托吡酯引起泌汗障碍的流行病学分析及其发生机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
托吡酯(topiramate,TPM)主要用于癫癎及其他神经精神疾病的治疗,通常耐受良好。少汗或无汗是该药物引起的不良反应之一,在儿童患者中发生率较高,一定程度上限制了这一药物的临床应用。托吡酯减少汗液分泌的确切机制尚不明确,对这一问题的探讨可为有效地预防、对抗此种副作用的发生提供依据,从而提高癫癎患者药物治疗的依从性和治疗效果;另一方面,多汗症的治疗手段较少,效果亦欠佳,对托吡酯引起泌汗障碍的机制进行研究可以化害为利,为托吡酯治疗多汗症提供实验证据。
     本课题首先应用流行病学研究方法,回顾分析参加2002年全国托吡酯上市后疗效和安全性监测多中心观察的10,612例癫癎患者的资料,探讨托吡酯引起的泌汗障碍的发生率、临床转归及危险因素,以期加深对这种不良反应发生规律的认识,并为其发生机制的研究提供线索。继而,建立托吡酯引起泌汗障碍的小鼠动物模型,以明确托吡酯是否能够抑制小鼠汗腺的分泌及其发生规律和影响因素。在成功建立可靠动物模型的基础上,探讨⑴泌汗效应器(汗腺)是否存在托吡酯已知药理作用的靶点;⑵托吡酯引起的泌汗障碍是否与碳酸酐酶(carbonic anhydrase,CA)抑制作用有关;⑶托吡酯是否影响汗腺形态或汗腺分泌过程中起重要作用的关键蛋白的表达与功能,以期阐明托吡酯引起泌汗障碍的确切机制。
     主要研究结果如下:
     接受托吡酯治疗的患者中396例(3.73%)发生泌汗障碍,主要为12岁以下儿童,泌汗障碍的发生率在成年以前随年龄增大而逐渐降低;儿童、青少年及成年患者泌汗障碍的发生率分别为5.85%,0.96%和0.30%。泌汗障碍在加量期多见,多可耐受,极少数病例需停药。多数患者的症状在数月内或随天气转凉而消失,少数在服药期间持续存在。性别、发作频率、发作类型、是否加用其他抗癫癎药物及疗效并不影响泌汗障碍的发生,而年龄较低、剂量较高者在夏季较易出现此种不良反应。在控制年龄因素的影响后,托吡酯剂量对泌汗障碍的发生无显著影响;而在控制剂量因素的影响后,年龄仍显著影响泌汗障碍的发生。
     2周龄和2月龄小鼠随机分配至托吡酯低剂量组(20 mg/kg/d)、高剂量组(80 mg/kg/d)和对照组,每组12只。经口给予小鼠托吡酯,并动态观察其泌汗功能及体温变化,观察时程为4周。应用硅胶印模技术发现:给予托吡酯后第2周,幼年和成年小鼠高、低剂量组的单个汗腺平均分泌量均较对照组或处理前明显降低;给予托吡酯后第4周,幼年和成年小鼠高、低剂量组的活动汗腺数目均较对照组或处理前明显降低。托吡酯处理后1~4周,各剂量组小鼠各周的平均体温无明显差异,各周不同剂量组的平均体温也没有显著性差异。免疫组织荧光染色未发现在正常小鼠皮肤组织及汗腺的分泌细胞存在γ-氨基丁酸A型(gamma-aminobutyric acid,GABAA)受体α1亚单位、谷氨酸受体亚型α-氨基羟甲基恶唑丙酸(α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid , AMPA )GluR1/2/3/4亚单位和海人酸(kainic acid,KA)受体GluR5/6/7亚单位的表达。少汗小鼠的汗腺形态、碳酸酐酶活性及Na,K-ATP酶活性与对照组无明显差别。应用免疫荧光和western blot技术发现:小鼠在托吡酯处理后泌汗减少,碳酸酐酶同功酶II型(carbonic anhydraseII,CAII)蛋白表达未出现显著变化,但汗腺组织胞膜的水通道蛋白-5(aquaporin-5,AQP5)表达量下调。
     本课题组首次对托吡酯引起泌汗障碍的发生率及影响因素进行大规模、大范围的系统流行病学调查分析,并首先建立了实用可靠的动物模型,对这种不良反应的发生机制进行动物实验研究。综合全部实验结果,本研究提示:夏季和低龄是托吡酯引起泌汗障碍的主要危险因素,而托吡酯剂量对泌汗功能的影响较小;托吡酯可以抑制小鼠汗液的分泌,小鼠的年龄并不影响这种抑制作用,但托吡酯对小鼠体温无明显影响;托吡酯并不是通过对GABAA受体及AMPA和KA两种谷氨酸受体亚型的作用而在汗腺分泌细胞抑制泌汗;托吡酯不影响汗腺形态及Na,K-ATP酶活性;汗腺分泌细胞的AQP5功能失调可能与托吡酯引起的泌汗障碍密切相关,而碳酸酐酶抑制作用并不是泌汗功能损害的主要原因。
Topiramate is a monosaccharide D-fructose derivate that functions as a sulfamate and is currently used for the treatment of epilepsy and other neuropsychopathy. Topiramate is generally well tolerated, while decreased sweat secretion is a primary side effect of topiramate in pediatric patients. Topiramate induced hypohidrosis is reversible, but can be clinically significant during heat stress and exercise challenge. This side effect challenges patients’confidence of long term drug therapy. On the other hand, although hypohidrosis is an adverse effect of topiramate when used for other indications, its anti-sweat producing effects may be beneficial in conditions of hyperhidrosis.
     How topiramate induces its antiperspirant effects is unclear. A better understanding of these mechanism(s) will provide rational precautionary measures for topiramate–related hypohidrosis and a new therapy for hyperhidrosis. Therefore, in this study, baseline data as well as therapeutic effect and adverse events of 10,106 patients with epilepsy participated in national topiramate post-marketing surveillance (PMS) were reviewed. Incidence rate, clinical characteristic and risk