脊髓小胶质细胞调制痛觉突触传递的长时程增强效应-P2X7受体作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强直刺激大鼠坐骨神经可诱发脊髓背角痛敏神经元反应的长时程增强(long-term potentiation, LTP)和痛觉的行为敏化。本研究主要探讨了小胶质细胞在强直刺激坐骨神经诱导的大鼠脊髓LTP的产生和痛觉中枢敏化中的作用。
     既往电生理研究证实,强直电刺激大鼠坐骨神经、皮肤自然伤害性刺激或神经损伤,均可在脊髓背角引起C反应和A反应场电位的LTP,反映了痛觉信息传递的中枢敏化。引起脊髓LTP的强直电刺激能引起动物的痛觉过敏行为,包括触诱发痛和热痛敏,但机制尚不完全明确。
     近年来的研究证明,脊髓胶质细胞,尤其是小胶质细胞在病理性疼痛的发生发展中发挥重要作用。炎性痛和神经病理痛情况下均有小胶质细胞的激活。预先应用胶质细胞代谢抑制剂后,强直刺激坐骨神经诱发脊髓长时程抑制(long-term depression,LTD),而不是LTP,同时可缓解痛觉过敏行为,表明小胶质细胞参与脊髓伤害性反应的长时程增强,然而其具体机制尚不清楚。
     P2X7受体在胶质细胞上大量表达,参与神经元和胶质细胞的对话。P2X7受体激活后,可促进在海马LTP形成中起关键作用的谷氨酸、白介素-1beta (interleukin-1β, IL-1β)、肿瘤坏死因子α(tumor necrosis factorα, TNF-α)的释放。P2X7受体拮抗剂抑制神经损伤诱发的脊髓神经元的自发放电和痛行为。P2X7基因敲除的小鼠慢性炎症痛及神经病理痛均消失。因此,P2X7受体很可能是介导小胶质细胞参与脊髓LTP产生的关键介质。
     本研究采用脊髓场电位的电生理记录、伤害性机械痛行为学测试、免疫组织化学及Western blot等方法,探讨小胶质细胞的P2X7受体在强直刺激坐骨神经诱发的脊髓LTP及长时程的痛觉过敏行为中的作用。主要结果如下:
     强直刺激坐骨神经诱发大鼠脊髓场电位C反应的长时程增强和持续的触诱发痛;强直刺激前1小时鞘内注射小胶质细胞代谢抑制剂美满霉素阻断LTP的产生;强直刺激前1小时至强直刺激后7天每天1次鞘内连续注射美满霉素缓解大鼠的触诱发痛行为。以上表明,小胶质细胞参与强直刺激坐骨神经诱发的脊髓LTP及痛觉敏化行为的产生。
     强直刺激前0.5小时鞘内分别注射P2X7受体拮抗剂oxATP和BBG,均可阻断脊髓LTP的产生;强直刺激前7天鞘内注射的P2X7受体的小干扰RNA片段,也阻断脊髓LTP的产生;离体脊髓切片上预先应用BBG灌流1小时,可阻断强直刺激李骚束所诱发的脊髓兴奋性突触后场电位的LTP,而不影响基础反应。以上表明,P2X7受体在脊髓场电位的LTP产生中具有至关重要的作用。
     强直刺激前0.5小时鞘内分别注射oxATP和BBG及强直刺激前7天鞘内注射P2X7受体小干扰RNA片段,在强直刺激后3、5和7天均可部分缓解强直刺激所诱发的双侧触诱发痛;强直刺激前0.5小时鞘内注射BBG可明显抑制强直刺激后2小时Fos的表达上调。表明拮抗P2X7受体功能可显著抑制脊髓痛敏神经元的活动过度增强。免疫组化结果表明,P2X7受体与小胶质细胞标志物OX-42共标,而与星形胶质细胞标志物GFAP及神经元标志物NeuN无共标;强直刺激坐骨神经激活脊髓小胶质细胞和明显上调P2X7受体的表达,且均可被强直刺激前0.5小时鞘内注射P2X7受体拮抗剂BBG所抑制。以上表明脊髓LTP的阻断是小胶质细胞P2X7受体的特异性的作用。强直刺激坐骨神经可诱发脊髓p38丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)磷酸化、其下游分子IL-1β的表达及在LTP中发挥关键作用的AMPA受体的GluR1亚基表达的显著增加,且均可被强直刺激前0.5小时鞘内注射P2X7受体拮抗剂BBG所抑制;强直刺激前0.5小时鞘内注射IL-1β特异性抗体IL-1ra可阻断脊髓LTP的产生,并且可抑制GluR1的表达上调。以上表明,P2X7受体参与脊髓伤害性反应长时程增强的产生是通过IL-1β信号通路激活而实现的。
     免疫组化结果表明,小胶质细胞和星形胶质细胞分别在强直刺激后第3天和第7天被激活;Western blot结果表明,强直刺激可导致P2X7下游分子IL-18及其受体的表达增加。以上过程均可被强直刺激前1小时至强直刺激后7天每天1次连续注射小胶质细胞抑制剂美满霉素抑制。免疫双标结果显示,IL-18绝大部分与小胶质细胞标志物Iba-1共标,少量与星形胶质细胞标志物GFAP共标,而与神经元标志物NeuN无共标,而IL-18受体仅与星形胶质细胞标志物GFAP共标。以上结果表明,小胶质细胞和星形胶质细胞之间的相互作用参与病理性痛的维持,此过程很可能是由IL-18信号通路介导。
     综上所述,本研究表明,小胶质细胞上的P2X7受体在强直刺激坐骨神经诱发的脊髓场电位的LTP及持续性痛的产生中具有至关重要的作用,而此作用是通过IL-1β信号通路实现的;小胶质细胞可能通过P2X7受体下游信号分子IL-18激活星形胶质细胞,参与病理性痛的维持。
Tetanic stimulation of the sciatic nerve induced long-term potentiation (LTP) of spinal cord neurons and pain behavioral hypersensitivity. The present work was to investigate the role of microglia in the modulation of central sensitization of spinal pain pathway induced by tetanic stimulation of the sciatic nerve (TSS) in rats.
     LTP, considered as the substrate of central sensitization in spinal pain pathway, can be induced by TSS, natural noxious stimulation of skin or nerve injury. Furthermore, the tetanic stimulation with the identical parameters used in electrophysiological recording induced hypersensitized pain behavior, including allodynia and hyperalgesia. However, the exact mechanisms of the development of spinal LTP remain obscure.
     Numerous works have proved that glia in the spinal cord, especially microglia, play a vital role in the development of pathological pain. Microglia can be activated in both inflammatory and neuropathic pain. Pre-application of glial metabolic inhibitor prevents the induction of spinal LTP and alleviates hypersensitized pain behavior, indicating the involvement of microglia in the induction of LTP of spinal nociceptive responses.
     P2X7 receptor (P2X7R) is excessively expressed in glia and considered as a pivotal mediator in the crosstalk between neuron and glia. The activation of P2X7R by exocytic ATP promoted significant release of glutamate, which is necessary for the induction of hippocampal LTP, and proinflammatory cytokines, such as interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α). It has been reported that spontaneous firing of spinal cord neurons and pain hypersensitivity are significantly suppressed by selective P2X7R antagonists. Moreover, P2X7 knockout mice showed no chronic inflammatory and neuropathic pain. Therefore, P2X7R may be a vital molecule in mediating the involvement of microglia in the induction of spinal LTP.
