固定酶催化合成正辛基葡萄糖苷的反应与分离纯化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是吉林省科技厅基础研究项目-葡萄糖为原料微胶囊固定酶催化合成烷基糖苷机理与技术(20070577)研究内容的一部分。
     烷基糖苷是一种性能优良、用途广泛的环保型非离子表面活性剂。目前研究较广泛的是化学法合成烷基糖苷,但合成的产品纯度低、异构体复杂,无法应用于食品、医药等领域。而酶法合成烷基糖苷,其反应条件温和、产物纯度高、具有立体专一性和区域选择性。因此,酶法合成烷基糖苷将会受到越来越多的关注。但是,无论用那种方法生产合成的烷基糖苷,高碳醇都是过量的。多余高碳醇的存在不仅影响烷基糖苷的性能、质量,还限制了它的应用领域,因此,除去多余的高碳醇尤其重要。
     国内外酶法合成正辛基葡萄糖苷的研究少见报道,本文以葡萄糖和正辛醇为原料,采用ACA微胶囊固定酶催化合成正辛基葡萄糖苷,并对粗产品进行分离纯化。主要内容有:(1)采用ACA微胶囊法固定β-葡萄糖苷酶,并测定其活性;(2)通过单因素试验及球面对称设计试验对影响ACA微胶囊固定化酶合成正辛基葡萄糖苷的工艺参数进行优化;(3)通过单因素试验及正交试验对影响柱层析法分离纯化正辛基葡萄糖苷的工艺参数进行优化,并通过气相色谱测定产品中的残醇量;(4)对分离纯化后的正辛基葡萄糖苷进行脱色及分析检测。
     本文为固定酶合成正辛基葡萄糖苷的深入研究奠定了理论和实践基础。
Oetyl Poly gucoside(C8APG) is one kind of new-style nonionic surfactant (APG), not only has the characteristics of ordinary nonionic surfactant but has the characteristics of anionicsurfactant, It was mainly used in the filed of food, medicine, biology, cosmetics and detergent, etc. At present, the chemical method of synthesis of C8APG has been widely studied, but the purity of product is lower, process complex, high production cost, safety unwarranted, so it cannot be applicated in the flied of food, medicine, etc. The synthesis of APG through immobilized glucosidase which has the characteristics of mild reaction condition and simple process and the products have high purity, they can be biodegraded drastically, the immobilized glucosidase can be reused, low production cost. Therefore, the synthesis of APG by immobilized glucosidase will absorb more and more attention. However, no matter which way will be used to synthesis APG,the high carbon alchol will be excessive.The extra high carbon alchol eight affect the performance and quality of produce or limit its field of application.so,it is very important to eliminate high carbon alchol.The purpose of this paper is the reseach of technics of the fixed enzymatic synthesis of C8APG which be studied lessly at present but has higher value in research field, and the technics of separation and purification. The conclusions as follows:
     1.We studied the process parameters of synthesis of C8APG by fixed enzymatic through single factor and spherically symmetric design , and the conclusion:
     (1)By the method of ACA microcapsule to fixβ-glycosidase enzymes, And through colorimetric method (For nitro phenyl -β-D-rkatsiteli grapes as the substrate) to determine the enzymes living of free enzymes and fixation respectively. Free enzymes 24.27 u/g, unusedly fixed enzymes22.40 u/g, usedly fixed enzymes 21.45 u/g.
     (2)Synthetic reaction, with the rising of temperature,the efficiency of conversion of glucose of reaction system first increases, then decreases. in 55℃, it reach maximum, there has been some fixed enzymes Lost activity when the temperature reaches 60℃.
     (3)The ratio of atalyst and glucose has a influence on the efficiency of conversion of glucose of reaction system, the time of reacting system reach reaction equilibrium. The efficiency of conversion of glucose as the ratio increasing and increase gradually, the efficiency of conversion of glucose changed subtly when the ratio bigger than 1:5.
     (4)The ratio of glucose and octyl alcohol has more influence on the efficiency of conversion of glucose of reaction system,little influence on the time of reacting system reach reaction equilibrium.The efficiency of conversion of glucose as the ratio increasing and increase gradually, the efficiency of conversion of glucose changed subtly when the ratio bigger than 1:6.