factors for hypohidrosis were analyzed to provide clues for possible mechanisms underlying topiramate-induced hypohidrosis. Then this study aimed to better understand how topiramate decreases sweat secretion by examining if topiramate decreases sweat secretion in mice, as it can in humans, and, if so, to examine its effects on carbonic anhydrase II (CA II) and AQP5 expression in sweat glands. In addition, CA activity, Na, K-ATPase activity and tissue morphology of sweat glands were examined following topiramate administration. Main results are as follow:
     396 patients (3.73%) developed hypohidrosis and the incidence rate in children was much higher than that in adults. Most hypohidrosis occurred during drug titration and in warmer seasons. It was well tolerated and seldom resulted in drug discontinuation and inpatient care. Symptoms of most patients disappeared in a few months and coincided with the onset of cool weather, while long-lasting symptoms were scanty. Gender, frequency and type of seizure, therapeutic effect or add-on drug therapy did not have a significant effect on the onset of hypohidrosis. On the other hand, patients with younger age or higher dosage were susceptible to hypohidrosis in summer. There was no significant difference in the average dosage between patients with and without hypohidrosis in each age group. However, there was a significant difference in the average age between patients with and without hypohidrosis in each dosage group.
     Both developing and mature mice were treated with a low (20 mg/kg/day) and high dose (80 mg/kg/day) of topiramate for four weeks. Each group contained 12 mice. Sweat secretion was investigated by an established technique of examining mold impressions of hindpaws. In mature mice, two weeks of topiramate treatment decreased sweat output per gland from baseline in both the low and high dose groups. Four weeks of topiramate treatment decreased the number of pilocarpine reactive sweat glands from baseline in both the low and high dose groups. A similar decrease was seen in developing mice. In addition, topiramate did not have a significant effect on body temperature in mice.
     Immunofluorescence confirmed that sweat glands in normal mice did not present gamma-aminobutyric acid (GABA) receptor subtype GABAA andα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainic acid (KA) subtype of glutamate receptor.
     Mature mice with reactive sweat glands that declined more than 25% compared to baseline were defined as anhidrotic mice. Sweat gland morphology was examined in toluidine blue-stained plastic-embedded sections. CA II and AQP5 expression levels were determined by immunofluorescence and immunoblotting, while CA activity and Na, K-ATPase activity by a colorimetric assay. Anhidrotic mice treated by topiramate did not differ from controls in average secretory coil diameter, CA II expression, CA activity and Na, K-ATPase activity. In contrast, anhidrotic mice did show a reduction in membrane AQP5 expression in sweat glands after topiramate delivery.
