有机酸盐有望成为一种质优价廉的食品、化妆品防腐剂。采用特殊处理过的蔬菜样品,对CA、CL作为食品防腐剂的实际应用进行了模仿,实验证明,这种有机酸盐在一定条件下对蔬菜加工产物(萝卜)能够达到较好的防腐效果。
Chitin is a natural polysaccharide which is usually obtained from shells of crustaceans such as crab, shrimp, and crawfish. Chitosan is a partially N-deacetylated derivative of chitin, and consists of polymeric (1→4)-linked 2-amino-2-deoxy-β-D-glucopyranose units. Due to the unique polycationic nature, chitosan and its derivatives have been proposed for various applications in biomedical, food, agricultural, biotechnological and pharmaceutical products. Chitosan has a broad spectrum of antimicrobial activities, high bactericidal rates and low toxicity toward mammalian cells, making it a potential biocide in food preserving. However, the poor solubility of chitosan at neutral and higher pH limits its applications. Some modification has been attempted. But the traditional method of modifying is to introduce some covalent bond, which is usually complex and sometimes changes some of the properties of chitosan.
     In this paper, a new approach to prepare solid chitosan organic salts is reported. Chitosan (Mw=82kDa, DD=88.7%) was prepared first. Chitosan and organic acid was simply reacted and the chitosan organic salts (COS) were prepared: chitosan formait (CF), chiotsan acetate (CA), chitosan propionate (CP), chitosan lactate (CL). It was demonstrated by the titration curves that there was only one inflexion point, compared with two inflexion points in chitosan. It could be inferred from the FTIR that chitosan is linked by electrovalent bond other than covalent bond with the acid, so the products still keep the structure and antibacterial activity of chitosan and can be prepared easily. The solubility, titration curve, stability, IR spectrum and other basic characterizations of the products are evaluated. It is demonstrated that the chitosan organic salts are water soluble and stable in common conditions.
     The antibacterial activities against E. coli (gram negative), S. aureus (gram positive) and C. guilliermondii have been investigated by MTT method. It was found that chitosan organic salts have good antibacterial acitivities. Take CA and E.coli for example, the growth of E. coli was regular at the concentration of 0.05% (w/v); when the concentration of CA reached 0.08%(w/v), the bacteria grew more than the ones with no CA; CA would inhibit the growth of E.coli at the concentration of 0.13% (w/v). It could also inhibit the growth of S.aureus at the concentration of 0.20% (w/v), and C. guilliermondii at 15ppm (w/v). It also demonstrated that COS showed stronger antibacterial activities with the increase of concentration of COS. Different kinds of microbiology also cause different antibacterial activities. The organic acid nearly has no influence on the activities. And the concentration of the bacterium suspension during incubation has effect on the MIC of COS.
     The possibility of the product being used as a new kind of preservative in foods was also investigated in this paper. It is conferred that the chitosan organic acid salts will be a kind of cheap, convenient, and effective preservative in foods.
引文
1) I. M, Helander, E.-L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades, S. Roller. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International Journal of Food microbiology, 71 (2001): 235-244