     (5)The efficiency of conversion of glucose as the increase of the water percentage first greaten after decrescent,it reach the maximal when the water percentage is 10%.
     (6)The pH of water has little influence on the efficiency of conversion of glucose of reaction system、the time of reacting system reach reaction equilibrium.
     (7)With X_1(Time), X_2(Temperature), X_3( The ratio of octyl alcohol and glucose), X_4( The ratio of atalyst and glucose)the four main influence factors as the research object, by spherically symmetric design,draw a regression mathematics models: Y=24.978+0.133X_1+1.875X_2+2.145X_3+2.205X_4+0.005X_1X_2-0.004X_1X_3-0.002X_1X_4+0.034X_2X_3+0.030X_2X_4-0.055X_3X_4-0.002X_1~2-0.025X_2~2-0.215X_3~2-0.241X_4~2
     To analyse the regression model ,we can get the conclustion: there are positive interaction between each factors. The optimal conditions is the reaction time 72.0h, the reaction temperature 54.0℃, The ratio of octyl alcohol and glucose7.7:1, The ratio of atalyst and glucose6.8:1.
     2.Optimize the process parameters that using column chromatography to separate and purificate C8APG by single factor and orthogonal experiment, draw conclusions as follow:
     (1)The separated effect will be better as the column`s diameter more bigger, the purity can be when the diameter isφ30mm,the mass fraction of n-octyl alcohol in the production is 176447ppm.
     (2)The solubility of octyl alcohol in the organic solvent ,the higher the bette; to the C8APG , the lower the batter. The purity of production is better when the eluent is Mineral ether/Acetic ether(1:1), the mass fraction of n-octyl alcohol in the production is 249579ppm.
     (3)The adsorption effect to n-octyl alcohol by column material is more little, but more strong to C_8APG, the effection of separated will be better. When the column material is alkaline alumina, the mass fraction of n-octyl alcohol in the production is 202124ppm.
     (4)By poor analysis shows that, the primary and secondary order of the influence on the test index by each factor is C、A、B, the optimal combination of each factor is A_1B_1C_2. Namely, the column material is activated carbon, solvent elution is B (Mineral ether/Ethyl acetate = 1:1), column specifications is diameterφ20×300.
     (5)From the analysis of variance we can come to a conclusion, factor A ,Cand B are significant factors, the significance level of AandB is 0.05, the significance level of C is 0.01. From the point estimation and interval estimation of optimum assembly wo can see that, the confidence interval is [0.2529-0.4805], the degree of confidence is 95%.
     3 . Take oxidation decoloring to the C8APG, and structural analysis,and performance testing.We can draw conclusions as follow:
     (1)To choice the influence factors of hydrogen peroxide bleaching by single factor experiment, when the solution concentration of C8-APG is 0.3%, the dosage of hydrogen peroxide is 40%, temperature is 80℃and decoloring time is 90min,we can make the extinction coefficient of product less than 0.01.
     (2)By TLC to analysize the properties of C8APG, the result indicates that there are not remaining octly acohol and glucose in the product.
     (3)By GC to analysize the properties of C8APG, t he result indicates that the concentration of octly acohol is 0.01%.
     (4)By IR to analysize the properties of C8APG, the map is according with the infrared spectra of C8-APG, further verified test the results.
     (5)The spunescence of C8APG is better, rich foam, exquisite and stablity; when the concentration is 40%, the height of foam can keep in 20mL standing about 20 minutes.
     (6)The stability of C8APG in the hard water is worse, they foam stability decreasing as the calcium ion concentration increasing, when the calcium ion concentration is 9mmol or 12 mmol, the height of foam reach only about 10mL.
     (7)The hydrotropy of C8APG to the vegetable oil will be batter as the solution concentration of C8APG increasing, when the concentration of aqueous solution of production is more than 0.3%, the area of oil measure is almost disappear.
     (8)Emulsification is general, emulsification will be better with the concentration of aqueous solution of production increasing.