     By means of electrophysiological recording, mechanical allodynia test, immunohistochemistry and Western blot, the present study was to investigate the role of P2X7R in microglia in the induction of spinal LTP and long-term pain hypersensitivity induced by TSS. The main findings were as follows:
     Spinal LTP of C-fiber-evoked field potentials was induced by TSS and was blocked by intrathecal administration of microglial metabolic inhibitor minocycline 1 h before tetanic stimulation; the mechanical allodynia induced by TSS was partially alleviated by consecutively intrathecal administration of minocycline 1 h before and 7 days once daily after tetanic stimulation. These findings indicate that spinal microglia are involved in the induction of spinal LTP and pain hypersensitivity induced by TSS.
     Pre-injection of P2X7R antagonist oxATP or BBG 0.5 h before tetanic stimulation and P2X7-siRNA 7 days before TSS blocked spinal LTP; preincubation of spinal slices with BBG 1 h before tetanic stimulation blocked the spinal LTP of field excitory postsynaptic potentials (fEPSPs) induced by high frequency stimulation of Lissauer's tract without affecting the baseline responses, suggesting a pivotal role of P2X7R in the induction of spinal LTP.
     Pre-injection of P2X7R antagonist oxATP or BBG 0.5 h before tetanic stimulation and P2X7-siRNA 7 days before TSS partially alleviated bilateral allodynia on day 3,5 and 7 after tetanic stimulation; pre-injection of BBG 0.5 h before tetanic stimulation suppressed the upregulation of Fos expression 2 h after TSS, indicating the significant inhibition of excessive excitation of spinal pain sensitization neurons by the antagonism of P2X7R.
     Immunohistochemistry results showed that P2X7R was predominantly colocalized with microglia marker OX-42 but not with astrocyte marker GFAP and neuron marker NeuN; the activation of microglia and the upregulation of P2X7R induced by TSS was suppressed by preadministration of P2X7 antagonist BBG 0.5 h before tetanic stimulation, indicating a specific role of P2X7R in the induction of spinal LTP.
     The upregulation of phospharylated p38 mitogen-activated protein kinase (MAPK)、IL-1βand GluR1 induced by tetanic stimulation was reversed by pre-injection of BBG 0.5 h before tetanus; the IL-1βantibody IL-1ra blocked the induction of spinal LTP and inhibited the increased expression of GluR1, indicating that IL-1βsignaling pathway was involved in the induction of spinal LTP after the activation of P2X7R.
     Imunohistochemistry results demonstrated that microglia and astrocytes were activated on day 3 and day 7 after TSS, respectively; Western blot results showed that the increased expression of interleukin-18 (IL-18), downstream molecule of P2X7R, as well as interleukin-18 receptor (IL-18R) was significantly inhibited by consecutive application of microglial metabolic inhibitor minocycline 1 h before and 7 days after TSS; IL-18 was predominantly colocalized with microglia marker Iba-1 and slightly with astrocyte marker GFAP but no colocalization with neuron marker NeuN; IL-18R was almost completely colocalized with astrocyte marker GFAP. These results suggest that the IL-18 signaling pathway contributes to the exacerbation of pathological pain by mediating the interaction of microglia and astrocytes.
     In conclusion, the present work demonstrated that P2X7R in microlia played a vital role in the induction of spinal LTP and persistent pain hypersensitization and IL-1βsignaling pathway was involved in the process. The interaction of microglia and astrocytes, mediated by a downstream molecule of P2X7R IL-18, contributed greatly to the maintenance of pathological pain.
引文
[1]Atkinson, L., Batten, T. F., Moores, T. S., Varoqui, H., Erickson, J. D. and Deuchars, J. Differential co-localisation of the P2X7 receptor subunit with vesicular glutamate transporters VGLUT1 and VGLUT2 in rat CNS [J]. Neuroscience,2004,123:761-768.
    [2]Beattie, E. C., Stellwagen, D., Morishita, W., Bresnahan, J. C., Ha, B. K., Von Zastrow, M., Beattie, M. S. and Malenka, R. C. Control of synaptic strength by glial TNF alpha [J]. Science, 2002,295:2282-2285.
    [3]Bennett, M. R. Synaptic P2X7 receptor regenerative-loop hypothesis for depression [J]. Aust NZ J Psychiat,2007,41:563-571.
    [4]Bernardino, L., Balosso, S., Ravizza, T., Marchi, N., Ku, G., Randle, J. C., Malva, J. O. and Vezzani, A. Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury:a crucial role of P2X (7) receptor-mediated IL-1 beta release [J]. J Neurochem,2008,106:271-280.
    [5]Bolshakov, V.Y., Carboni, L., Cobb, M.H., Siegelbaum, S.A. and Belardetti, F. Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses [J]. Nat Neurosci,2000,3:1107-1112.
    [6]Brough, D., Le Feuvre, R. A., Iwakura, Y. and Rothwell, N. J. Purinergic (P2X7) receptor activation of microglia induces cell death via an interleukin-1-independent mechanism [J]. Mole Cell Neurosci,2002,19:272-280.
    [7]Cao, H. and Zhang, Y. Q. Spinal glial activation contributes to pathological pain states [J]. Neurosci Biobehav Rev,2008,32:972-983.
    [8]Chessell, I. P., Hatcher, J. P., Bountra, C., Michel, A. D., Hughes, J. P., Green, P., Egerton, J., Murfin, M., Richardson, J., Peck, W. L., Grahames, C. B. A., Casula, M. A., Yiangou, Y., Birch, R., Anand, P. and Buell, G. N. Disruption of the P2X (7) purinoceptor gene abolishes chronic inflammatory and neuropathic pain [J]. Pain,2005,114:386-396.
    [9]Chizh, B. A. and Illes, P. P2X receptors and nociception [J]. Pharmacol Rev,2001,53:553-568.
    [10]Choi, H. B., Ryu, J. K., Kim, S. U. and McLarnon, J. G. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain [J]. J Neurosci,2007,27:4957-4968.
    [11]Clark, A. K., Gentry, C., Bradbury, E. J., McMahon, S. B. and Malcangio, M. Role of spinal microglia in rat models of peripheral nerve injury and inflammation [J]. Eur J Pain,2007,11: 223-230.
    [12]Collo, G., Neidhart, S., Kawashima, E., Kosco-Vilbois, M., North, R. A. and Buell, G. Tissue distribution of the P2X7 receptor [J]. Neuropharmacology,1997,36:1277-1283.
    [13]Conti, B., Park, L. C., Calingasan, N. Y., Kim, Y., Kim, H., Bae, Y., Gibson, G. E. and Joh, T. H. Cultures of astrocytes and microglia express interleukin 18 [J]. Brain Res Mol Brain Res,1999, 67:46-52.
    [14]Crown, E. D., Gwak, Y S., Ye, Z., Johnson, K. M. and Hulsebosch, C. E. Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury [J]. Exp Neurol,2008, 213:257-267.
    [15]Cunningham, A. J., Murray, C. A., O'Neill, L. A., Lynch, M. A. and O'Connor, J. J. Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro [J]. Neurosci Lett,1996,203:17-20.
    [16]DeLeo, J. A. and Yezierski, R. P. The role of neuroinflammation and neuroimmune activation in persistent pain [J]. Pain,2001,90:1-6.
    [17]Deng, Z. and Fyffe, R. E. Expression of P2X7 receptor immunoreactivity in distinct subsets of synaptic terminals in the ventral horn of rat lumbar spinal cord [J]. Brain Res,2004,1020: 53-61.