    2) Hui Liu, Yumin Du, Xiaohui Wang, et al. Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95 (2004): 147-155
    3) F. Devlieghere, A. Vermeulen, J. Debevere. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21 (2004): 703-714
    4) Hitoshi Sashiwa, Sei-ichi Aiba. Chemically modified chitin and chitosan as biomaterials. Progress in polymer science, 29 (2004): 887-908
    5) Hui Liu, Yumen Du, Xiaohui Wang, Liping Sun. Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, (2004):147-155
    6) F.Devlieghere, A.Vermeulen, J.Debevere. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21 (2004) 703-714
    7) Hong Kyoon No, Na Yong Park, Shin Ho Lee, Samuel P. Meyers. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74 (2002): 65-72
    8) J. Rhoades, S. Roller. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Enviromental Microbiology, 66 (2000): 80-86
    9)吴小勇,曾庆孝,莫少芳,肖仔君,几种壳聚糖的抑菌性能,食品与发酵工业,2005,31 (2): 18-21
    10) Ying Yi, Yuting Wang, Hui Liu. Preparation of new crosslinked chitosan with crown ether and their adsorption for silver ion for antibacterial activities. Carbohydrate polymers, (2003): 425-430
    11) Xiaohui Wang, Yumin Du, Hui Liu. Preparation, characterization and antimicrobialactivity of chitosan-Zn complex. Carbohydrate Polymers 56 (2004): 21-26
    12) W. S. Wan Ngah, S. Ab Ghani, A. Kamari. Adsorption behaviour of Fe(Ⅱ) and Fe(Ⅲ) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource technology, (2005): 443-450
    13)刘秉钺,王井,姚姝娓.壳聚糖—铜络合物在抗菌纸上的应用.中华纸业,2004,25(4):43-45
    14) Shuiping Chen, Guozhong Wu, Hongyan Zeng. Preparation of high antimicrobial activity thiourea chitosan-Ag+ complex. Carbohydrate Polymers 60 (2005): 33-38
    15)熊远珍,湛学军,柳喆.羧甲基壳聚糖银、锌、铈的合成及抑菌实验的研究.药物生物技术,2004,11(6):361-363
    16)黎碧娜,王奎兰,吴勇等.壳聚糖磺化衍生物的制备及抑菌性能研究.香精香料化妆品,2003, (1): 16-18
    17) Ronghua Huang, Yumin Du, Lianshuang Zheng, Hui Liu, Lihong Fan. A new approach to chemically modified chitosan sulfates and study of their influences on the inhibition of Escherichia coli and Staphylococcus aureus growth. Reactive and Functional Polymers 59 (2004): 41-51
    18) Zhishen Jia, Dongfeng shen, Weiliang Xu. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydrate Research 333 (2001): 1-6
    19) Tsui-Chu Yang, Cheng-Chun Chou, Chin-Fung Li. Antibacterial activity of N-alkylated disaccharide chitosan derivatives. International Journal Of Food Microbiology 97 (2005): 237-245
    20)陈凌云,杜予民,刘义.羧甲基壳聚糖的结构与抑菌性能研究.武汉大学学报,2004,46(2):191-194
    21)刘流,郭红英. O-羧甲基壳聚糖对酱油抑菌防腐研究.食品科学, 2002, 23(5):130-133
    22)唐涛,薛毅,信玉华,谭巨莲,李岩.羧甲基壳聚糖对口腔重要厌氧菌的抑菌性能评价.牙体牙髓牙周病学杂志,2004,14(10):587
    23) H. Sashiwa, Y. Shigemasa, R.Roy. Chemical modification of chitosan 8: preparation of chitosan-dendrimer hybrids via short spacer. Carbohydrate Polymers
    24) Wenming Xie, Peixin Xu, Wei Wang, Qing Liu. Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydrate Polymers 50 (2002) 35-40
    25)赵玉清,刘宝全,李慧,蒋本国.壳聚糖2Ag(I)的配位与抑菌性研究.北华大学学报,2000,1(5):384-386
    26)何淑雅,王芳宇,李邦良,杨露青.壳聚糖碘液的制备及抗真菌活性研究.南华大学学报,2001,29(3):227-229
    27)胡瑛,杜予民,刘慧.壳聚糖百里香酚复合物的抑菌活性研究.武汉大学学报,2003,49(2):261-265
    28)赵铁,杜予民,唐汝培.壳聚糖水杨酸盐-明胶共混膜结构表征及其抗菌性.分析科学学报,2002, 18(2):100-104
    29)董战峰,杜予民,樊李红,闻燕,刘慧,王小慧.壳聚糖/明胶/TiO2三元复合膜的制备与功能特性.功能高分子学报,2004,17(1):61-66
    30) Naoji Kubota, Nobuhide Tatsumoto, Takayuki Sano, Kaori Toya. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydrate Research 324 (2000) 268-274