     (9)Surface tension is lower, the surface tension can reach 0.0278 N/m when the concentration of C8APG is 0.1%.
     (10)The concentration of critical micelle is 0.026%.
     (11)The relative viscosity of C8APG is low.
     Innovation points:
     (1)By single factor and spherically symmetric design to optimize the process of ACA microcapsule immobilized enzyme catalytic synthesis C8APG, the technological parameters are obtained.
     (2)By single factor and orthogonal test to optimize the process of column chromatography separate and purificate C8APG, the technological parameters are obtained.
引文
[1]黄菊芳.烷基多苷复配体系在餐具洗涤剂中的应用[J].日用化学品科学, 2005,28(2):35-37.
    [2]伍明华,陈焕饮.烷基多苷一种适用于化妆用品的表面活性剂[J].香料香精化妆品,1996 (4):16-19.
    [3] Wegener,M.Surfactants systems form icroemulsion and their importance for application[J]. Tenside Surfactants Detergents,2001,38(1):24-26,28-29.
    [4]于珍祥,马菊瑛.烷基多苷的现状和未来[J].日用化学工业,1996(2):29-32.
    [5]李和平,朱克庆.淀粉基表面活性剂烷基糖苷及其应用[J].化工进展,1997(5):30-33.
    [6] Adams W,Gwelitz H.Bakery product containing alkyl glycoside[P].EP 0405328,1991.
    [7]彭道锋,许文苑.新型绿色表面活性剂——烷基糖苷[J].江西化工,2004,27(1):31- 34.
    [8]梁丽芸,蓝仁华等.开发烷基多苷与中草药的配伍保健护肤品[J].日用化学工业,2002,32(2):36- 39.
    [9]孙岩,陈怡等.烷基糖苷与生物膜的相互作用及其溶血活性[J].表面活性剂工业,1998 (2):3-6.
    [10]朱文均,吴春明等.绿色高效三合一精炼剂NC-601的研制和应用[J].染整技术,2004,24(2):31- 35.
    [11]姜崴.两种绿色表面活性剂的性能与应用[J].山西化工,2002,22(1):37- 38.
    [12]赵素丽,王治法等.烷基糖苷钻井液的室内研究[J].钻井液与完井液,2005,22 (2):4-7.
    [13]史俊,李谦定等.可生物降解的表面活性剂烷基多糖苷在油田化学中的应用研究[J].油田化学,2001,18(2):97-100.
    [14]郁惠蕾,许建和.糖苷水解酶在糖苷合成中的应用概况[J].有机化学,2006,26(8):1052-1058.
    [15] Kunugi S,Hayashi Y,Koyasu A,et al.Enzyme Reaction in Microstructured Media Subtilism Catalysis in Alkyl Glucopyranosides Aggregates [J].Bull. Chem.Soc.Jpn,1995,68(3):1012-1018.
    [16] Samain D,De Miguel I,Meniali J,et al.Biodegradable Particulate Drug Vector[P]. PCT Int Appl,WO:1992,9221329.
    [17]古绪鹏,陈同云.烷基糖苷的合成方法改进与应用研究[J].应用科学学报,2001,19(4):342-344.
    [18]周世军,苏琼.烷基糖苷合成工艺的发展[J].西北民族大学学报(自然科学版),2008,29(69):20-24.
    [19] Akita H,Kawahara E,Kishida M,et al.Synthesis of naturally occurringβ-D-glucopyranoside based on enzymaticβ-glycosidation [J] . Journal of Molecular Catalysis B:Enzymatic,2006,40(1-2):8-15.
    [20]张宁,曹劲松等.有机介质中糖苷酶催化反应研究进展[J].食品与发酵工业,2001,27(11):58-63.
    [21]毛多斌,黄顺利等.生物催化在糖苷合成中的应用[J].日用化学工业.2007,37(5):321-326.
    [22] Andersson M,Adlercreutz P.A kinetic study of almond-β-glucosidase catalysed synthesis of hexyl-glycosides in low aqueous media:Influence of glycosyl donor and water activity[J].Journal of Molecular Catalysis B:Enzymatic,2001,14(4-6):69-76.