    [18]Deuchars, S. A., Atkinson, L., Brooke, R. E., Musa, H., Milligan, C. J., Batten, T. F., Buckley, N. J., Parson, S. H. and Deuchars, J. Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems [J]. J Neurosci,2001,21:7143-7152.
    [19]Di Virgilio, F., Sanz, J. M., Chiozzi, P. and Falzoni, S. The P2Z/P2X7 receptor of microglial cells: a novel immunomodulatory receptor [J]. Prog Brain Res,1999,120:355-368.
    [20]Donnelly-Roberts, D. L., Namovic, M. T., Faltynek, C. R. and Jarvis, M. F. Mitogen-activated protein kinase and caspase signaling pathways are required for P2X7 receptor (P2X7R)-induced pore formation in human THP-1 cells [J]. J Pharmacol Exp Ther,2004,308:1053-1061.
    [21]Duan, S., Anderson, C. M., Keung, E. C., Chen, Y., Chen, Y. and Swanson, R. A. P2X7 receptor-mediated release of excitatory amino acids from astrocytes [J]. J Neurosci,2003,23: 1320-1328.
    [22]Ferrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., Panther, E. and Di Virgilio, F. The P2X7 receptor: a key player in IL-1 processing and release [J]. J Immunol,2006, 176:3877-3883.
    [23]Fields, R. D. and Stevens, B. ATP:an extracellular signaling molecule between neurons and glia [J]. Trends Neurosci,2000,23:625-633.
    [24]Gong, Q. J., Li, Y Y, Xin, W. J., Zang, Y, Ren, W. J., Wei, X. H., Li, Y Y, Zhang, T. and Liu, X. G. ATP induces long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn: the roles of P2X4 receptors and p38 MAPK in microglia [J]. Glia,2009,57:583-591.
    [25]Griffin, R., Nally, R., Nolan, Y., McCartney, Y., Linden, J. and Lynch, M. A. The age-related attenuation in long-term potentiation is associated with microglial activation [J]. J Neurochem, 2006,99:1263-1272.
    [26]Hains, B. C. and Waxman, S. G. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury [J]. J Neurosci,2006,26:4308-4317.
    [27]Harris, J. A. Using c-fos as a neural marker of pain [J]. Brain Research Bulletin,1998,45:1-8.
    [28]Haydon, P. G. GLIA:listening and talking to the synapse [J]. Nat Rev Neurosci,2001,2: 185-193.
    [29]Hide, I., Tanaka, M., Inoue, A., Nakajima, K., Kohsaka, S., Inoue, K. and Nakata, Y. Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia [J]. J Neurochem,2000,75:965-972.
    [30]Honore, P., Donnelly-Roberts, D., Namovic, M. T., Hsieh, G., Zhu, C. Z., Mikusa, J. P., Hernandez, G., Zhong, C. M., Gauvin, D. M., Chandran, P., Harris, R., Medrano, A. P., Carroll, W., Marsh, K., Sullivan, J. P., Faltynek, C. R. and Jarvis, M. F. A-740003 [N-(1-{[(cyanoimino) (5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl) acetamide], a novel and selective P2X (7) receptor antagonist, dose-dependently reduces neuropathic pain in the rat [J]. J Pharmacol Exp Ther,2006,319:1376-1385.
    [31]Hua, X. Y., Svensson, C. I., Matsui, T., Fitzsimmons, B., Yaksh, T. L. and Webb, M. Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia [J]. Eur J Neurosci,2005,22:2431-2440.
    [32]Hughes, J. P., Hatcher, J. P. and Chessell, I. P. The role of P2X (7) in pain and inflammation [J]. Purinergic Signal,2007,3:163-169.
    [33]Ikeda, H., Tsuda, M., Inoue, K. and Murase, K. Long-term potentiation of neuronal excitation by neuron-glia interactions in the rat spinal dorsal horn [J]. Eur J Neurosci,2007,25:1297-1306.
    [34]Jeon, G. S., Park, S. K., Park, S. W., Kim, D. W., Chung, C. K. and Cho, S. S. Glial expression of interleukin-18 and its receptor after excitotoxic damage in the mouse hippocampus [J]. Neurochem Res,2008,33:179-184.
    [35]Ji, R.R., Kohno, T., Moore, K.A. and Woolf, C.J. Central sensitization and LTP: do pain and memory share similar mechanisms [J]? Trends Neurosci,2003,26:696-705.
    [36]Ji, R.R. and Suter, M.R. p38 MAPK, microglial signaling, and neuropathic pain [J]. Mol pain, 2007,3:33.
    [37]Kawasaki, Y., Xu, Z.Z., Wang, X.Y., Park, J.Y., Zhuang, Z.Y., Tan P.H., Gao Y.J., Roy. K., Corfas G., Lo E.H. and Ji R.R. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med,2008,14:331-336.
    [38]Kawasaki, Y., Zhang, L., Cheng, J.K. and Ji, R.R. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-lbeta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord [J]. J Neurosci,2008, 28:5189-5194.
    [39]Kumar, S., Boehm, J. and Lee, J.C. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases [J]. Nat Rev Drug Discov,2003,2:717-726.
    [40]Lai, A. Y., Swayze, R. D., El-Husseini, A. and Song, C. Interleukin-1 beta modulates AMPA receptor expression and phosphorylation in hippocampal neurons [J]. J Neuroimmun,2006,175: 97-106.
    [41]Latremoliere, A. and Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity [J]. J Pain,2009,10:895-926.
    [42]Ledeboer, A., Sloane, E. M., Milligan, E. D., Frank, M. G., Mahony, J. H., Maier, S. F. and Watkins, L. R. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation [J]. Pain,2005,115:71-83.
    [43]Lee, H. K., Takamiya, K., Han, J. S., Man, H., Kim, C. H., Rumbaugh, G., Yu, S., Ding, L., He, C., Petralia, R. S., Wenthold, R. J., Gallagher, M. and Huganir, R. L. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory [J]. Cell,2003,112:631-643.
    [44]Lee, M., Lee, S. J., Choi, H. J., Jung, Y. W., Frokiaer, J., Nielsen, S. and Kwon, T. H. Regulation of AQP4 protein expression in rat brain astrocytes:Role of P2X7 receptor activation [J]. Brain Res,2008,1195:1-11.
    [45]Lisman, J. and Raghavachari, S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses [J]. Sci STKE,2006,2006:rell.
    [46]Liu, X. G. and Sandkuhler, J. Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors [J]. J Neurophysiol,1997,78:1973-1982.
    [47]Liu, X. G. and Sandkuhler, J. Long-term potentiation of C-fiber-evoked potentials in the rat spinal dorsal horn is prevented by spinal N-methyl-D-aspartic acid receptor blockage [J]. Neurosci Lett,1995,191:43-46.
    [48]Liu, X. G. and Sandkuhler, J. Activation of spinal N-methyl-D-aspartate or neurokinin receptors induces long-term potentiation of spinal C-fibre-evoked potentials [J]. Neuroscience,1998,86: 1209-1216.
    [49]Liu, Y. L., Zhou, L. J., Hu, N. W., Xu, J. T., Wu, C. Y, Zhang, T., Li, Y. Y. and Liu, X. G. Tumor necrosis factor-[alpha] induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn in rats with nerve injury: The role of NF-kappa B, JNK and p38 MAPK [J]. Neuropharmacology,2007,52:708-715.
    [50]Lozier, A. P. and Kendig, J. J. Long-term potentiation in an isolated peripheral nerve-spinal cord preparation [J]. J Neurophysiol,1995,74:1001-1009.