     To our best knowledge, the present study is the largest sample-size clinical investigation concerning topiramate induced-hypohidrosis. In summary, our results indicate that hypohidrosis is a frequent adverse effect in children with topiramate therapy. Younger age and hot weather rather than drug dosage are independent risk factors for topiramate-associated hypohidrosis. The resultes also rule out the possibility that topiramate act on its known mechanisms of action, such as potentiating GABA activity at GABAA receptors and antagonizing the AMPA/KA subtype of glutamate receptor in the secretory cells of sweat glands to inhibit sweat secretion. Our data also suggest that topiramate impairs sudomotor function in mice and leads to a significant reduction in AQP5 expression in sweat glands of anhidrotic mice, thus raising the possibility that dysregulation of AQP5 may contribute to topiramate related hypohidrosis. CA inhibition may not be an important contributor since CA II expression and CA activity was intact in anhidrotic mice treated with topiramate.
引文
1. Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE. An overview of the preclinical aspects of Topiramate: Pharmacology, pharmacokinetics, and mechanism of action. Epilepsia,2000,41(Suppl):S3–9
    2. 沈鼎烈.癫癎的药物治疗.见:吴逊,主编.癫癎和发作性疾病(神经病学.第 13 卷).北京:人民军医出版社,2001,370–371
    3. Bialer M, Doose DR, Murthy B, Curtin C, Wang SS, Twyman RE, Schwabe S. Pharmacokinetic interactions of topiramate. Clin Pharmacokinet,2004, 43(12): 763–780
    4. Walia KS, Khan EA, Ko DH, Raza SS, Khan YN. Side Effects of Antiepileptics –A Review. Pain Pract, 2004, 4(3): 194–203
    5. Spina E, Perugi G. Antiepileptic drugs: indications other than epilepsy. Epileptic Disord,2004, 6(2):57–75
    6. Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med,2004, 10(7):685–692
    7. Beghi E. Efficacy and tolerability of the new antiepileptic drugs: comparison of two recent guidelines. Lancet Neurol,2004, 3(10):618–621
    8. Silberstein SD, Neto W, Schmitt J, Jacobs D; MIGR-001 Study Group. Topiramate in migraine prevention: results of a large controlled trial. Arch Neurol,2004, 61(4):490–495
    9. Diener HC, Tfelt–Hansen P, Dahlof C, Lainez MJ, Sandrini G, Wang SJ, Neto W, Vijapurkar U, Doyle A, Jacobs D; MIGR-003 Study Group. Topiramate in migraine prophylaxis--results from a placebo-controlled trial with propranolol as an active control. J Neurol,2004, 251(8):943–950
    10. Young WB, Siow HC, Silberstein SD. Anticonvulsants in migraine. Curr Pain HeadACHe Rep,2004,8(3):244–250
    11. Huang YG, Chen YC, Du F, Li R, Xu GL, Jiang W, Huang J. Topiramate therapy for paroxysmal kinesigenic choreoathetosis. Mov Disord,2005,20(1):75–77
    12. 马磊,黄远桂.新型 AEDs 的非抗癫癎应用.中华神经科杂志,2006,39(3):206–207
    13. Walia KS, Khan EA, Ko DH, Raza SS, Khan YN. Side effects of antiepileptics– a review. Pain Pract,2004,4(3):194–203
    14. Arcas J, Ferrer T, Roche MC, Martinez–Bermejo A, Lopez–Martin V. Hypohidrosis related to the administration of topiramate to children. Epilepsia,2001,42(10):1363–1365