    31) You-Jin Jeon, Pyo-Jam Park, Se-Kwon Kim. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers 44 (2001) 71-76
    32)曹宗顺,卢凤琦.药用壳聚糖生物降解膜的研制.中国医药工业杂志,1996,27(1):14-16
    33)陈礼跷,魏金芳,赵玲.利用甲壳素制取生物降解塑料的探讨.中国塑料,1996,10(2):6-11
    34)陈鲁生,周武,姜云生.壳聚糖粘均分子量的测定,化学通报,1996,(4):57-58
    35)陈伟,林友文,罗红斌,李柱来.羧甲基壳聚糖对钙离子的络合.福建医科大学学报,2000, 34(2): 163-165
    36)陈小娥,夏文水,余晓斌.微生物壳聚糖酶研究进展.海洋科学,2004,28(3):72-76
    37)丁德润,闵惠玲,刘鸿志.壳聚糖及其衍生物的应用研究进展,上海工程技术大学学报,2002,16 (4):294-297
    38)段杉,彭喜春,彭志英.低聚壳聚糖的制备及应用.中国食品添加剂,2002,5:66-71
    39)杜予民.甲壳素研究进展与应用.精细与专用化学品,2004,14:3-6
    40)郭开宇,赵谋明.甲壳素/壳聚糖的研究进展及其在食品工业中的应用,食品与发酵工业,1999,26 (1):59-64
    41)胡文玉,吴姣莲.壳聚糖的性质和用途及其在农业上的应用前景,植物生理学通讯,1994,30(4):294-296
    42)黄崇元.甲壳素资源的综合利用与发展,湿法冶金,1995 (3):4-18
    43)黄月文,罗宣干,卓仁禧.蜗牛酶在聚(N-异丙基丙烯酰胺)中的固定化及应用.功能高分子学报9(1996)523
    44)蒋挺大.甲壳素,北京:化学工业出版社,2003.259
    45)蒋玉湘,李鹏程.壳聚糖硫酸酯制备方法.海洋科学,2004,28(6):75-77
    46)康贻军.壳聚糖的开发与研究进展.内蒙古民族大学学报,2004,19(3):26-29
    47)连丽娜,张平,纪淑娟,王莉.果蔬可食性涂膜保鲜研究现状与展望.保鲜与加工. 2003, 4: 14-16
    48)刘其凤,任慧霞.壳聚糖的结构修饰及其应用.生命的化学,204,24(3):252-254
    49)刘世英,吴清基,王鹤忠,陈仲林.医用甲壳质与壳聚糖纤维的开发现状及前景,产业用纺织品,1994,12 (3):6-12
    50)刘艳如,余平,郑怡.水溶性壳聚糖的抑菌作用研究,中国海洋药物,2001,80 (3):42-44
    51)罗建波,黄伟雄.红外光谱法测定保健食品中壳聚糖含量.华南预防医学,2002,28(5):48
    52)任慧霞,陆经毅,柳华义.甲壳素的制备及其测定方法,山东医药工业,2000,19 (1):39-40
    53)王爱勤,杨立明.天然高分子材料壳聚糖的研究应用进展,化工新型材料,1994,(9):9-12
    54)吴迪,蔡伟民,壳聚糖对细菌细胞壁的影响.黑龙江大学自然科学学报,2003,20(3):101-108
    55)夏文水,陈洁.甲壳素和壳聚糖的化学改性及其应用,无锡轻工业学院学报,1994,13 (2):162-170
    56)杨俊玲.甲壳素和壳聚糖的化学改性研究,天津工业大学学报,2001,20 (5):79-82
    57)赵文伟,于黎,钟晓光,张月芳,孙家珍.水溶性壳聚糖的制备与应用.化学通报,1994,(4):31-34
    58)赵瑞芝,王中彦,胡良才.甲壳素及其衍生物作为缓释辅料的研究进展.国外医药1996,17(3):176-178
    59)张伟,张子德,马雯,袁耀武,张铁峰,张秀红.天然防腐剂-水溶性壳聚糖衍生物.食品工业科技,1998,6:19-20
    60)郑连英,朱江峰,孙昆山.壳聚糖的抗菌性能研究,材料科学与工程,2000,18 (2):22-24
    61)朱启忠,赵宏,韩晓弟.壳聚糖及其应用.资源开发与市场,2005,21 (1)
    62) Amornrat Lertworasirikul, Shingo Yokoyama, Keiichi Noguchi, Kozo Ogawa and Kenji Okuyama. Molecular and crystal structures of chitosan/HI type I salt determined by X-ray fiber diffraction. Carbohydrate Research 339 (2004) 825–833
    63) Bego?a Carre?o-Gómez, Ruth Duncan. Evaluation of the biological properties of soluble chitiosan and chitosan microspheres. International Journal of Pharmaceutics 148(1997) 231-240
    64) Bong-Kyu Choi, Kwang-Yoon Kim, Yun-Jung Yoo, Suk-Jung Oh, Jong-Hoon Choi, Chong-Youl Kim. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus. International Journal of Antimicrobial Agents 18 (2001) 553–557
    65) Bruno Giuliano Garisto Donzelli, Gary Ostroff, Gary E. Harman. Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources. Carbohydrate Research 338 (2003) 1823-1833
    66) Cai Jun, Yang Jianhong, Du Yumin, Fan Lihong, Qiu Yanlin, Li Jin, John F. Kennedy. Purification and characterization of chitin deacetylase from Scopulariopsis brevicaulis. Carbohydrate Polymers, in press
    67) Chatelet C., Damour O., Domard A., Influence of the degree of acetylation on some biological properties of chitosan films [J]. Biomaterials2001, 22: 261-268
    68) Chen, S., Wu, C. and Zeng, H. (2005). Preparation of high antimicrobial activity thiourea chitosan-Ag+ complex. Carbohydrate Polymers, 60, 33-38
    69) Chen X.G. , Wang Z., Liu W.S., The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts[J]. Biomaterials 2002, 23: 4609-4614
    70) Chen X.G., Park H.J., Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohyd. Polymer 2003, 53: 355–359