    [51]Ma, J. Y. and Zhao, Z. Q. The effects of Zn2+ on long-term potentiation of C fiber-evoked potentials in the rat spinal dorsal horn [J]. Brain Res Bull,2001,56:575-579.
    [52]Ma, J. Y. and Zhao, Z. Q. The involvement of glia in long-term plasticity in the spinal dorsal horn of the rat [J]. Neuroreport,2002,13:1781-1784.
    [53]Malarkey, E. B. and Parpura, V. Mechanisms of glutamate release from astrocytes [J]. Neurochem Int,2008,52:142-154.
    [54]McGaraughty, S., Chu, K. L., Namovic, M. T., Donnelly-Roberts, D. L., Harris, R. R., Zhang, X. F., Shieh, C. C., Wismer, C. T., Zhu, C. Z., Gauvin, D. M., Fabiyi, A. C., Honore, P., Gregg, R. J., Kort, M. E., Nelson, D. W., Carroll, W. A., Marsh, K., Faltynek, C. R. and Jarvis, M. F. P2X7-related modulation of pathological nociception in rats [J]. Neuroscience,2007,146: 1817-1828.
    [55]Melani, A., Amadio, S., Gianfriddo, M., Vannucchi, M. G., Volonte, C., Bernardi, G., Pedata, F. and Sancesario, G. P2X (7) receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat [J]. J Cereb Blood Flow Metab,2006,26: 974-982.
    [56]Meng, Y., Zhang, Y. and Jia, Z. Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3 [J]. Neuron,2003,39:163-176.
    [57]Mika, J., Osikowicz, M., Makuch, W. and Przewlocka, B. Minocycline and pentoxifylline attenuate allodynia and hyperalgesia and potentiate the effects of morphine in rat and mouse models of neuropathic pain [J]. Eur J Pharmacol,2007,560:142-149.
    [58]Milligan, E. D., Twining, C., Chacur, M., Biedenkapp, J., O'Connor, K., Poole, S., Tracey, K., Martin, D., Maier, S. F. and Watkins, L. R. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats [J]. J Neurosci,2003,23:1026-1040.
    [59]Miyoshi, K., Obata, K., Kondo, T., Okamura, H. and Noguchi, K. Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury [J]. J Neurosci,2008,28:12775-12787.
    [60]Morioka, N., Abdin, M. J., Kitayama, T., Morita, K., Nakata, Y. and Dohi, T. P2X (7) receptor stimulation in primary cultures of rat spinal microglia induces downregulation of the activity for glutamate transport [J]. Glia,2008,56:528-538.
    [61]Nakatsuka, T. and Gu, J. G. ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord [J]. J Neurosci,2001,21: 6522-6531.
    [62]Nicoll, R. A. and Malenka, R. C. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation [J]. Ann N Y Acad Sci,1999,868:515-525.
    [63]Pedersen, L. M., Jacobsen, L. M., Mollerup, S. and Gjerstad, J. Spinal cord long-term potentiation (LTP) is associated with increased dorsal horn gene expression of IL-1beta, GDNF and iNOS [J]. Eur J Pain,2009,14:255-260.
    [64]Prinz, M. and Hanisch, U. K. Murine microglial cells produce and respond to interleukin-18 [J]. J Neurochem,1999,72:2215-2218.
    [65]Queiroz, G., Gebicke-Haerter, P. J., Schobert, A., Starke, K. and von Kugelgen, I. Release of ATP from cultured rat astrocytes elicited by glutamate receptor activation [J]. Neuroscience,1997,78: 1203-1208.
    [66]Rygh, L. J., Svendsen, F., Hole, K. and Tjolsen, A. Natural noxious stimulation can induce long-term increase of spinal nociceptive responses [J]. Pain,1999,82:305-310.
    [67]Samad, T.A., Moore, K.A., Sapirstein, A., Billet, S., Allchorne, A., Poole, S., Bonventre, J.V. and Woolf, C.J. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity [J]. Nature,2001,410:471-475.
    [68]Sanderson, D. J., Good, M. A., Seeburg, P. H., Sprengel, R., Rawlins, J. N. and Bannerman, D. M. The role of the GluR-A (GluR1) AMPA receptor subunit in learning and memory [J]. Prog Brain Res,2008,169:159-178.
    [69]Sandkuhler, J. and Liu, X. G. Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury [J]. Eur J Neurosci,1998,10:2476-2480.
    [70]Sandkuhler, J. Understanding LTP in pain pathways [J]. Mole Pain,2007,3:9.
    [71]Sanes, J.R. and Lichtman, J.W. Can molecules explain long-term potentiation [J]? Nat Neurosci, 1999,2:597-604.
    [72]Sawynok, J., Downie, J. W., Reid, A. R., Cahill, C. M. and White, T. D. ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin [J]. Brain Res,1993,610:32-38.
    [73]Schneider, H., Pitossi, F., Balschun, D., Wagner, A., del Rey, A. and Besedovsky, H. O. A neuromodulatory role of interleukin-1beta in the hippocampus [J]. Proc Natl Acad Sci U S A, 1998,95:7778-7783.
    [74]Schreiber, K. L., Beitz, A. J. and Wilcox, G. L. Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia [J]. Neurosci Lett,2008, 440:63-67.
    [75]Shen, Y. and Linden, D. J. Long-term potentiation of neuronal glutamate transporters [J]. Neuron,2005,46:715-722.
    [76]Sim, J. A., Young, M. T., Sung, H. Y, North, R. A. and Surprenant, A. Reanalysis of P2X7 receptor expression in rodent brain [J]. J Neurosci,2004,24:6307-6314.
    [77]Simi, A., Lerouet, D., Pinteaux, E. and Brough, D. Mechanisms of regulation for interleukin-lbeta in neurodegenerative disease [J]. Neuropharmacology,2007,52:1563-1569.
    [78]Sluyter, R., Dalitz, J. G. and Wiley, J. S. P2X7 receptor polymorphism impairs extracellular adenosine 5'-triphosphate-induced interleukin-18 release from human monocytes [J]. Genes Immun,2004,5:588-591.
    [79]Solle, M., Labasi, J., Perregaux, D. G., Stam, E., Petrushova, N., Koller, B. H., Griffiths, R. J. and Gabel, C. A. Altered cytokine production in mice lacking P2X (7) receptors [J]. J Biol Chem, 2001,276:125-132.
    [80]Sperlagh, B., Vizi, E. S., Wirkner, K. and Illes, P. P2X (7) receptors in the nervous system [J]. Prog Neurobiol,2006,78:327-346.
    [81]Sperlagh, B. and Illes, P. Purinergic modulation of microglial cell activation [J]. Purinergic Signal,2007,3:117-127.
    [82]Sperlagh, B., Papp, L. and Vizi, E. S. P2X7 receptor mediated phosphorylation of p38MAP kinase in the hippocampus [J]. J Neurochem,2007,102:289-289.
    [83]Stock, C., Schilling, T., Schwab, A. and Eder, C. Lysophosphatidylcholine stimulates IL-1beta release from microglia via a P2X7 receptor-independent mechanism [J]. J Immunol,2006,177: 8560-8568.
    [84]Suk, K., Yeou Kim, S. and Kim, H. Regulation of IL-18 production by IFN gamma and PGE2 in mouse microglial cells:involvement of NF-kB pathway in the regulatory processes [J]. Immunol Lett,2001,77:79-85.
    [85]Sun, S., Cao, H., Han, M., Li, T. T., Pan, H. L., Zhao, Z. Q. and Zhang, Y. Q. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis [J]. Pain,2007,129:64-75.