    [23]朱均均,江小华等.固定化β-葡萄糖苷酶的酶学性质[J].南京林业大学学报(自然科学版),2007,31(3):29-33.
    [24] Matsuno R,Kimura Y,et al.Equilibrium yield of n -alkyl-β-D-glucoside through condensation of glucose and n-alcohol byβ-glucosidase in a biphasic system [J].Enzyme and Microbial Technology,1995,17(1):32-40.
    [25] Valérie Laroute,René-Marc Willemot.Glucoside synthesis by glucoamylase orβ-glucosidase in organic solvents[J].Biotechnology Letters,1992,14(3):169-174.
    [26] Nakanishi K,Matsuno R,et al.Synthesis of alkyl glycosides throughβ-glucosidase-catalyzed condensation in an aqueous-organic biphasic system and estimation of the equilibrium constants for their formation[J].Journal of Molecular Catalysis B:Enzymatic,2000,11 (1):13-21.
    [27] Kawahara E,Fujii M,Kato K,et al.Chemoenzymatic synthesis of naturally occurring benzyl 6-O-glycosyl-β-D-glucopyranosides[J] . Chemical and Pharmaceutical Bulletin,2005,53(8):1058-1061.
    [28] Kishida M,Nishiuchi M,et al.Chemoenzymatic synthesis of n-hexyl and O-β-D- xylopyranosyl-(1-6)-β-D-glucopyranosides[J] . Chemical and Pharmaceutical Bulletin.2004,52(9):1105-1108.
    [29] Akita H,Kawahara E,Kato K,et al.Synthesis of naturally occurringβ-D-glucopyranoside based on enzymaticβ-glycosidation[J] . Journal of Molecular Catalysis B:Enzymatic,2006,40(1-2):8-15.
    [30] Nagatomo H , Matsushita Y , et al . Preparation and properties of pelatin-immobilizedβ-glucosidase from pyrococcus furiosus[J].Bioscience, Biotechnology and Biochemistry,2005,69(1):128-136.
    [31] Ducret A,Carrière J.F,et al.Enzymatic synthesis of octyl glucoside catalyzed byalmondβ-glucosidase in organic media[J].Canadian Journal of Chemistry,2002,80:653-656.
    [32] Basso A,Lortie R,et al.Synthesis of octyl glucopyranoside by almondβ-glucosidase adsorbed onto Celite R-640○R [J].Tetrahedron Letters,2002,43(11):2005-2008.
    [33] Park D.W,Kim H-S,et al.Enzymatic synthesis of alkylglucosides by amphiphilic phase enzyme reaction[J].Biotechnology Letters,2000,22(11):951-956.
    [34]朱云.葡萄糖酶法生物合成烷基糖苷工艺[J].浙江化工,2007,38(11):3-6.
    [35]周亚军等.β-葡萄糖苷酶ACA微胶囊固定化试验研究[J].现代化工,2009,29(10):51-54.
    [36]周亚军等.微胶囊固定酶催化合成烷基糖苷的工艺优化[J].现代化工,2009,29(5):52-54.
    [37]王秀征.固定化β-葡萄糖苷酶及其在烷基糖苷合成中的应用[D].江南大学,2009.
    [38]全易,赵崇敏等.用微胶囊固定的酶催化合成烷基葡萄糖甙[J].精细石油化工,1996(6):28-31.
    [39] B?cker T,Thiem J.Synthese and eigensehatten von kohlenhydrattensiden[J]. Tenside Surf Det,1989(26):318-324.
    [40] P.M.P. Bogaert,F.K.G. Bakker,et al.New coupling method without heavy metals for the synthesis of a new class of fatty acid methyl ester oligoglycoside ethers[J].Journal of Surfactants and Detergents,1998,1(1):65-72.
    [41]肖翠玲,丁伟等.十二烷基葡糖苷的合成及其表面性能[J].精细石油化工,2000 (1):18-20.
    [42]马烽,王芬等.新型表面活性基烷基多苷制备方法研究进展[J].郑州工业大学学报,1999,20(2):77-79.