    71) Chung Ying-Chien, Wang Huey-Lan, Chen Yen-Meng, Li Song-Lin. Effect of abioticfactors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource Technology 88 (2003) 179–184
    72) Chen Yu-Lu, Chou Cheng-Chun. Factors affecting the susceptibility of Staphylococcus aureus CCRC 12657 to water soluble lactose chitosan derivative. Food Microbiology 22 (2005) 29–35
    73) Chung Y.C., Kuo C.L., Chen C.C.. Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresour Technol, 2005, 96(13):1473-1482
    74) Corrado Muzzarelli, Giorgio Tosi, Oriano Francescangeli, Riccardo A.A. Muzzarelli. Alkaline chitosan solutions. Carbohydrate Research 338 (2003) 2247-2255
    75) David Ezra, Gary A. Strobel. Effect of substrate on the bioactivity of volatile antimicrobials produced by Muscodor albus. Plant Science 165 (2003) 1229–1238
    76) Devlieghere, F., Vermeulen, A. and Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21, 703-714
    77) Fumio Yoshii, Long Zhao, Radoslaw A. Wach, Naotsugu Nagasawa, Hiroshi Mitomo, Tamikazu Kume. Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition. Nuclear Instruments and Methods in Physics Research B 208 (2003) 320–324
    78) Garnpimol C. Ritthidej, Thawatchai Phaechamud, Tamotsu Koizumi. Moist heat treatment on physicochemical change of chitosan salt films. International Journal of Pharmaceutics 232 (2002) 11–22
    79) Hirano, S., Tsuchida, H. and Nagao, N. (1998). N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials, 10, 574-576
    80) Hitoshi Sashiwa, Sei-ichi Aiba. Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science 29 (2004) 887–908
    81) Hu S.-G., Jou C.-H., Yang M.C.. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomaterials 24 (2003) 2685–2693
    82) I. Orienti, T. Cerchiara, B. Luppi, F. Bigucci, G. Zuccari, V. Zecchi. Influence ofdifferent chitosan salts on the release of sodium diclofenac in colon-specific delivery. International Journal of Pharmaceutics 238 (2002) 51–59
    83) Jayaprakasha G.K., Selvi Tamil, Sakariah K.K.. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts Food Research International 36 (2003) 117–122
    84) Jeon You-Jin, Park Pyo-Jam, Kim Se-Kwon. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers 44 (2001) 71–76
    85) Jia, Z. S. and Li, Q. B. (2001). Determination of the deacetylation degree of chitosan by two abrupt change potential titration method. Chemical World, 5, 240-241
    86) J. Samelis, G.K. Bedie, J.N. Sofos, K.E. Belk, J.A. Scanga, G.C. Smith. Combinations of nisin with organic acids or salts to control Listeria monocytogenes on sliced pork bologna stored at 4℃in vacuum packages. Lebensm.-Wiss. u.-Technol. 38 (2005) 21–28
    87) Kozo Ogawa, Toshifumi Yui, Kenji Okuyama. Three D structures of chitosan. International Journal of Biological Macromolecules 34 (2004) 1–8
    88) Lee, K. Y., Ha, W. S. and Park, W., H. (1995). Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials, 16, 1211-1216
    89) Lin Hsia-Yin, Chou Cheng-Chun. Antioxidative activities of water-soluble disaccharide chitosan derivatives. Food Research International 37 (2004) 883–889
    90) Liu Hui, Bao Jianguo, Du Yumin, Zhou Xuan, John F. Kennedy. Effect of ultrasonic treatment on the biochemphysical properties of chitosan. Carbohydrate Polymers, in press