    [86]Sweitzer, S., Martin, D. and DeLeo, J.A. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain [J]. Neuroscience,2001,103:529-539.
    [87]Tan, P. H., Yang, L. C., Shih, H. C., Lan, K. C. and Cheng, J. T. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat [J]. Gene Ther,2005,12:59-66.
    [88]Todd, K. J., Serrano, A., Lacaille, J. C. and Robitaille, R. Glial cells in synaptic plasticity [J]. J
    Physiol Paris,2006,99:75-83.
    [89]Toyoda, H., Zhao, M.G., Xu, H., Wu, L. J., Ren, M. and Zhuo, M. Requirement of extracellular signal-regulated kinase/mitogen-activated protein kinase for long-term potentiation in adult mouse anterior cingulate cortex [J]. Mol pain,2007,3:36.
    [90]Tsuda, M., Shigemoto-Mogami, Y., Koizumi, S., Mizokoshi, A., Kohsaka, S., Salter, M. W. and Inoue, K. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury [J]. Nature,2003,424:778-783.
    [91]Tsuda, M., Mizokoshi, A., Shigemoto-Mogami, Y., Koizumi, S. and Inoue, K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury [J]. Glia,2004,45:89-95.
    [92]Wang, Q., Rowan, M. J. and Anwyl, R. Beta-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide [J]. J Neurosci,2004,24: 6049-6056.
    [93]Wheeler, R. D., Brough, D., Le Feuvre, R. A., Takeda, K., Iwakura, Y, Luheshi, G. N. and Rothwell, N. J. Interleukin-18 induces expression and release of cytokines from murine glial cells: interactions with interleukin-1 beta [J]. J Neurochem,2003,85:1412-1420.
    [94]Wieraszko, A., Goldsmith, G. and Seyfried, T. N. Stimulation-dependent release of adenosine triphosphate from hippocampal slices [J]. Brain Res,1989,485:244-250.
    [95]Xu, J. J., Walla, B. C., Diaz, M. F., Fuller, G. N. and Gutstein, H. B. Intermittent lumbar puncture in rats: a novel method for the experimental study of opioid tolerance[J]. Anesth Analg,2006, 103:714-720.
    [96]Ying, B., Lu, N., Zhang, Y. Q. and Zhao, Z. Q. Involvement of spinal glia in tetanically sciatic stimulation-induced bilateral mechanical allodynia in rats [J]. Biochem Biophys Res Commun, 2006,340:1264-1272.
    [97]Yu, Y, Ugawa, S., Ueda, T., Ishida, Y, Inoue, K., Nyunt, A. K., Umemura, A., Mase, M., Yamada, A. and Shimada, S. Cellular localization of P2X7 receptor mRNA in the rat brain [J]. Brain Res,2008,1194:45-55.
    [98]Zamanillo, D., Sprengel, R., Hvalby, O., Jensen, V, Burnashev, N., Rozov, A., Kaiser, K. M., Koster, H. J., Borchardt, T., Worley, P., Lubke, J., Frotscher, M., Kelly, P. H., Sommer, B., Andersen, P., Seeburg, P. H. and Sakmann, B. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning [J]. Science,1999,284:1805-1811.
    [99]Zhang, X. C., Zhang, Y. Q. and Zhao, Z. Q. Involvement of nitric oxide in long-term potentiation of spinal nociceptive responses in rats [J]. Neuroreport,2005b,16:1197-1201.
    [1]Adriouch, S., Dox, C., Welge, V, Seman, M., Koch-Nolte, F. and Haag, F. Cutting edge: a natural P451L mutation in the cytoplasmic domain impairs the function of the mouse P2X7 receptor [J]. J Immunol,2002,169:4108-4112.
    [2]Alcaraz, L., Baxter, A., Bent, J., Bowers, K., Braddock, M., Cladingboel, D., Donald, D., Fagura, M., Furber, M., Laurent, C., Lawson, M., Mortimore, M., McCormick, M., Roberts, N. and Robertson, M. Novel P2X7 receptor antagonists [J]. Bioorg Med Chem Lett,2003,13:4043-4046.
    [3]Anderson, C. M., Bergher, J. P. and Swanson, R. A. ATP-induced ATP release from astrocytes [J]. J Neurochem,2004,88:246-256.
    [4]Anderson, C. M. and Nedergaard, M. Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons [J]. Trends Neurosci,2006,29:257-262.
    [5]Armstrong, J. N., Brust, T. B., Lewis, R. G. and MacVicar, B. A. Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase [J]. J Neurosci,2002,22:5938-5945.
    [6]Ballerini, P., Rathbone, M. P., Di Iorio, P., Renzetti, A., Giuliani, P., D'Alimonte, I., Trubiani, O., Caciagli, F. and Ciccarelli, R. Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release [J]. Neuroreport,1996,7:2533-2537.
    [7]Baraldi, P. G., Di Virgilio, F. and Romagnoli, R. Agonists and antagonists acting at P2X7 receptor [J]. Curr Top Med Chem,2004,4:1707-1717.
    [8]Beigi, R. D., Kertesy, S. B., Aquilina, G. and Dubyak, G. R. Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms [J]. Br J Pharmacol,2003,140:507-519.
    [9]Bianchi, B. R., Lynch, K. J., Touma, E., Niforatos, W., Burgard, E. C., Alexander, K. M., Park, H. S., Yu, H., Metzger, R., Kowaluk, E., Jarvis, M. F. and van Biesen, T. Pharmacological characterization of recombinant human and rat P2X receptor subtypes [J]. Eur J Pharmacol,1999,376:127-138.
    [10]Bianco, F., Pravettoni, E., Colombo, A., Schenk, U., Moller, T., Matteoli, M. and Verderio, C. Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia [J]. J Immunol,2005,174:7268-7277.
    [11]Boehm, S. ATP stimulates sympathetic transmitter release via presynaptic P2X purinoceptors [J]. J Neurosci,1999,19:737-746.
    [12]Brazil, D. P. and Hemmings, B. A. Ten years of protein kinase B signalling: a hard Akt to follow [J]. Trends Biochem Sci,2001,26:657-664.
    [13]Bringmann, A., Pannicke, T., Moll, V., Milenkovic, I., Faude, F., Enzmann, V., Wolf, S. and Reichenbach, A. Upregulation of P2X (7) receptor currents in Muller glial cells during proliferative vitreoretinopathy [J]. Invest Ophthalmol Vis Sci,2001,42:860-867.
    [14]Casanovas, A., Hernandez, S., Tarabal, O., Rossello, J. and Esquerda, J. E. Strong P2X4 purinergic receptor-like immunoreactivity is selectively associated with degenerating neurons in transgenic rodent models of amyotrophic lateral sclerosis [J]. J Comp Neurol, 2008,506:75-92.
    [15]Cavaliere, F., Sancesario, G., Bernardi, G. and Volonte, C. Extracellular ATP and nerve growth factor intensify hypoglycemia-induced cell death in primary neurons:role of P2 and NGFRp75 receptors [J]. J Neurochem,2002,83:1129-1138.
    [16]Cavaliere, F., Amadio, S., Sancesario, G., Bernardi, G. and Volonte, C. Synaptic P2X7 and oxygen/glucose deprivation in organotypic hippocampal cultures [J]. J Cereb Blood Flow Metab,2004,24:392-398.
    [17]Chang, L. and Karin, M. Mammalian MAP kinase signalling cascades [J]. Nature,2001, 410:37-40.