    15. 黄志民.托吡酯致儿童无汗症 2 例. 中国神经精神疾病杂志,2001, 27(5): 391–392
    16. Nieto–Barrera M, Nieto–Jimenez M, Candau R, Ruiz del Portal L. Anhidrosis and hyperthermia associated with treatment with Topiramate. Rev Neurol,2002, 34(2):114–116
    17. Sanchez Calso A, Anton Sanz MC. Low sweat secretion due to topiramate. Aten Primaria. 2002,30(4):257–258
    18. de Carolis P, Magnifico F, Pierangeli G, Rinaldi R, Galeotti M, Cevoli S, Cortelli P. Transient hypohidrosis induced by topiramate. Epilepsia,2003, 44(7):974–976
    19. Ben-Zeev B, Watemberg N, Augarten A, Brand N, Yahav Y, Efrati O, Topper L, Blatt I. Oligohydrosis and hyperthermia: pilot study of a novel topiramate adverse effect. J Child Neurol,2003, 18(4):254–257
    20. Galicia SC, Lewis SL, Metman LV. Severe topiramate–associated hyperthermia resulting in persistent neurological dysfunction. Clin Neuropharmacol,2005, 28(2):94–95
    21. Cerminara C, Seri S, Bombardieri R, Pinci M, Curatolo P. Hypohidrosis during topiramate treatment: a rare and reversible side effect. Pediatr Neurol,2006,34(5):392–394
    22. 黄远桂, 杜芳, 夏峰, 江文,田国红,徐格林.托吡酯治疗癫癎的临床疗效及安全性的观察.中华神经科杂志,2002,35(2): 79–82
    23. 黄远桂, 陈云春, 杜芳,李锐,江文. 托吡酯治疗癫癎时出现的泌汗障碍的分析.中国神经精神疾病杂志,2004,30(5): 360–363
    24. 周水珍,王艺,邱鹏玲, 金佩娟,陈天兰,宋义清,孙道开.托吡酯治疗小儿癫癎 104例临床研究.中华神经科杂志,2001, 34(5): 283–286
    25. 孙道开,王艺,陈天兰,邱鹏玲,周水珍,金佩娟.托吡酯治疗小儿癫癎 66 例临床分析.中国实用儿科杂志,2001,16(6): 356–358
    26. 程晓红,朱赤,刘翠忠,刘义红,钟新,刘志峰.托吡酯治疗 46 例儿童癫癎的开放性研究.实用医学杂志,2002,18(10): 1111–1113
    27. 翟琼香,周晓红,林晓源,张宇昕.应用托吡酯治疗小儿难治性癫癎的临床研究.中国神经精神疾病杂志,2002,28(6): 451–452
    28. 余新良.托吡酯治疗难治性癫癎的疗效观察.河南实用神经疾病杂志,2003,6(1): 90–91
    29. 冯永嘉,蔡方成,钟佑泉.妥泰快速增量治疗婴幼儿期频繁发作癫癎.实用儿科临床杂志,2003,18(1): 48–50
    30. 周晓红,王丽娟,郑芷萍,詹国华.托吡酯单药及转换单药治疗癫癎 30 例疗效观察.实用医学杂志,2003,19(2): 193–194
    31. 朱近,邬瑾,叶露梅.托吡酯治疗儿童癫癎出现泌汗障碍的临床观察与随访.中国实用儿科杂志,2003, l8(11): 683–684
    32. 黄绍平,郭亚乐,和光祖,陈征起,何娟.托吡酯致癫癎患儿类暑热症 42 例临床分析.中国实用儿科杂志,2004, l9(10): 623–624
    33. Yilmaz K, Tatli B, Yaramis A, Aydinli N, Caliskan M, Ozmen M. Symptomatic and asymptomatic hypohidrosis in children under topiramate treatment. Turk J Pediatr,2005, 47(4): 359–363
    34. Ziad el K, Rahi AC, Hamdan SA, Mikati MA. Age, dose, and environmental temperature are risk factors for topiramate-related hyperthermia. Neurology, 2005, 65(7):1139–1140
    35. 张学军,刘维达,何春涤,主编.现代皮肤病学基础.北京:人民卫生出版社,2001,254–258
    36. Sato K, Leidal R, Sato F. Morphology and development of an apoeccrine sweat gland in human axillae. Am J Physiol,1987, 252(1 Pt 2):R166–180
    37. Boulant JA. Hypothalamic mechanisms in thermoregulation. Fed Proc,1981, 40(14):2843–2850
    38. Saper CB. The central nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci,2002, 25: 433–469
    39. Low PA. Evaluation of sudomotor function. Clin Neurophysiol,2004,115(7):1506–1513
    40. Sato K, Kang WH, Saga K, Sato KT. Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol,1989,20(4):537–563
    41. Uno H, Hokfelt T. Catecholamine–containing nerve terminals of the eccrine sweat glands of macaques. Cell Tissue Res,1975, 158(1):1–13