    [43]李和平,王晓君等.十二烷基糖苷的合成与性能研究[J].郑州粮食学院学报,1998(2):76-80.
    [44] Sanrey D B,Vulfson E N.Application of enzymes to the synthesis of surfactants[J].Trends in Biotechnology,1995,13(5):164-172.
    [45] Rantwijk F,Oosterom M W,Sheldon R A.Glycosidase-catalysed synthesis of alkyl glycosides[J].Journal of Molecular Catalysis B:Enzymatic,1999,6(6):511-532.
    [46]朱运平,江正强等.烷基木糖苷的酶法合成及其纯化[J].过程工程学报,2004,4(6):572-576.
    [47]丁霄霖,金征宇.挤压机作为反应器转化淀粉的研究[J].无锡轻工业学院学报,1991,10 (4):1-10.
    [48]蓝仁华,欧阳新平等.烷基糖苷中高碳醇的分离[J].精细化工,2000,17(4):187-190.
    [49]孙波,安钢等.十二烷基糖苷脱醇方法的研究[J].天津理工学院学报,2000,16(4):58-62.
    [50]蒋爱琴,方志杰等.合成烷基糖苷中脱醇方法的研究[J].上海化工,2000(14):15-16.
    [51]蓝仁华,欧阳新平等.残留高碳醇对烷基多苷性能的影响[J].日用化学工业,2000,10(5):1-5.
    [52]安钢,孙波等.脱醇方法及醇含量对表面张力影响的研究[J].天津化工,1999(1):1-3.
    [53]连围,蓝仁华等.烷基多苷的颜色及其脱色[J].日用化学工业,2001 (3):6-8.
    [54]印永嘉,李大珍.物理化学简明教程[M].北京:高等教育出版社,1986,246.
    [55] Ikushima,Kazumasa.Device for delivering flxed quantity of liquid:JP,103202 [P].2002-12-17.
    [56] Cahill H.Y , Mayer J.B . Improvement in horse hay-rakes : U.S ,184585[J].1876-11-21.
    [57] Collin P.H.Inductially heated gas lift pump action method for melt reduction:U.S.3932173[J].1976-1-13.
    [58]王青宁,李春雷等.制备烷基糖苷的方法:中国, 200310118929.6 [P].2003-12-04.
    [59]林君智.乙二醇葡萄糖苷及其己酸酯的制备与纯化[D].江南大学,2008.
    [60]黎四芳,张海广,刘龙敏等.烷基糖苷中残醇分析方法的改进[J].化学工程,2002(30):351-353.
    [61] Peters J.A,Hill D.Pa.Coating composition containing a ter-tiary amine and a metallic drier:JP,3232894[P].1966-2-1.
    [62] Duria S,Nucci R,Rossi M,et al.β-Glycosidase from the Hyperthermophilic Archaeon Sulfolobus Solfataricus:Structure and Activity in the Presence of Alcohols [J].Biochem,1999,126(3):545-552.
    [63]朱春山,李和平.辛基葡萄糖苷合成反应的动力学研究[J].精细石油化工进展,2004,5(1):33-35.
    [64]吴颖,于九皋.糖苷酶催化制备烷基糖苷[J].化学通报,2005,68:1-7.
    [65]李宏瑜.微胶囊固定化酶催化合成烷基糖苷工艺研究[D].吉林大学,2009.
    [66]盛海林,涂家生.球面对称设计在药剂学上的应用[J].中国药科大学学报,1996,27(4):211-214.
    [67] Buchanan C.M,et al.Process for making alkylpolyglycosides:U.S,6077945[P].2000-6-20.
    [68] Hiroki S,Hiroki N,et al.Process for Production of alky1 glycoside stable in hue and odor:JP,0387913[P],1994-10-19.
    [69]张杰.烷基多苷的过氧乙酸漂色及组合漂色工艺研究[J].应用化工,2006,35(5):362-365.
    [70]尹东霞,马沛生,夏淑倩.液体表面张力测定方法的研究进展[J].科技通报,2007,23(3):424-430.
    [71]孙立力,杨旭等.一种新型高分子表面活性剂的性能研究[J].西南石油学院学报,2002,24(4):53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700