    [18]Chessell, I. P., Hatcher, J. P., Bountra, C., Michel, A. D., Hughes, J. P., Green, P., Egerton, J., Murfin, M., Richardson, J., Peck, W. L., Grahames, C. B., Casula, M. A., Yiangou, Y., Birch, R., Anand, P. and Buell, G. N. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain[J]. Pain,2005,114:386-396.
    [19]Ciccarelli, R., Ballerini, P., Sabatino, G., Rathbone, M. P., D'Onofrio, M., Caciagli, F. and Di Iorio, P. Involvement of astrocytes in purine-mediated reparative processes in the brain [J]. Int J Dev Neurosci,2001,19:395-414.
    [20]Collo, G., Neidhart, S., Kawashima, E., Kosco-Vilbois, M., North, R. A. and Buell, G. Tissue distribution of the P2X7 receptor [J]. Neuropharmacology,1997,36:1277-1283.
    [21]Cotrina, M. L. and Nedergaard, M. Physiological and pathological functions of P2X7
    receptor in the spinal cord [J]. Purinergic Signal,2009,5:223-232.
    [22]Craighead, M. W., Middlehurst, K. M., LeFeuvre, R., Kimber, I. and Rothwell, N. J. Oxidised adenosine 5'-triphosphate, a P2X (7) antagonist, is toxic to rat cerebellar granule neurones in vitro [J]. Neurosci Lett,2001,311:77-80.
    [23]Cunha, R. A., Vizi, E. S., Ribeiro, J. A. and Sebastiao, A. M. Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices [J]. J Neurochem,1996,67: 2180-2187.
    [24]Dell'Antonio, G., Quattrini, A., Cin, E. D., Fulgenzi, A. and Ferrero, M. E. Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP [J]. Arthritis Rheum,2002a,46:3378-3385.
    [25]Dell'Antonio, G., Quattrini, A., Dal Cin, E., Fulgenzi, A. and Ferrero, M. E. Antinociceptive effect of a new P (2Z) /P2X7 antagonist, oxidized ATP, in arthritic rats [J]. Neurosci Lett,2002b,327:87-90.
    [26]Denlinger, L. C., Fisette, P. L., Sommer, J. A., Watters, J. J., Prabhu, U., Dubyak, G. R., Proctor, R. A. and Bertics, P. J. Cutting edge:the nucleotide receptor P2X7 contains multiple protein- and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide [J]. J Immunol,2001,167:1871-1876.
    [27]Deuchars, S. A., Atkinson, L., Brooke, R. E., Musa, H., Milligan, C. J., Batten, T. F., Buckley, N. J., Parson, S. H. and Deuchars, J. Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems [J]. J Neurosci,2001, 21:7143-7152.
    [28]Di Virgilio, F. The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death [J]. Immunol Today,1995,16:524-528.
    [29]Di Virgilio, F. Novel data point to a broader mechanism of action of oxidized ATP:the P2X7 receptor is not the only target [J]. Br J Pharmacol,2003,140:441-443.
    [30]Duan, S. M., Anderson, C. M., Keung, E. C., Chen, Y., Chen, Y. and Swanson, R. A. P2X7 receptor-mediated release of excitatory amino acids from astrocytes [J]. J Neurosci, 2003,23:1320-1328.
    [31]Duan, S. M. and Neary, J. T. P2X(7) receptors:Properties and relevance to CNS function [J]. Glia,2006,54:738-746.
    [32]Egelman, D. M. and Montague, P. R. Calcium dynamics in the extracellular space of mammalian neural tissue [J]. Biophys J,1999,76:1856-1867.
    [33]el-Moatassim, C. and Dubyak, G. R. A novel pathway for the activation of phospholipase D by P2z purinergic receptors in BAC1.2F5 macrophages [J]. J Biol Chem,1992,267: 23664-23673.
    [34]Erb, L., Lustig, K. D., Ahmed, A. H., Gonzalez, F. A. and Weisman, G. A. Covalent incorporation of 3'-O- (4-benzoyl) benzoyl-ATP into a P2 purinoceptor in transformed mouse fibroblasts [J]. J Biol Chem,1990,265:7424-7431.
    [35]Evanko, D. S., Zhang, Q., Zorec, R. and Haydon, P. G. Defining pathways of loss and secretion of chemical messengers from astrocytes [J]. Glia,2004,47:233-240.
    [36]Ferrari, D., Villalba, M., Chiozzi, P., Falzoni, S., Ricciardi-Castagnoli, P. and Di Virgilio, F. Mouse microglial cells express a plasma membrane pore gated by extracellular ATP [J]. J Immunol,1996,156:1531-1539.
    [37]Ferrari, D., Chiozzi, P., Falzoni, S., Dal Susino, M., Collo, G., Buell, G. and Di Virgilio, F. ATP-mediated cytotoxicity in microglial cells [J]. Neuropharmacology,1997,36: 1295-1301.
    [38]Ferrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., Panther, E. and Di Virgilio, F. The P2X7 receptor:a key player in IL-1 processing and release [J]. J Immunol,2006,176:3877-3883.
    [39]Fortes, F. S., Pecora, I. L., Persechini, P. M., Hurtado, S., Costa, V, Coutinho-Silva, R., Braga, M. B., Silva-Filho, F. C., Bisaggio, R. C., De Farias, F. P., Scemes, E., De Carvalho, A. C. and Goldenberg, R. C. Modulation of intercellular communication in macrophages:possible interactions between GAP junctions and P2 receptors [J]. J Cell Sci,2004,117:4717-4726.
    [40]Franke, H., Grosche, J., Schadlich, H., Krugel, U., Allgaier, C. and Illes, P. P2X receptor expression on astrocytes in the nucleus accumbens of rats [J]. Neuroscience,2001,108: 421-429.
    [41]Franke, H., Gunther, A., Grosche, J., Schmidt, R., Rossner, S., Reinhardt, R., Faber-Zuschratter, H., Schneider, D. and Illes, P. P2X7 receptor expression after ischemia in the cerebral cortex of rats [J]. J Neuropathol Exp Neurol,2004,63:686-699.
    [42]Franke, H., Klimke, K., Brinckmann, U., Grosche, J., Francke, M., Sperlagh, B., Reichenbach, A., Liebert, U. G. and Illes, P. P2X (7) receptor-mRNA and -protein in the mouse retina; changes during retinal degeneration in BALBCrds mice [J]. Neurochem Int, 2005,47:235-242.
    [43]Freissmuth, M., Boehm, S., Beindl, W., Nickel, P., Ijzerman, A. P., Hohenegger, M. and Nanoff, C. Suramin analogues as subtype-selective G protein inhibitors [J]. Mol Pharmacol,1996,49:602-611.
    [44]Fulgenzi, A., Dell'Antonio, G., Foglieni, C., Dal Cin, E., Ticozzi, P., Franzone, J. S. and Ferrero, M. E. Inhibition of chemokine expression in rat inflamed paws by systemic use of the antihyperalgesic oxidized ATP [J]. BMC Immunol,2005,6:18.
    [45]Gazzinelli, R. T., Wysocka, M., Hieny, S., Scharton-Kersten, T., Cheever, A., Kuhn, R., Muller, W., Trinchieri, G. and Sher, A. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha [J]. J Immunol,1996,157:798-805.
    [46]Gendron, F. P., Neary, J. T., Theiss, P. M., Sun, G. Y., Gonzalez, F. A. and Weisman, G A. Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells [J]. Am J Physiol Cell Physiol,2003,284:C571-581.