    42. Vetrugno R, Liguori R, Cortelli P, Montagna P. Sympathetic skin response: basic mechanisms and clinical applications. Clin Auton Res,2003,13 (4):256–270
    43. O'Grady SM, Palfrey HC, Field M. Characteristics and functions of Na–K–Cl cotransport in epithelial tissues. Am J Physiol , 1987, 253(2 Pt 1):C177–192
    44. Saga K. Structure and function of human sweat glands studied with histochemistry and cytochemistry. Prog Histochem Cytochem ,2002,37:323–386
    45. Inoue Y, Kuwahara T, Araki T. Maturation–and aging–related changes in heat loss effector function. J Physiol Anthropol Appl Human Sci,2004, 23(6):289–294
    46. Low PA, Dyck PJ. Splanchnic preganglionic neurons in man: II. Morphometry of myelinated fibers of T7 ventral spinal root. Acta Neuropathol,1977,40(3):219–225
    47. Low PA. The effect of aging on the autonomic nervous system. In: Low PA, editor. Clinical autonomic disorders: evaluation and management, 2nd ed. Philadelphia, PA: Lippincott-Raven,1997,161–175
    48. Sato K, Kang WH, Saga K, Sato KT. Biology of sweat glands and their disorders. II. Disorders of sweat gland function. J Am Acad Dermatol,1989,20(5 Pt 1):713–726
    49. Burghardt B, Elkaer ML, Kwon TH, Racz GZ, Varga G, Steward MC, Nielsen S. Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut,2003,52(7):1008–1016
    50. Levin MH, Verkman AS. Aquaporins and CFTR in ocular epithelial fluid transport. J Membr Biol,2006, 210(2):105–115
    51. Schreiber R, Nitschke R, Greger R, Kunzelmann K. The cystic fibrosis transmembrane conductance regulator activates aquaporin 3 in airway epithelial cells. J Biol Chem. 1999, 274(17):11811–11816
    52. Schreiber R, Pavenstadt H, Greger R, Kunzelmann K. Aquaporin 3 cloned from Xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator. FEBS Lett,2000, 475(3):291–295
    53. 于生元.自主神经系统检查方法.见:朱克,主编.自主神经系统疾病(神经病学.第 17 卷).北京:人民军医出版社,2001,26–28
    54. Faden AI, Chan P, Mendoza E. Progressive isolated segmental anhidrosis. Arch Neurol,1982,39(3):172–175
    55. Kennedy WR, Navarro X. Sympathetic sudomotor function in diabetic neuropathy. Arch Neurol,1989,46:1182–1186
    56. Navarro X, Verdu E, Wendelschafer–Crabb G, Kennedy WR. Immunohistochemical study of skin reinnervation by regenerative axons. J Comp Neurol,1997,380(2):164–174
    57. Kennedy WR. Usefulness of the silicon impression mold technique to evaluate sweating. Clin Auton Res,2002,12(1):9–10
    58. Low PA. Testing the autonomic nervous system. Semin Neurol , 2003, 23(4):407–421
    59. Lomax P, Schonbaum E. The effects of drugs on thermoregulation during exposure to hot environments. Prog Brain Res,1998, 115: 193–204
    60. Denborough M. Malignant hyperthermia. Lancet,1998,352(9134):1131-1136
    61. Adnet P, Lestavel P, Krivosic-Horber R. Neuroleptic malignant syndrome. Br J Anaesth,2000,85:129–135
    62. Togel B, Greve B, Raulin C. Current therapeutic strategies for hyperhidrosis: a review. Eur J Dermatol,2002,12(3):219–223