    91) Liu Hui, Du Yumin, Wang Xiaohui, Hu Ying, John F. Kennedy. Interaction between chitosan and alkyl b-D-glucopyranoside and its effect on their antimicrobial activity. Carbohydrate Polymers 56 (2004) 243–250
    92) Liu, N., Chen, X., G., Park, H., J., Liu, C., G., Liu, C., S., Meng, X., H., Yu, L., J. (2006). Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli, Carbohydrate Polymers, in press
    93) Li Bin, Xie Bijun, John F. Kennedy. Studies on the molecular chain morphology of konjac glucomannan. Carbohydrate Polymers, in press
    94) Liu Zhongdong, Wei Guohua, Guo Yunchang, John F. Kennedy. Image study of pectin extraction from orange skin assisted by microwave. Carbohydrate Polymers, in press
    95) Maestrelli F., Zerrouk N., Chemto C., Mura P.. Influence of chitosan and its glutamateand hydrochloride salts on naproxen dissolution rate and permeation across Caco-2 cells. International Journal of Pharmaceutics 271 (2004) 257–267
    96) Maeda Y., Kimura Y., Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice [J]. J Nutr, 2004, 134(4): 945-950
    97) Milanesioa M., Bianchib R., Ugliengoa P., Roettia C., Viterboa D.. Vitamin C at 120 K: experimental and theoretical study of the charge density. Journal of Molecular Structure (Theochem) 419 (1997) 139–154
    98) M.R. Avadi, A.M.M. Sadeghi, A. Tahzibi, Kh. Bayati, M. Pouladzadeh, M.J. Zohuriaan-Mehr, M. Rafiee-Tehrani. Diethylmethyl chitosan as an antimicrobial agent: Synthesis, characterization and antibacterial effects. European Polymer Journal 40 (2004) 1355–1361
    99) Muhannad Jumaa, Franz H. Furkert, Bernd W. Müller. A new lipid emulsion formulation with high antimicrobial efficacy using chitosan. European Journal of Pharmaceutics and Biopharmaceutics 53 (2002) 115–123
    100) Osman, Z. and Arof, A. K. (2003). FTIR studies of chitosan acetate based polymer electrolytes. Electrochimica Acta 48, 993-999
    101) Pantaleone, D., Yalpani, M. and Scollar, M. (1992). Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydrate Research, 237, 325-332
    102) Peng Yanfei, Han Baoqin, Liu Wanshun,and Xu Xiaojuan. (2005) Preparation and antimicrobial activity of hydroxypropyl chitosan, Carbohydrate Research 340, 1846–1851
    103) P.M. Molina, M.E. Sanz, P.M. A. Lucchesi, N.L. Padola, A.E. Parma. Effects of acidic broth and juices on the growth and survival of verotoxin-producing Escherichia coli (VTEC). Food Microbiology 22 (2005) 469–473
    104) Qin Caiqin, Li Huirong, Xiao Qi, Liu Yi, Zhu Juncheng, Du Yumin. Wate r-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, in press
    105) R.A.A. Muzzarellia, C. Muzzarellia, A. Cosanib, M. Terbojevichb, 6-Oxychitins, novel hyaluronan-like regiospecifically carboxylated chitins. Carbohydrate Polymers 39 (1999) 361–367
    106) Roller, S. and Covill, N. (1999) The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology, 47, 67-77
    107) Ronghua Huang, Yumin Du, Lianshuang Zheng, Hui Liu, Lihong Fan. A new approach to chemically modified chitosan sulfates and study of their influences on the inhibition of Escherichia coli and Staphylococcus aureus growth. Reactive & Functional Polymers 59 (2004) 41–51
    108) R. Signini, J. Desbrie`res, S.P. Campana Filho. On the stiffness of chitosan hydrochloride in acid-free aqueous solutions. Carbohydrate Polymers 43 (2000) 351–357
    109) Shigemasa, Y., Matsuura, H., Sashiwa, H. and Saimoto, H. (1996). Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. International Journal of Biological Macromolecules, 18, 237-242