    [47]Gonzalez, F. A., Ahmed, A. H., Lustig, K. D., Erb, L. and Weisman, G. A. Permeabilization of transformed mouse fibroblasts by 3'-O-(4-benzoyl) benzoyl adenosine 5'-triphosphate and the desensitization of the process [J]. J Cell Physiol,1989, 139:109-115.
    [48]Gordon, G. R., Baimoukhametova, D. V, Hewitt, S. A., Rajapaksha, W. R., Fisher, T. E. and Bains, J. S. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy [J]. Nat Neurosci,2005,8:1078-1086.
    [49]Griffiths, R. J., Stam, E. J., Downs, J. T. and Otterness, I. G. ATP induces the release of IL-1 from LPS-primed cells in vivo [J]. J Immunol,1995,154:2821-2828.
    [50]Gu, B. J., Sluyter, R., Skarratt, K. K., Shemon, A. N., Dao-Ung, L. P., Fuller, S. J., Barden, J. A., Clarke, A. L., Petrou, S. and Wiley, J. S. An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor [J]. J Biol Chem, 2004,279:31287-31295.
    [51]Gunosewoyo, H., Coster, M. J. and Kassiou, M. Molecular probes for P2X7 receptor studies [J]. Current Medicinal Chemistry,2007,14:1505-1523.
    [52]Hervas, C., Perez-Sen, R. and Miras-Portugal, M. T. Presence of diverse functional P2X receptors in rat cerebellar synaptic terminals [J]. Biochem Pharmacol,2005,70:770-785.
    [53]Hide, I., Tanaka, M., Inoue, A., Nakajima, K., Kohsaka, S., Inoue, K. and Nakata, Y. Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia [J]. J Neurochem,2000,75:965-972.
    [54]Hogquist, K. A., Nett, M. A., Unanue, E. R. and Chaplin, D. D. Interleukin 1 is processed and released during apoptosis [J]. Proc Natl Acad Sci U S A,1991,88:8485-8489.
    [55]Honore, P., Donnelly-Roberts, D., Namovic, M. T., Hsieh, G., Zhu, C. Z., Mikusa, J. P., Hernandez, G., Zhong, C., Gauvin, D. M., Chandran, P., Harris, R., Medrano, A. P., Carroll, W., Marsh, K., Sullivan, J. P., Faltynek, C. R. and Jarvis, M. F. A-740003 [N-(1-{[(cyanoimino) (5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl) -2-(3,4-dimethoxyphenyl) acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat [J]. J Pharmacol Exp Ther,2006, 319:1376-1385.
    [56]Humphreys, B. D., Rice, J., Kertesy, S. B. and Dubyak, G. R. Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor [J]. J Biol Chem,2000,275:26792-26798.
    [57]Inoue, K. ATP receptors of microglia involved in pain [J]. Novartis Found Symp,2006, 276:263-272; discussion 273-281.
    [58]Jabs, R., Matthias, K., Grote, A., Grauer, M., Seifert, G. and Steinhauser, C. Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region [J]. Glia,2007,55:1648-1655.
    [59]Jacobson, K. A., Jarvis, M. F. and Williams, M. Purine and pyrimidine (P2) receptors as drug targets [J]. J Med Chem,2002,45:4057-4093.
    [60]Jiang, L. H., Mackenzie, A. B., North, R. A. and Surprenant, A. Brilliant blue G selectively blocks ATP-gated rat P2X (7) receptors [J]. Mol Pharmacol,2000,58:82-88.
    [61]Jiang, L. H., Rassendren, F., Mackenzie, A., Zhang, Y. H., Surprenant, A. and North, R. A. N-methyl-D-glucamine and propidium dyes utilize different permeation pathways at rat P2X (7) receptors [J]. Am J Physiol Cell Physiol,2005,289:C1295-1302.
    [62]Khakh, B. S. and North, R. A. P2X receptors as cell-surface ATP sensors in health and disease [J]. Nature,2006,442:527-532.
    [63]Kim, M., Jiang, L. H., Wilson, H. L., North, R. A. and Surprenant, A. Proteomic and functional evidence for a P2X7 receptor signalling complex [J]. Embo J,2001,20: 6347-6358.
    [64]Kucher, B. M. and Neary, J. T. Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes [J]. J Neurochem,2005,92:525-535.
    [65]Kukley, M., Barden, J. A., Steinhauser, C. and Jabs, R. Distribution of P2X receptors on astrocytes in juvenile rat hippocampus [J]. Glia,2001,36:11-21.
    [66]Kukley, M., Stausberg, P., Adelmann, G., Chessell, I. P. and Dietrich, D. Ecto-nucleotidases and nucleoside transporters mediate activation of adenosine receptors on hippocampal mossy fibers by P2X7 receptor agonist 2'-3'-O-(4-benzoylbenzoyl)-ATP
    [J]. J Neurosci,2004,24:7128-7139.
    [67]Kyriakis, J. M. and Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation [J]. Physiol Rev,2001,81: 807-869.
    [68]Labasi, J. M., Petrushova, N., Donovan, C., McCurdy, S., Lira, P., Payette, M. M., Brissette, W., Wicks, J. R., Audoly, L. and Gabel, C. A. Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response [J]. J Immunol,2002, 168:6436-6445.
    [69]Leon, D., Hervas, C. and Miras-Portugal, M. T. P2Y1 and P2X7 receptors induce calcium/calmodulin-dependent protein kinase Ⅱ phosphorylation in cerebellar granule neurons [J]. Eur J Neurosci,2006,23:2999-3013.
    [70]Liang, L. and Schwiebert, E. M. Large pore formation uniquely associated with P2X7 purinergic receptor channels. Focus on "Are second messengers crucial for opening the pore associated with P2X7 receptor?" [J]. Am J Physiol Cell Physiol,2005,288: C240-242.
    [71]Lindenlaub, T. and Sommer, C. Partial sciatic nerve transection as a model of neuropathic pain:a qualitative and quantitative neuropathological study [J]. Pain,2000,89:97-106.
    [72]Lundy, P. M., Hamilton, M. G., Mi, L., Gong, W., Vair, C., Sawyer, T. W. and Frew, R. Stimulation of Ca (2+) influx through ATP receptors on rat brain synaptosomes: identification of functional P2X (7) receptor subtypes [J]. Br J Pharmacol,2002,135: 1616-1626.
    [73]MacKenzie, A., Wilson, H. L., Kiss-Toth, E., Dower, S. K., North, R. A. and Surprenant, A. Rapid secretion of interleukin-lbeta by microvesicle shedding [J]. Immunity,2001,15: 825-835.
    [74]McLarnon, J. G., Ryu, J. K., Walker, D. G. and Choi, H. B. Upregulated expression of purinergic P2X (7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus [J]. J Neuropathol Exp Neurol,2006, 65:1090-1097.
    [75]Miras-Portugal, M. T., Diaz-Hernandez, M., Giraldez, L., Hervas, C., Gomez-Villafuertes, R., Sen, R. P., Gualix, J. and Pintor, J. P2X7 receptors in rat brain: presence in synaptic terminals and granule cells [J]. Neurochem Res,2003,28:1597-1605.
    [76]Morioka, N., Abdin, M. J., Kitayama, T., Morita, K., Nakata, Y. and Dohi, T. P2X (7) receptor stimulation in primary cultures of rat spinal microglia induces downregulation of the activity for glutamate transport [J]. Glia,2008,56:528-538.
    [77]Narcisse, L., Scemes, E., Zhao, Y., Lee, S. C. and Brosnan, C. F. The cytokine IL-1beta transiently enhances P2X7 receptor expression and function in human astrocytes [J]. Glia, 2005,49:245-258.