    63. Physician’s Desk Reference (Online Version). Medical Economics Company, 2002.
    64. Jenkins RD, Woodhouse KW. Drug-induced fever. Adverse Drug React Bull,1999, 197: 751–754
    65. Shimizu T, Yamashita Y, Satoi M, Togo A, Wada N, Matsuishi T, Ohnishi A, Kato H. Heat stroke–like episode in a child caused by zonisamide. Brain Dev,1997, 19(5): 366–368
    66. Okumura A, Hayakawa F, Kuno K, Watanabe K. Oligohidrosis caused by zonisamide. No To Hattatsu (Tokyo),1996, 28(1): 44–47
    67. Okumura A, Ishihara N, Kato T, Hayakawa F, Kuno K, Watanabe K. Predictive value of acetylcholine stimulation testing for oligohidrosis caused by zonisamide. Pediatr Neurol,2000, 23(1): 59–61
    68. Knudsen JF, Thambi LR, Kapcala LP, Racoosin JA. Oligohydrosis and fever in pediatric patients treated with zonisamide. Pediatr Neurol,2003, 28(3): 184–189
    69. Low PA, James S, Peschel T, Leong R, Rothstein A. Zonisamide and associated oligohidrosis and hyperthermia. Epilepsy Res,2004, 62(1):27–34
    70. Nejsum LN, Kwon TH, Jensen UB, Fumagalli O, Frokiaer J, Krane CM, Menon AG, King LS, Agre PC, Nielsen S. Functional requirement of aquaporin-5 in plasma membranes of sweat glands. Proc Natl Acad Sci USA ,2002,99(1):511–516
    71. Bovell DL, Stewart L, Corbett AD, Lindsay SL. The presence of the water channel aquaporin-5 in equine sweat glands. J Physiol,2004,557P:PC42
    72. Ma B, Xiang Y, Li T, Yu HM, Li XJ. Inhibitory effect of topiramate on Lewis lung carcinoma metastasis and its relation with AQP1 water channel. Acta Pharmacol Sin,2004,25(1):54–60
    73. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia. 1981,22(4):489–501
    74. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia. 1989,30(4):389–399
    75. Owen DB, Meffert JJ. The suppression of primary palmar-plantar hyperhidrosis by topiramate. Br J Dermatol,2003,148(4):826–827
    76. Navarro X, Verdu E, Guerrero J, Buti M, Gonalons E. Abnormalities of sympathetic sudomotor function in experimental acrylamide neuropathy.J Neurol Sci,1993,114(1):56–61
    77. Vilches JJ, Rodriguez FJ, Verdu E, Valero A, Navarro X. Changes in cholinergic responses of sweat glands during denervation and reinnervation. J Auton Nerv Syst,1998,74(2-3):134–142
    78. Kennedy WR, Sakuta M. Collateral reinnervation of sweat glands. Annals of Neurology,1984,15(1):73–78
    79. Vilches JJ, Navarro X. New silicones for the evaluation of sudomotor function with the impression mold technique. Clin Auton Res,2002,12:20–23
    80. Vilches JJ, Navarro X, Verdu E. Functional sudomotor responses to cholinergic agonists and antagonists in the mouse. J Auton Nerv Syst,1995,55(1–2):105–111
    81. Kennedy WR, Sakuta M, Quick DC. Rodent eccrine sweat glands: a case of multiple efferent innervation. Neuroscience,1984,11(3):741–749
    82. Low PA, Opfer-Gehrking TL, Kihara M. In vivo studies on receptor pharmacology of the human eccrine sweat gland. Clin Auton Res,1992,2(1):29–34
    83. Vilches JJ, Navarro X. Evaluation of direct and axon reflex sweating in the mouse. J Auton Nerv Syst,2000,78(2-3):136–140
    84. Navarro X, Kamei H, Kennedy WR. Effect of age and maturation on sudomotor nerve regeneration in mice. Brain Res,1988,447(1):133–140
    85. 顾为望,袁进.常用实验动物的特点及其在医学生物学中的应用.见:魏泓,主编.医学实验动物学.成都:四川科学技术出版社,1998,205–224
    86. Vilches JJ, Ceballos D, Verdu E, Navarro X. Changes in mouse sudomotor function and sweat gland innervation with ageing. Auton Neurosci,2002,95(1-2):80–87
    87. Nakamura J, Tamura S, Kanda T, Ishii A, Ishihara K, Serikawa T, Yamada J, Sasa M. Inhibition by topiramate of seizures in spontaneously epileptic rats and DBA/2 mice. Eur J Pharmacol,1994,254(1-2):83–89