    110) Shimojih, M., Fukushima, K. and Kurita, K. (1998). Low-molecular-weight chitosans derived fromβ-chitin: preparation, molecular characteristics and aggregation activity. Carbohydrate Polymers, 35, 223-231
    111) Sun Tao, Xu Peixin, Liu Qing, Xue Jian, Xie Wenming. Graft copolymerization of ethacrylic acid onto carboxymethyl chitosan. European Polymer Journal 39 (2003) 189–192
    112) Strand, S. P., Nordengen, T. and Ostgaard, K. (2002). Efficiency of chitosans applied for flocculation of different bacteria. Water Research, 36, 4745-4752
    113) Svetlana Bratskaya, Simona Schwarz, Denis Chervonetsky. Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate. Water Research 38 (2004) 2955–2961
    114) Tang L.G., Hon D.N.S., Chelation of chitosan derivatives with zinc ions. II.Association complexes of Zn2+ onto N,O-carboxymethyl chitosan [J]. J. Appl. Polym. Sci., 2001, 79(8): 1476-1485
    115) Tanja Becker, Michael Schlaak. Henry Strasdeit. Adsorption of nickel(II), zinc(II) and cadmium(II) by new chitosan derivatives. Reactive & Functional Polymers 44 (2000) 289–298
    116) Wan Ngah W.S., Endud C.S., Mayanar R.. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive & Functional Polymers 50 (2002) 181–190
    117) W.S. Wan Ngah, S. Ab Ghani, A. Kamari. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. BioresourceTechnology 96 (2005) 443–450
    118) Xie Wenming, Xu Peixin, Wang Wei, Qing Liu. Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydrate Polymers 50(2002) 35-40
    119) Yang Mu-Rong, Chen Ko-Shao, Tsai Jui-Che, Tseng Ching-Cing, Lin Shuen-Fun. The antibacterial activities of hydrophilic-modified nonwoven PET. Materials Science and Engineering C 20 (2002) 167–173
    120) Yang Tsui-Chu, Chou Cheng-Chun, Li Chin-Fung. Antibacterial activity of N-alkylated disaccharide chitosan derivatives. International Journal of Food Microbiology 97 (2005) 237– 245
    121) Ye Weijun, Leung Man Fai, Xin John, Kwong Tsz Leung, Daniel Kam Len Lee, Pei Li. Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer 46 (2005) 10538–10543
    122) Zhang Hua, Steven H. Neau. In vitro degradation of chitosan by bacterial enzymes from rat cecal and colonic contents. Biomaterials 23 (2002) 2761–2766
    123) Xiaohui Wang, Yumin Du, Hui Liu. Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydrate Polymers 56 (2004) 21–26
    124) Yang, T. C., Chou, C. C. and Li, C. F. (2002). Preparation, water solubility and rheological property of the N-alkylated mono or disaccharide chitosan derivatives. Food Research International, 35, 707-713
    125) Ye X., J.F. Kennedy, Li B., Xie B.J.. Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. Carbohydrate Polymers, In press
    126) Ying Yi, Yuting Wang, Hui Liu. Preparation of new crosslinked chitosan with crown ether and their adsorption for silver ion for antibacterial activities. Carbohydrate Polymers 53 (2003) 425–430
    127) Tsui-Chu Yang, Cheng-Chun Chou, Chin-Fung Li. Preparation, water solubility and rheological property of the N-alkylated mono or disaccharide chitosan derivatives. Food Research International 35 (2002) 707–713
    128) You-Jin Jeon, Se-Kwon Kim. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydrate Polymers 41 (2000) 133–141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700