    [78]Neary, J. T., Kang, Y. and Shi, Y. F. Cell cycle regulation of astrocytes by extracellular nucleotides and fibroblast growth factor-2 [J]. Purinergic Signal,2005,1:329-336.
    [79]Nelson, D. W., Gregg, R. J., Kort, M. E., Perez-Medrano, A., Voight, E. A., Wang, Y, Grayson, G., Namovic, M. T., Donnelly-Roberts, D. L., Niforatos, W., Honore, P., Jarvis, M. F., Faltynek, C. R. and Carroll, W. A. Structure-activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole P2X7 antagonists [J]. J Med Chem,2006, 49:3659-3666.
    [80]Nicholls, D. and Attwell, D. The release and uptake of excitatory amino acids [J]. Trends Pharmacol Sci,1990,11:462-468.
    [81]Nilsson, P., Hillered, L., Olsson, Y., Sheardown, M. J. and Hansen, A. J. Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats [J]. J Cereb Blood Flow Metab,1993,13:183-192.
    [82]North, R. A. and Surprenant, A. Pharmacology of cloned P2X receptors [J]. Annu Rev Pharmacol Toxicol,2000,40:563-580.
    [83]North, R. A. Molecular physiology of P2X receptors [J]. Physiol Rev,2002,82: 1013-1067.
    [84]Panenka, W., Jijon, H., Herx, L. M., Armstrong, J. N., Feighan, D., Wei, T., Yong, V. W., Ransohoff, R. M. and MacVicar, B. A. P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase [J]. J Neurosci,2001,21:7135-7142.
    [85]Pannicke, T., Fischer, W., Biedermann, B., Schadlich, H., Grosche, J., Faude, F., Wiedemann, P., Allgaier, C., Illes, P., Burnstock, G. and Reichenbach, A. P2X7 receptors in Muller glial cells from the human retina [J]. J Neurosci,2000,20:5965-5972.
    [86]Papp, L., Vizi, E. S. and Sperlagh, B. Lack of ATP-evoked GABA and glutamate release in the hippocampus of P2X7 receptor-/-mice [J]. Neuroreport,2004,15:2387-2391.
    [87]Parpura, V, Scemes, E. and Spray, D. C. Mechanisms of glutamate release from astrocytes:gap junction "hemichannels", purinergic receptors and exocytotic release [J]. Neurochem Int,2004,45:259-264.
    [88]Parvathenani, L. K., Tertyshnikova, S., Greco, C. R., Roberts, S. B., Robertson, B. and Posmantur, R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease [J]. J Biol Chem,2003,
    278:13309-13317.
    [89]Pascual, O., Casper, K. B., Kubera, C., Zhang, J., Revilla-Sanchez, R., Sul, J. Y., Takano, H., Moss, S. J., McCarthy, K. and Haydon, P. G. Astrocytic purinergic signaling coordinates synaptic networks [J]. Science,2005,310:113-116.
    [90]Perregaux, D. and Gabel, C. A. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity [J]. J Biol Chem,1994,269: 15195-15203.
    [91]Phillis, J. W. and O'Regan, M. H. Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex [J]. Neurochem Int,2003,43:461-467.
    [92]Rappold, P. M., Lynd-Balta, E. and Joseph, S. A. P2X7 receptor immunoreactive profile confined to resting and activated microglia in the epileptic brain [J]. Brain Res,2006, 1089:171-178.
    [93]Rassendren, F., Buell, G. N., Virginio, C., Collo, G., North, R. A. and Surprenant, A. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA [J]. J Biol Chem,1997,272:5482-5486.
    [94]Sanz, J. M. and Di Virgilio, F. Kinetics and mechanism of ATP-dependent IL-1 beta release from microglial cells [J]. J Immunol,2000,164:4893-4898.
    [95]Seltzer, Z., Dubner, R. and Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury [J]. Pain,1990,43:205-218.
    [96]Solle, M., Labasi, J., Perregaux, D. G., Stam, E., Petrushova, N., Koller, B. H., Griffiths, R. J. and Gabel, C. A. Altered cytokine production in mice lacking P2X (7) receptors [J]. J Biol Chem,2001,276:125-132.
    [97]Sperlagh, B., Erdelyi, F., Szabo, G. and Vizi, E. S. Local regulation of [(3) H]-noradrenaline release from the isolated guinea-pig right atrium by P (2X) -receptors located on axon terminals [J]. Br J Pharmacol,2000,131:1775-1783.
    [98]Sperlagh, B., Kofalvi, A., Deuchars, J., Atkinson, L., Milligan, C. J., Buckley, N. J. and Vizi, E. S. Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus [J]. J Neurochem,2002,81:1196-1211.
    [99]Stokes, B. T., Fox, P. and Hollinden, G. Extracellular calcium activity in the injured spinal cord[J]. Exp Neurol,1983,80:561-572.
    [100]Suadicani, S. O., Brosnan, C. F. and Scemes, E. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling [J]. J Neurosci,2006,26: 1378-1385.
    [101]Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. and Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7) [J]. Science,1996, 272:735-738.
    [102]Suzuki, T., Hide, I., Ido, K., Kohsaka, S., Inoue, K. and Nakata, Y. Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia [J]. J Neurosci,2004,24:1-7.
    [103]Verderio, C. and Matteoli, M. ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma [J]. J Immunol,2001,166:6383-6391.
    [104]Wang, X., Arcuino, G., Takano, T., Lin, J., Peng, W. G., Wan, P., Li, P., Xu, Q., Liu, Q. S., Goldman, S. A. and Nedergaard, M. P2X7 receptor inhibition improves recovery after spinal cord injury [J]. Nat Med,2004,10:821-827.
    [105]Wieraszko, A., Goldsmith, G. and Seyfried, T. N. Stimulation-dependent release of adenosine triphosphate from hippocampal slices [J]. Brain Res,1989,485:244-250.
    [106]Worthington, R. A., Smart, M. L., Gu, B. J., Williams, D. A., Petrou, S., Wiley, J. S. and Barden, J. A. Point mutations confer loss of ATP-induced human P2X (7) receptor function [J]. FEBS Lett,2002,512:43-46.
    [107]Xiang, Z. and Burnstock, G. Expression of P2X receptors on rat microglial cells during early development [J]. Glia,2005,52:119-126.
    [108]Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S. and Ransom, B. R. Functional hemichannels in astrocytes:a novel mechanism of glutamate release [J]. J Neurosci,2003,23: 3588-3596.
    [109]Yiangou, Y., Facer, P., Durrenberger, P., Chessell, I. P., Naylor, A., Bountra, C., Banati, R. R. and Anand, P. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord [J]. BMC Neurol,2006,6:12.
    [110]Yu, Y., Ugawa, S., Ueda, T., Ishida, Y, Inoue, K., Kyaw Nyunt, A., Umemura, A., Mase, M., Yamada, K. and Shimada, S. Cellular localization of P2X7 receptor mRNA in the rat brain [J]. Brain Res,2008a,1194:45-55.
    [111]Zhang, J. M., Wang, H. K., Ye, C. Q., Ge, W., Chen, Y., Jiang, Z. L., Wu, C. P., Poo, M. M. and Duan, S. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression[J]. Neuron,2003,40:971-982.
    [112]Zhang, X., Chen, Y., Wang, C. and Huang, L. Y Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia [J]. Proc Natl Acad Sci U S A,2007,104:9864-9869.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700