    88. Swiader M, Kotowski J, Gasior M, Kleinrok Z, Czuczwar SJ. Interaction of topiramate with conventional antiepileptic drugs in mice. Eur J Pharmacol,2000,399(1):35–41
    89. 苗三明,主编.实验动物与动物实验技术.北京:中国中医药出版社,1997:142–146
    90. Wechsler HL, Fisher ER. Eccrine glands of the rat. Response to induced sweating, hypertension, uremia, and alterations of sodium state. Arch Dermatol,1968,97(2):189–201
    91. 胡国渊.兴奋性氨基酸.见:韩济生,主编.神经科学原理(第二版).北京:北京医科大学,中国协和医科大学联合出版社,2000:524–536
    92. 鞠躬,主编.神经生物学.北京:人民卫生出版社,2004:132–143
    93. Tian JY,Huang YG,Deng YC,Chen JZ,Ma L,Chen XL,Jiang W,Zhao G,Wang JC. Effects of topiramate on mouse eccrine sweat gland responsiveness to heat exposure. Basic Clin Pharmacol Toxicol (In Press)
    94. Song Y, Sonawane N, Verkman AS. Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice. J Physiol,2002,541(Pt 2):561–568
    95. King LS, Nielsen S, Agre P. Aquaporins in complex tissues. I. Developmental patterns in respiratory and glandular tissues of rat. Am J Physiol,1997,273(5 Pt 1):C1541–1548
    96. Brion LP, Schwartz JH, Zavilowitz BJ, Schwartz GJ. Micro-method for the measurement of carbonic anhydrase activity in cellular homogenates. Anal Biochem. 1988,175(1):289–297
    97. Briggman JV, Tashian RE, Spicer SS. Immunohistochemical localization of carbonic anhydrase I and II in eccrine sweat glands from control subjects and patients with cystic fibrosis. Am J Pathol,1983,112(3):250–257
    98. Mastrolorenzo A, Zuccati G, Massi D, Gabrielli MG, Casini A, Scozzafava A, Supuran CT. Immunohistochemical study of carbonic anhydrase isozymes in human skin. Eur J Dermatol,2003,13(5):440–444
    99. Clunes MT, Lindsay SL, Roussa E, Quinton PM, Bovell DL. Localisation of the vacuolar proton pump (V-H+ -ATPase) and carbonic anhydrase II in the human eccrine sweat gland. J Mol Histol,2004, 35(4):339–345
    100. Dodgson SJ, Shank RP, Maryanoff BE. Topiramate as an inhibitor of carbonic anhydrase isoenzymes.Epilepsia,2000,41 Suppl 1:S35–39
    101. Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem,1995,64:375–401
    102. Brechue WF, Stager JM. Acetazolamide alters temperature regulation during submaximal exercise. J Appl Physiol,1990,69(4):1402–1407
    103. Garske LA, Brown MG, Morrison SC. Acetazolamide reduces exercise capacity and increases leg fatigue under hypoxic conditions. J Appl Physiol,2003,94(3):991–996
    104. King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol,2004,5(9):687–698
    105. Takata K, Matsuzaki T, Tajika Y. Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem,2004,39(1):1–83
    106. Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem,1999,274(29):20071–20074
    107. Song Y, Verkman AS. Aquaporin-5 dependent fluid secretion in airway submucosal glands. J Biol Chem,2001,276(44):41288–41292
    108. Ishikawa Y, Cho G, Yuan Z, Inoue N, Nakae Y. Aquaporin-5 water channel in lipid rafts of rat parotid glands. Biochim Biophys Acta , 2006 ,1758(8):1053–1060
    109. Inoue N, Iida H, Yuan Z, Ishikawa Y, Ishida H. Age-related decreases in the response of aquaporin-5 to acetylcholine in rat parotid glands. J Dent Res,2003,82(6):476–480
    110. Bovell DL, Lindsay SL, Corbett AD, Steel C. Immunolocalization of aquaporin-5 expression in sweat gland cells from normal and anhidrotic horses. Vet Dermatol,2006,17(1):17–23
    111. 路炜,漆洪波.水通道蛋白调节的研究进展.国外医学妇幼保健分册,2005,16(1):42–44
    112. Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, Brown D. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest,2000,106(9):1115–1126
    113. Wang F, Feng XC, Li YM, Yang H, Ma TH. Aquaporins as potential drug targets. Acta Pharmacol Sin,2006,27(4):395–401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700